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Chapter 1. Introduction 
Walking and bicycling make up a relatively small portion of transportation in the United States 
and yet account for a disproportionate share of the total fatal and serious injury crashes. In 2018, 
6,227 pedestrians were killed in traffic-related crashes, which was around 15% of all traffic 
fatalities in the United States (Governors Highway Safety Association [GHSA], 2019). Despite 
the efforts of many U.S. cities to promote pedestrian safety, national crash statistics for 
pedestrians show an upward trend: 2018 and 2017 had a 4% and 1.7% increase in pedestrian 
fatalities, respectively, compared to previous years. The number of pedestrian fatalities in 2018 
was the highest since 1990 (GHSA, 2019). Austin, Texas, is no exception to this overwhelming 
nonmotorized crash trend. In 2018, pedestrians made up 42% of all traffic fatalities in Austin, the 
highest number of pedestrian deaths in almost 10 years (Bradshaw, 2019). 

Many big cities in the United States, including Austin, are endeavoring to adopt a holistic 
approach to increase safety and mobility for pedestrians of all ages. To develop and implement 
effective strategies to reduce pedestrian crashes, preferably to zero, a better understanding of the 
causes and consequences of pedestrian crashes is essential. Although pedestrian-related crashes 
occur on various road facilities, such as intersections, driveways, and midblock locations, safety 
planners often focus on intersection-related crashes because a significantly large proportion of 
crashes are observed in or near intersections (Choi, 2010). The Texas Strategic Highway Safety 
Plan reported that more than one-third of fatal and incapacitating injury crashes in Texas in 2013 
were identified as intersection related (Texas Department of Transportation [TxDOT], 2016a). A 
report analyzing crashes in the Capital Area Metropolitan Planning Organization (CAMPO) 
region estimated that the total cost of intersection crashes was around $3.3 billion from 2010 to 
2014 (TxDOT, 2016a). The same report also revealed that more than one of every seven severe 
crashes (fatal and suspected serious injury) at intersections in the CAMPO region involved a 
pedestrian or bicyclist. 

In addition to discerning the location of pedestrian crashes, effective countermeasures warrant a 
profound understanding of the role of multiple exogenous factors (such as exposure or traffic 
condition) affecting crash occurrence. While considering policies to reduce the frequency of 
crashes, especially involving vulnerable road users such as pedestrians and bicyclists, planners 
must also contemplate countermeasures to minimize the severity of those crashes. Bicyclists and 
pedestrians are 2.3 and 1.5 times more likely, respectively, to be fatally injured in a trip than 
passenger-vehicle occupants are, according to a study by Beck et al. (2007). 

Safety advocates in multiple areas are persistent in their efforts to develop evidence-based data-
driven strategies to reduce pedestrian fatalities. The literature is replete with studies of various 
aspects of pedestrian crash risk, type, and severity at different geographic scales including 
intersections, census tracts, and block groups. However, most of these studies suffer from two 
limitations. 
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The first limitation is the absence of pedestrian demand or exposure data, which, despite being 
some of the most important inputs when analyzing pedestrian safety, are often not available. 
Although models (such as the direct demand model) are available to estimate nonmotorized 
demand at a specific spatial scale that can be used as an exposure measure for safety analysis, 
only a handful of studies have used these models (Hasani et al., 2019; Lee et al., 2019).  

The second limitation is the inadequacy of separate models to capture the potential correlations 
across various crash aspects. For example, when analyzing crash frequency and severity, the 
traditional univariate modeling approach leaves room for error by ignoring the presence of 
common unobserved factors that simultaneously influence the occurrence of crashes by severity 
type at a spatial scale. Studies have argued that crash frequency across different attributes (mode 
involved, severity, crash type, and damage) tend to be correlated and are thus multivariate in 
nature (Yasmin & Eluru, 2018). Therefore, the univariate models, which analyze crash attributes 
separately, increase the risk of potential biases, leading to inaccurate estimation (Ma et al., 
2008). For this reason, for analyzing multiple crash attributes (such as severity), developing and 
deploying a multivariate model is recommended to obtain a reliable, robust estimate of the 
impacts of various factors on crash frequencies for different severities (Liu & Sharma, 2018; 
Park & Lord, 2007).  

Acknowledging the superiority of multivariate models, a number of studies have developed crash 
models by type, mode, and severity at various geographic scales (Lee et al., 2015; Ma et al., 
2008; Park & Lord, 2007; Wang et al., 2014; Xie et al., 2019; Ye, Pendyala, et al., 2009; Zeng et 
al., 2017). Although a number of researchers have attempted to develop multivariate models to 
investigate intersection-related crashes for motorized vehicles (Alarifi et al., 2018; Cheng et al., 
2018; Huang et al., 2017; Park & Lord, 2007), multivariate analyses for pedestrian-involved 
crashes at intersections are rare (Heydari et al., 2017).  

In light of this discussion, this study focused on the development of a data-driven framework for 
analyzing multiple pedestrian crash severities at signalized intersections, in a joint context, 
incorporating pedestrian exposure. Austin was selected as the study area given its strong 
commitment to its Vision Zero goals yet lack of data and tools to facilitate strategic data-
informed decisions. The study area covered the entire city area with a total of 409 intersections 
identified for the analysis. To the authors’ knowledge, no studies have estimated pedestrian 
demand or exposure at Austin intersections, despite recent studies having shown that 
disregarding pedestrian exposure could significantly affect the crash analysis model (Fitzpatrick 
et al., 2018). 

This study was performed in two parts: 

1. Using available pedestrian count data from the City of Austin, a direct demand model 
was developed for estimating pedestrian volume/exposure at the intersection (signalized) 
level. 
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2. The exposure information was integrated into the development of a multivariate model 
for analyzing pedestrian crash frequency at signalized intersections for three severity 
levels: fatal crash, suspected serious injury or incapacitating injury crash, and non-
incapacitating injury crash. 
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Chapter 2. Literature Review 
This chapter provides an overview of the different approaches of crash analysis using a 
multivariate perspective. In addition, the chapter discusses the importance of and approaches to 
considering the spatial dependency of the crash data, multivariate crash models focused on 
nonmotorized modes, and use of exposure variables in nonmotorized crash analysis. 

2.1 Multivariate Crash Analysis  

To inform and design safety-related policies guided by models with superior predictive power 
and accuracy, researchers have given significant attention to advanced statistical modeling 
techniques such as multivariate models, random parameter models, finite mixture/Markov 
switching models, hierarchical models, neural and Bayesian neural network models, and so forth 
(Lord & Mannering, 2010). Among these advanced models, research on joint or multivariate 
modeling of correlated outcomes has been particularly popular in the last few years. The key 
strength of the multivariate modeling approach is its ability to handle correlations across 
different levels of crash attributes (such as crash occurrence and severity), which are likely to be 
affected by common unobserved factors simultaneously (Mannering et al., 2016). Several studies 
(Huang & Abdel-Aty, 2010; Xie et al., 2013) have suggested that these models provide more 
reliable and accurate estimation than traditional univariate models. 

The multivariate modeling approaches for crash analysis, attempted by several studies, generally 
vary in terms of crash attributes investigated, modeling structures, and aggregation level. In 
terms of crash attributes, studies have used multivariate models to examine crash frequency by 
severity level (El-Basyouny & Sayed, 2009; Ma et al., 2008; Park & Lord, 2007; Wang et al., 
2014; Xie et al., 2019; Zeng et al., 2017; Zhan et al., 2015), crash frequency by collision type 
(Bhowmik et al., 2018; El-Basyouny et al., 2014; Song et al., 2006; Ye et al., 2009), crash 
frequency by transportation mode (Lee et al., 2015; Huang et al., 2017), injury severity and 
driver error (Wali et al., 2018), and injury severity and vehicle damage (Wang et al., 2015).  

In terms of modeling structure, researchers have examined a number of approaches based on 
their data collection and analysis requirements. Studies have used Poisson gamma models 
(Abdel-Aty & Radwan, 2000; Poch & Mannering, 1996; Xie et al., 2019), Poisson lognormal 
models (Alarifi et al., 2017; El-Basyouny & Sayed, 2009; Huang et al., 2017; Lee et al., 2015; 
Park & Lord, 2007; Wang & Kockelman, 2013), copula-based approaches (Nashad et al., 2016; 
Rana et al., 2010; Wang et al., 2019a; Yasmin et al., 2014; Yasmin et al., 2018), and multivariate 
random-parameter zero-inflated negative binomial models (Anastasopoulos, 2016). A few 
studies have also used the fractional split approach for modeling crash frequency by different 
attributes (Bhowmik et al., 2018; Yasmin et al., 2016). Studies have employed both Bayesian 
(Cheng et al., 2018; Ma et al., 2017) and frequentist (Narayanamoorthy et al., 2013) estimation 
techniques to make statistical inferences under the multivariate setting.  
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Studies analyzing crashes in a multivariate context also vary in aggregation level. Similar to the 
univariate approach, multivariate models can be categorized into two types: macro-level (such as 
a regional or traffic analysis zone level) and micro-level (such as intersections or the road 
segment level). Macro-level models can examine the influence of sociodemographic, land use, or 
road network characteristics on crash attributes, which can evaluate safety conditions from a 
planning perspective (Wang & Huang, 2016). Micro-level models focus on intersection- or road-
segment-related characteristics and are often used to identify black spots. Examples of 
aggregation for macroscopic models (in a multivariate context) include the traffic analysis zone 
level (Bhowmik et al., 2018), county level (Song et al., 2006), and census tract level (Wang & 
Kockelman, 2013; Xie et al., 2019). Acknowledging the need for models to design safety-related 
countermeasures at the microscopic level, numerous studies have applied the multivariate 
modeling approach to examine crashes at the level of the intersection (Huang et al., 2017; Park & 
Lord, 2007; Strauss et al., 2014; Wang et al., 2019a; Ye et al., 2009), roadway segment 
(El-Basyouny & Sayed, 2009; Wang et al., 2014), highway corridor (Ma et al., 2017), and 
intersection and road segment simultaneously (Zeng & Huang, 2014). 

Another important aspect of modeling crash frequency is considering the spatial dependence of 
the observations, which is often ignored (Mannering et al., 2016). Research has shown that crash 
models need to account for spatial dependency because spatial correlation exists extensively 
among adjacent locations in road networks and neighborhood zones (Quddus, 2008; Wang et al., 
2019b). For example, the frequency of crashes at a location may sharply change with the 
distance from the central business district, or crashes on road segments in close proximity can be 
clustered together because they have similar traffic flow characteristics. Consideration of spatial 
correlation while examining crash models for intersections in the urban road network is 
particularly crucial because the intersections at close proximity are more likely to share similar 
land use and traffic characteristics (Abdel-Aty & Wang, 2006; Xie et al., 2013; Xie et al., 2014). 
The spatial model can handle the spatial interaction and spatial structure in crash data, which 
leads to improved model parameter estimation and can reflect unmeasured confounding variables 
(Huang et al., 2017; Wang et al., 2019b). 

Wang et al. (2017) discussed the four approaches that are generally used for developing spatial 
models for multivariate count data: 

• The conditional autoregressive model (CAR). 
• The multivariate finite mixture model. 
• The generalized ordered response model. 
• The spatio-temporal model. 

Studies have indicated that the most popular approach is the CAR model, probably because it 
takes advantage of the flexibility of the Bayesian hierarchical framework to account for the 
spatial correlation (Ma et al., 2017; Zeng & Huang, 2014). Examples of studies involving spatial 
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components in the multivariate crash analysis context are by Xie et al. (2019); Huang et al. 
(2017); Wang and Huang (2016); Zeng and Huang (2014); Aguero-Valverde (2013); and Barua, 
et al. (2014). 

2.2 Multivariate Model Nonmotorized Crash Analysis 

Crash analysis for nonmotorized modes has received significantly less attention than crash 
analysis for motorized vehicles, under the multivariate setting. A number of studies aimed to 
formulate joint models for nonmotorized crashes at the zonal level and recognized the 
dependency of various crash attributes. Wang and Kockelman (2013) aggregated crash data at 
the census tract and developed a multivariate Poisson lognormal CAR model for pedestrian 
crashes across different severity levels using 3 years of crash data (2007 to 2009) for the Austin 
area. Nashad et al. (2016) developed a copula-based bivariate negative binomial model for 
pedestrian and bicycle crash frequency analysis at the macro level (the statewide traffic analysis 
zone). The variables used in the model included exposure measures (vehicle miles traveled), 
socioeconomic characteristics, road network characteristics, and land use attributes. The study 
concluded that macro-level nonmotorized crash analysis needs to accommodate the dependence 
between pedestrian and bicycle crash count events. Cai et al. (2017) developed a joint model for 
crash frequency and the proportion of nonmotorists at the traffic analysis district level in Florida. 
Narayanamoorthy et al. (2013) developed a spatial multivariate count model to examine the 
number of pedestrian and bicyclist injuries by injury severity at the census tract level for New 
York City. The study used various risk factors such as sociodemographic characteristics 
(population density and distribution of population based on age, income, and race), land use 
variables (the proportion of commercial and industrial land use), activity intensity characteristics 
(the number of schools and universities), road network characteristics (the proportion of 
highways and bicycle route length), commute mode shares, and transit supply characteristics (the 
number of bus stops). 

Although the research was not specific to pedestrian crash severity, Huang et al. (2017) 
simultaneously analyzed the occurrence of motor vehicle, bicycle, and pedestrian crashes at 
urban intersections in Florida using multiple explanatory variables such as annual daily traffic 
for major/minor roads, population density, leg number, speed limit, and presence of a traffic 
signal, pedestrian signal, crosswalk, bus stop, and median. Heydari et al. (2017) investigated the 
crash correlates of walking and cycling at signalized intersections in Montreal, Canada, using a 
flexible multivariate latent class approach; the explanatory variables were motorized volume by 
turning direction, nonmotorized volume, maximum speed limit, leg number, and presence of a 
pedestrian signal, subway station, bus stop, and median, along with land use characteristics such 
as employment, commercial area, land use mix, and number of schools. 
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2.3 Exposure Measure for Models 

Acknowledging that the exposure measure is an essential element for modeling nonmotorized 
crash frequency, studies have used a number of methods to quantify the exposure to crash risk. 
Wang and Kockelman (2013) used walk miles traveled as an exposure measure, which was 
estimated using household travel survey data and least squares regression. Vehicle miles traveled 
was another exposure measure used by studies for nonmotorized crash analysis through a joint 
model (Nashad et al., 2016). Cai et al. (2017) found that the product of the log of population and 
the log of vehicle miles traveled was the best exposure variable to examine pedestrian crashes for 
a zip code–level analysis. Given it is often difficult to quantify the number of pedestrian/bicyclist 
miles of travel and motorized vehicle miles of travel at a zonal level, studies, in both a 
multivariate and non-multivariate context, have used surrogate measures such as population 
density (LaScala et al., 2000; Narayanamoorthy et al., 2013), income (Loukaitou-Sideris et al., 
2007), activity intensity characteristics (Mitra & Washington, 2012), and so forth. In other 
studies, bicycle and pedestrian count data obtained from both signalized and unsignalized 
intersections were incorporated as exposure measures (Heydari et al., 2017; Strauss et al., 2014).  

2.4 Current Study in Context  

The current study builds on earlier research and proposes a joint modeling approach for 
analyzing intersection pedestrian crashes for three severity levels. To achieve the objective, a 
multivariate Poisson lognormal model was used to accommodate the overdispersion issue in 
crash data and account for potential correlation among the crash severities. The potential 
presence of spatial correlations among the intersections was also accounted for to develop a 
robust model for pedestrian crash severity at the intersections because previous studies have 
suggested that ignoring spatial correlation may lead to biased model parameters and inferior 
model performance (Aguero-Valverde & Jovanis, 2010; LeSage & Pace, 2009). The Bayesian 
framework using the Markov chain Monte Carlo simulation method was used for model 
estimation. 
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Chapter 3. Model Description and Formulation 

3.1 Mixed Poisson Model for Crash Analysis 

Researchers have extensively used mixed Poisson models to accommodate the overdispersion in 
crash counts. These mixed Poisson models, hierarchical in nature, accommodate the observed 
crashes (conditional on the mean) that are mutually independent and Poisson distributed at the 
first level. The mixed Poisson models allow the unobservable mean of crashes to vary across 
locations with an assumed probability distribution at the second level. 

Most highway safety researchers have used two types of mixed Poisson models: Poisson gamma 
and Poisson lognormal. Studies have suggested that the Poisson lognormal model is more 
flexible than the Poisson gamma in accommodating the multivariate structure and spatial 
correlation (Aguero-Valverde & Jovanis, 2009; Ma et al., 2008). In the Poisson lognormal 
model, the Poisson parameter is assumed to follow a lognormal distribution. The marginal 
distribution of this model does not have a closed form, and the maximum likelihood estimates 
approach cannot be directly used to estimate model parameters, unlike the Poisson gamma 
model. For this reason, Markov chain Monte Carlo simulation methods from the Bayesian 
perspective have been used for model estimation.  

In this study, a multivariate spatial Poisson lognormal model was developed to observe the 
pedestrian crash frequency across different severities at the intersections in the Austin area. The 
model estimation was conducted through a full Bayesian approach, which considers the 
uncertainty related to model parameters and provides exact measures of uncertainty (Miaou & 
Lord, 2003). In order to compare model performance, a univariate spatial Poisson lognormal 
model was also developed for the same region. The specifications of the multivariate spatial 
Poisson lognormal model and the specifications and priors of the univariate Poisson lognormal 
model are provided in the next sections.  

3.2 Multivariate Spatial Poisson Lognormal Model 

Let 𝑌𝑌𝑖𝑖𝑖𝑖 denote the number of pedestrian crashes observed at the ith intersection (=1, 2, . . ., 409) 
of kth severity (=1, 2, 3) during the study period. In the Poisson hierarchical models, 𝑌𝑌𝑖𝑖𝑖𝑖, when 
conditional on the mean crash rate 𝜆𝜆ik, is assumed to be Poisson distributed, which can be 
expressed as: 

𝑌𝑌𝑖𝑖𝑖𝑖~𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆𝑖𝑖𝑖𝑖)  (1) 

The mean crash rate (𝜆𝜆𝑖𝑖𝑖𝑖) can be specified at the second level of hierarchy: 

𝑙𝑙𝑙𝑙𝑙𝑙(𝜆𝜆𝑖𝑖𝑖𝑖) =  𝛼𝛼𝑘𝑘 + 𝑋𝑋𝑖𝑖 𝛽𝛽𝑘𝑘 + 𝑆𝑆𝑖𝑖𝑖𝑖 + 𝑈𝑈𝑖𝑖𝑖𝑖  (2) 
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where: 

• 𝛼𝛼k is the intercept term of severity k. 
• 𝑋𝑋𝑖𝑖 indicates a column vector of covariates (pedestrian volume, intersection features, 

traffic condition, etc.). 
• 𝛽𝛽𝑘𝑘 = (𝛽𝛽𝑘𝑘1,𝛽𝛽𝑘𝑘2, …, 𝛽𝛽𝑘𝑘𝑘𝑘) denotes an m dimensional regression coefficient vector specific 

to each observation type k. For example, m = 7 (because seven explanatory variables have 
been used in the final model) for this study.  

• 𝑈𝑈𝑖𝑖𝑖𝑖 represents the error term that captures site-specific heterogeneity not explained by 
spatial effects. It is assumed to be multivariate normally distributed with a mean vector of 
0 and a variance-covariance matrix of Σ . This is equivalent to 𝑒𝑒𝑈𝑈𝑖𝑖𝑖𝑖~ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 (0, Σ), 
where Σ is the variance-covariance matrix for heterogeneous effects.  

𝑈𝑈𝑖𝑖𝑖𝑖 = �
𝑈𝑈𝑖𝑖1
𝑈𝑈𝑖𝑖2
𝑈𝑈𝑖𝑖3
� and 𝛴𝛴 = �

𝜎𝜎211 𝜎𝜎212 𝜎𝜎213
𝜎𝜎221 𝜎𝜎222 𝜎𝜎223
𝜎𝜎231 𝜎𝜎232 𝜎𝜎233

  (3) 

Here, the diagonal elements, 𝜎𝜎2𝑘𝑘𝑘𝑘, represent the heterogeneous variance of 𝑈𝑈𝑖𝑖1, 𝑈𝑈𝑖𝑖2, and 𝑈𝑈𝑖𝑖3. 
The off-diagonal elements denote the heterogeneous covariance among 𝑈𝑈𝑖𝑖1, 𝑈𝑈𝑖𝑖2, and 𝑈𝑈𝑖𝑖3. For the 
precision matrix Σ-1, the most commonly used noninformative Wishart distribution is specified as 
the prior, written as Wishart (I, r). Here, I denotes the identity matrix, and r (≥ K) denotes the 
degrees of freedom, set at 3 to make the prior minimally informative (Gelman, 2006). 

Sik is a spatially structured random effects term that accounts for spatial autocorrelation, which 
cannot be incorporated by the Poisson lognormal model alone (Huang et al., 2017). Numerous 
previous studies have indicated that geographic area, road segments, or intersections that are 
closer to one another tend to have common features affecting their collision severity (Liu & 
Sharma, 2017; Ma et al., 2017; Wang & Kockelman, 2013). To explore the spatial correlation 
between adjacent intersections, Sik is assigned an intrinsic conditional autoregressive (ICAR) 
(Besag et al., 1991) prior for each severity level k. The multivariate ICAR model is the intrinsic 
version of the multivariate conditional autoregressive model (Lawson, 2013) and has been used 
by several studies for multivariate spatial analysis (Liu & Zhu, 2017; Ma et al., 2017). For the 
spatially structured random effects Si = (Si1,Si2,Si3 )T, the multivariate ICAR specification can be 
expressed as: 

𝑆𝑆𝑖𝑖|(𝑆𝑆−𝑖𝑖1, 𝑆𝑆−𝑖𝑖2, 𝑆𝑆−𝑖𝑖3 ) ~ MN(𝑆𝑆𝚤𝚤�  , 𝛴𝛴𝑠𝑠/𝑛𝑛𝑖𝑖  ) (4) 

where: 

𝑆𝑆𝚤𝚤� = �∑ 𝜔𝜔𝑖𝑖,𝑗𝑗 𝑆𝑆𝑗𝑗1
𝑛𝑛𝑖𝑖𝑗𝑗≠𝑖𝑖 ,∑ 𝜔𝜔𝑖𝑖,𝑗𝑗 𝑆𝑆𝑗𝑗2

𝑛𝑛𝑖𝑖𝑗𝑗≠𝑖𝑖 ,∑ 𝜔𝜔𝑖𝑖,𝑗𝑗 𝑆𝑆𝑗𝑗3
𝑛𝑛𝑖𝑖𝑗𝑗≠𝑖𝑖 �

𝑇𝑇
 (5) 
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where: 

• 𝜔𝜔𝑖𝑖 ,𝑗𝑗 denotes the weight that intersection j has on intersection i: 𝜔𝜔𝑖𝑖 ,𝑗𝑗 = 1 if i and j are 
adjacent and 0 otherwise. 

• ni is the number of intersections adjacent to intersection i. 
• Σs is the covariance matrix where the diagonal elements represent the conditional 

variance of Si1,Si2,Si3 . The off-diagonal elements represent the conditional within-
intersection covariance. Σs is also assumed to follow a Wishart distribution.  

3.3 Prior Specification for Univariate and Multivariate Models 

Prior specification is a crucial component of Bayesian modeling approaches. Owing to the lack 
of sufficient prior knowledge of the distributions for individual parameters, uninformative 
(vague) prior distributions are usually specified (Ma et al., 2017). The intercept term 𝛼𝛼k was 
assigned a uniform prior dflat( ). The regression coefficient 𝛽𝛽𝑘𝑘𝑘𝑘  (for m number of predictors) 
was specified to follow a noninformative normal distribution with a mean of 0 and a variance of 
10,000. 

3.4 Prior Specification Specific to Univariate Model 

The key differences between the multivariate and univariate models lie in the prior specifications 
of the random effects. For the univariate model, which cannot accommodate the dependence 
between severity types, the random effects for different severities of crashes are independent. 
Therefore, for the univariate model, Uik was assumed to follow an independent normal 
distribution as follows: 

𝑈𝑈𝑖𝑖𝑖𝑖 ∼ 𝑁𝑁(0,𝜎𝜎𝑢𝑢𝑢𝑢2 ) (6) 

Sik was determined through an ICAR distribution, as expressed by: 

𝑆𝑆𝑖𝑖𝑖𝑖| 𝑆𝑆−𝑖𝑖𝑖𝑖 ~𝑁𝑁(𝑆𝑆𝚤𝚤𝚤𝚤���� ,𝜎𝜎𝑠𝑠𝑠𝑠2 /𝑛𝑛𝑖𝑖) for k=1,2,3  (7) 

𝑆𝑆𝚤𝚤𝚤𝚤����= ∑
𝜔𝜔𝑖𝑖,𝑗𝑗 𝑆𝑆𝑗𝑗𝑗𝑗

𝑛𝑛𝑖𝑖𝑗𝑗≠𝑖𝑖   (8) 

where: 

• 𝜔𝜔𝑖𝑖 ,𝑗𝑗 denotes the weight that intersection j has on intersection i. 𝜔𝜔𝑖𝑖 ,𝑗𝑗 = 1 if i and j are 
adjacent and 0 otherwise. 

According to the ICAR model, the conditional distribution of Sik, given the remaining 
components (S−ik ), is normal with mean Sık���� and variance σsk2 /ni. Here, ni is the number of 
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intersections adjacent to intersection i. The variation of Sik is controlled by the overall variance 
parameter σsk2 . The hyper-parameters for 1/σ𝑠𝑠𝑠𝑠2  and 1/σ𝑢𝑢𝑢𝑢2  are Gamma (0.5, 0.0005). 

3.5 Model Evaluation 

The deviance information criteria (DIC) were used as the goodness-of-fit measures for model 
comparisons. The DIC are a generalization of Akaike information criteria proposed by 
Speigelhalter et al. (2002) and provide a Bayesian measure of model complexity and fitting. 

The DIC can be defined as: 

𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐷𝐷(𝜃̅𝜃) +  2𝜌𝜌𝐷𝐷 =  𝐷𝐷�  + 𝜌𝜌𝐷𝐷  (9) 

where: 

• 𝐷𝐷(𝜃̅𝜃) is the deviance using the posterior mean values of the parameters of interest (𝜃̅𝜃). 
• 𝐷𝐷� is the posterior mean of deviances. 
• 𝜌𝜌𝜌𝜌 is the effective number of parameters in the model.  

Lower DIC values for the model are preferred. Generally, differences in DIC of more than 10 
point to keeping the model with the lower DIC; differences between 5 and 10 are considered 
substantial; differences less than 5 suggest that the models are not statistically different (MRC 
Biostatistics Unit, 2004). 
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Chapter 4. Data Description  
Austin, Texas, was selected as the study area for this study to facilitate the city’s newly adopted 
holistic approach (Austin Transportation Department, 2018) to improve citywide pedestrian 
safety and promote walking for transport and physical activity. The city also adopted the Vision 
Zero initiative to reduce traffic-related deaths and injuries to zero by the year 2025.  

This chapter explains the data compiled and processed for the development of the crash model 
described in Chapter 3. The data used include crash data as the main variable of interest as well 
as exposure data and other explanatory variables used to develop the pedestrian crash model. 

4.1 Crash Data 

The traffic crash data for this study were taken from TxDOT’s Crash Records Information 
System (CRIS) (TxDOT, 2016b). The data obtained included the disaggregated crash data for all 
locations within the study area, collected over 8 years (2011 to 2018). Along with various crash 
features, CRIS reports the severity of crashes (not injured, possible injury, non-incapacitating 
injury, incapacitating injury, and killed) and units involved (such as motor vehicle or pedestrian) 
and identifies the coordinates of each crash location. CRIS also separates crash data based on the 
location where the traffic crash occurred: 

• Intersection crash: a traffic crash that occurs within the limits of an intersection. 
• Intersection-related crash: a traffic crash that occurs on an approach to or exit from an 

intersection and results from an activity, behavior, or control related to the movement of 
traffic units through the intersection. 

• Driveway access crash: a traffic crash that occurs on a driveway access or involves a road 
vehicle entering or leaving another roadway by way of a driveway access. 

• Non-intersection crash: a traffic crash that is not an intersection crash, intersection-related 
crash, or driveway access crash. 

To meet the objectives of this study, pedestrian-involved intersection or intersection-related 
crashes were extracted from the dataset. After obtaining the crashes based on the specified 
criteria, the location of each crash was matched or spatially joined with the nearest intersections 
of the network. The intersection map was generated using the city’s comprehensive transport 
network data. Only crashes that were within a 300-foot buffer (Fitzpatrick et al., 2018) of the 
nearest intersection were considered. A total of 655 crashes at 409 signalized intersections were 
identified. The crashes were categorized into three types based on severity: fatal crashes, 
incapacitating injury or suspected serious injury crashes, and non-incapacitating injury crashes. 
Table 1 presents the crash frequency of each severity level.  
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Table 1. Description and Frequency of Crash Severity Types. 

Severity  Description Frequency 

Fatal  Fatal (killed) crash 30 

Incapacitating Suspected serious injury/incapacitating injury crash 119 

Non-incapacitating Non-incapacitating injury crash 506 

Total crashes 655 

4.2 Pedestrian Exposure Data 

Given the lack of pedestrian exposure or volume data across the region, a direct demand model 
was developed to estimate pedestrian volume in all crash locations based on the available count 
data. This particular type of model is one of the most frequently used modeling approaches in the 
area of pedestrian/bicyclist safety (Turner et al., 2017). The modeling framework uses count 
observations from limited locations and estimates demand at a specific location (midblock or 
intersection) by directly relating the counts to mode, trip, and traveler attributes using a form of 
regression analysis (Ortuzar & Willumsen, 2011). A comprehensive literature review of the 
direct demand model is beyond the scope of this study but is provided by Munira and Sener 
(2017). 

The following subsections provide information on data gathering and processing for estimating 
the exposure or pedestrian volume, which was used as an input in the crash model. 

4.2.1 Data Used for Estimating Pedestrian Volume  

This study collected actual volume data from two sources: 

• Short-duration count data from the City of Austin Transportation Department. 
• Continuous count data from Eco-Counter. 

The City of Austin Transportation Department collected 24-hour short count data for pedestrians 
from 44 intersections in the study area. Following the standard data method, the pedestrian 
volume data were collected on typical weekdays distributed over 5 months (April, May, June, 
August, and October) in 2017. The continuous count data were obtained from Eco-Counter, 
which has been collecting pedestrian and bicycle data in 11 locations in the Austin area since 
2012. The count data from the permanent counter were taken to estimate the daily and monthly 
factors (Nordback et al., 2013), which were used to calculate the annual average daily pedestrian 
volume for the 44 locations. The final annual average daily pedestrian volume was used as the 
dependent variable of the pedestrian direct demand model. 

To use as an input in the pedestrian direct demand model, a rich set of explanatory variables was 
created with data from multiple sources such as the Data and Technology Services of the City of 
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Austin Transportation Department, the City of Austin public data portal, the 2017 American 
Community Survey, the City of Austin Planning and Development Review Department, the 
Texas Education Agency, the Austin Transportation Department Arterial Management Division, 
and the Capital Metropolitan Transportation Authority (Capital Metro) data portal. All of these 
datasets were then analyzed, cleaned, and processed to bring them to homogenous spatial scales 
(buffer levels around the intersection). Over 300 variables for three buffer zones—0.25 miles, 
0.5 miles, and 1 mile—were created for this study. The variables were categorized into seven 
groups: demographics, socioeconomics, network/interaction with vehicle traffic, pedestrian- or 
bicycle-specific infrastructure, transit facilities, major generators, and land use. For a detailed 
description of each variable category, see Munira and Sener (2017). 

4.2.2 Estimation of Pedestrian Volume 

Based on the estimated pedestrian volume for the 44 intersections and the explanatory variables 
created at three buffer zones, a negative binomial model was developed. As discussed by Munira 
and Sener (2017), the negative binomial model has been used frequently in estimating 
nonmotorized volume due to the discrete nature of the volume data and since the data are 
overdispersed in nature. Different combinations of explanatory variables were examined, and the 
best model was selected based on goodness of fit and predictive accuracy as well as intuitive 
considerations and parsimony in specification. Table 2 presents the results of the final pedestrian 
direct demand model. 

Table 2. Pedestrian Direct Demand Model Results. 

Variable (Buffer Radius) Estimate  T-Stat Pr(>|z|)  

Intercept 4.088 8.21 0.00 

Paved and unpaved trail length (0.5 miles) 6.37e-05 4.86 0.00 

Number of commercial establishments (0.1 miles) 2.39e-02 2.44 0.01 

Total population under 5 years (0.5 miles) −3.72e-03 −3.17 0.00 

Population work at home (0.1 miles) 6.10e-02 4.14 0.00 

Number of transit stops (1.0 miles) 8.96e-03 2.61 0.01 

Model Statistics 

Sample Size (N) 44 

Root Mean Square Error (RMSE) 598.17 

R-squared (R2) 0.77 

    Mean Absolute Error (MAE) 379.35 
 
As illustrated in Table 2, the best model was obtained with variables of different buffer levels. 
This finding is consistent with previous studies (Liu & Griswold, 2009; Miranda-Moreno & 
Fernandes, 2011) and confirms the need for developing model variables at different buffer 
scales. Further investigation into the model variables revealed that while some variables 
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conformed to previous studies, some variables provided unique insights into the pedestrian 
behavior for the Austin region.  

The model suggested that with the increasing length of paved and unpaved trail around 0.5 miles 
from the intersection, pedestrian volume increases. Previous studies have also indicated a 
significant positive relationship between pedestrian activity and trail length (Hankey & Lindsey, 
2016). Similarly, a significant positive influence of commercial space (Miranda-Moreno & 
Fernandes, 2011; Tabeshian & Kattan, 2014) and transit stops (Hankey et al., 2017; Pulugurtha 
& Repaka, 2008) on pedestrian volume was also observed. This finding is intuitive because 
people are expected to walk to and from transit stops to access their final destinations. 
Furthermore, commercial spaces, such as shopping areas, are likely to attract pedestrians. The 
negative relationship between the population of small children and pedestrian volume may be 
attributed to people’s unwillingness to walk when they have to travel with small children (Jones 
et al., 2010). Moreover, an interesting relationship was observed between the home-based worker 
population and walking activity. The work-at-home population refers to a worker’s lack of travel 
from home to a separate workplace (U.S. Census Bureau, 2017). The positive relationship 
between this population group and pedestrian volume implies that home-based employees, who 
save a significant amount of commute time and energy, are probably more likely to walk for 
physical activity, daily chores, or recreation, contributing to the increasing pedestrian volume in 
their nearby areas.  

Figure 1 illustrates pedestrian volume estimated by the model at the intersections of the study 
area. While the figure provides the pedestrian volume for the 409 signalized intersections of the 
study area (i.e. the entire city area), the inset map provides a close-up examination of the central 
region of the city.  

Overall, the findings from the model provide valuable insights into the factors affecting 
pedestrian activity at intersections in the Austin region. In addition to safety analysis, this model 
can be used to estimate pedestrian demand at other intersections of the same region, which is 
often needed for planning purposes. The model result can also be used as an exposure measure in 
future pedestrian crash models if needed.  
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Figure 1. Pedestrian Volume at the 409 Signalized Intersections of the Study Area. 
(magnified central region in the inset) 
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4.3 Explanatory Variables 

The pedestrian crash data were integrated with traffic characteristics, road geometry, and built 
environment features on the intersection approaches. Data for explanatory variables for each 
intersection were obtained from the TxDOT Roadway-Highway Inventory (RHiNO), the City of 
Austin’s signal data and sidewalk data, and Capital Metro’s transit data. Data preparation was 
mainly performed in ArcGIS. 

The 2017 TxDOT RHiNO was used to obtain roadway features for the target intersections. 
Because the RHiNO network often did not perfectly align with the City of Austin’s 
comprehensive transport network data, extensive manual data processing was needed to match 
the intersections and minimize error. Data were gathered for both major and minor approaches of 
the intersections; the major approach to the intersecting street was the street with the greater 
traffic volume, larger cross section, and/or higher functional class. Issues in the topology of 
RHiNO added to the difficulties in identifying the major and minor streets for each intersection. 
The key issues faced during this process were: 

• Intersecting streets did not always intersect in the RHiNO data. Often, tiny gaps existed 
between the roadway segments of the intersections. 

• RHiNO roadway segments did not always break at intersections. 
• The length of roadway segments varied significantly from less than 1 foot to more than 

100 feet. 

To correctly categorize roadway segments as part of the major or minor street at each target 
intersection, the following solutions were applied: 

1. The missing intersections in RHiNO, caused by the gaps between roadway segments 
around intersections, were manually added to include all the target intersections. 

2. The complete intersection network was used to break RHiNO segments at target 
intersections. Only RHiNO segments within 50 feet of the target intersections were kept 
for the following analysis. 

3. Major and minor streets for each intersection were identified based on traffic volume and 
geometric characteristics. 

Each of the processes went through extensive quality control.  

To obtain traffic and pedestrian signal data in the intersection, the City of Austin’s signal data 
were processed for each intersection. Similarly, Capital Metro’s bus stop data were gathered to 
determine the presence of a bus stop (within 300 feet) for each location. To obtain the sidewalk 
data, first the presence of a sidewalk for both major and minor streets was confirmed. Using the 
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data, a new variable was created that identified whether a sidewalk was present in at least one 
approach of the intersection. 

Table 3 presents the descriptive statistics of the variables created for the model. Although 
variables were created for identifying truck percentage, functional classification, and presence of 
a median for the minor approach, they were not considered for the model due to the presence of 
excessive missing values in the created dataset. 
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Table 3. Descriptive Statistics of the Crash Model Variables. 

Variables  Description Mean Minimum Maximum 

Ped_Vol Annual average daily pedestrian volume  605 4 7,083 

Leg_Num Number of legs at the intersection 3.73 3 5 

Spd_Max Maximum speed limit at the intersection  44 25 65 

Num_Lanes_Maj Number of through lanes on the major 
road 

4 2 6 

Num_Lanes _Min Number of through lanes on the minor 
road 

2 1 6 

ADT_Major Adjusted average daily traffic volume on 
the major road 

22,742 405 52,976 

Truck_per_Maj Percent of trucks in the average daily 
traffic at the major approach 

3.33 1 8.9 

Categorical Variable 

Bus_Stop Presence of a bus stop (within 300 feet of 
the intersection) 

No bus stop (42%) 

Bus stop present (58%)  

Side_walk Presence of a sidewalk on one approach No sidewalk on any approaches 
(11%) 

Sidewalk on one approach (89%) 

Ped_Sig Presence of a pedestrian signal No signal (7%) 

Signal present (93%) 

F_ System _Maj  Functional system of the major road Other principal arterial (60.4%) 

Minor arterial (23.7%) 

Major collector (14.2%) 

Minor collector (0.2%) 

Local (1.5%)  

F_System_Min Functional system of the minor road Other principal arterial (10.0%) 

Minor arterial (9.8%) 

Major collector (36.4%) 

Minor collector (2.9%) 

Local (40.8%) 

Med_ Maj Presence of median on the major 
approach 

0 = no median (94.0%) 

1 = median exits (5.9%) 
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The correlations between independent variables were checked. In cases where the absolute value 
of the correlation coefficient between pairs of variables was greater than or equal to 0.6, the 
variables were considered highly correlated (Evans, 1996), and inclusion of these variables might 
have led to an unreliable estimate of model parameters. Therefore, several checks were 
conducted to examine potential multicollinearity issues due to these variables. Accordingly, the 
functional system variable for both major and minor approaches and the variable for the number 
of lanes for both major and minor approaches were excluded from the final model. The median 
and pedestrian signal variables were also excluded because they exhibited low variation.  
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Chapter 5. Crash Model Results 

5.1 Model Performance 

The final model developed is a Bayesian multivariate Poisson lognormal CAR model. For 
comparison purposes, a Bayesian univariate Poisson lognormal CAR model was also estimated 
with the same variable specification. 

The models were estimated using WinBUGS software and statistical software R (R Core Team, 
2016). Package R2WinBUGS (Sturtz et al., 2005) was also used to run WinBUGS from R 
software and to estimate the parameters. The posterior summaries were obtained via 
100,000 iterations with 50,000 burn-in samples. The convergence of the model was assessed by 
inspecting the trace plots and ensuring that the Monte Carlo error for each parameter of interest 
was less than about 5% of the sample standard deviation. 

Table 4 presents the goodness of fit of both the multivariate and univariate models. The table 
illustrates that the multivariate model outperformed the univariate model, with the multivariate 
model having lower 𝐷𝐷� (1803 versus 1899 for the univariate model) and DIC values (1970 versus 
1981 for the univariate model) than the univariate model. The multivariate model exhibited a 
significant drop in 𝐷𝐷� and DIC values compared to the univariate model. 

Table 4. Summary of Model Performance. 

Model Type 𝑫𝑫�   ρD DIC 

Univariate model 1899.40 82.069 1981.47 

Multivariate model 1803.11 167.771 1970.88 
 
The results suggest that the multivariate model accounting for correlation among different crash 
types provides better model fitting, and the use of the multivariate spatial model instead of the 
univariate spatial model is more appropriate. 

5.2 Model Results 

5.2.1 Explanatory Variables (Observed) 

Since the multivariate model outperformed the univariate model, the discussion of the 
explanatory variables is based on the multivariate model results. Table 5 presents the coefficient 
estimates for the multivariate spatial model. To observe the significance level, the 95% credible 
intervals of the posterior sampled parameters were checked. The 95% credible interval contains 
the sampled data values from the 2.5th percentile to the 97.5th percentile of the posterior 
distributions. Similarly, the 90% credible interval from the 5th percentile and 95th percentile 
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values was assessed. A variable is statistically insignificant if the confidence interval contains 
zero (Gelman, 2004).  

Table 5. Estimated Coefficients of the Multivariate Spatial Model. 

Variable  
Fatal Crash Incapacitating 

Injury Crash 
Non-incapacitating 

Injury Crash 

 Mean (Sd)  Mean (Sd)  Mean (Sd) 

Intercept −8.19 (3.26)** −3.404 (1.3)** −0.63 (0.72) 

Ped_Vol (in 100) −0.04 (0.03) 0.01 (0.01) 0.01 (0.005)** 

Truck_per_Maj −0.13 (0.20) −0.10 (0.1) 0.01 (0.05) 

Bus_Stop 0.09 (0.47) −0.38 (0.22)* 0.28 (0.12)** 

Side_walk 0.74 (0.94) −0.19 (0.3) −0.01 (0.17) 

Leg_Num −0.36 (0.44) −0.02 (0.25) 0.03 (0.12) 

Spd_Max 0.10 (0.05)** 0.002 (0.02) 0.003 (0.01) 

ADT_Maj (in 1000  
vehicles per day) −0.001(0.03) 0.03 (0.01)** 0.02 (0.01)** 

*Significant coefficients at the 90% confidence level. 
**Significant coefficients at the 95% confidence level. 

The variation in significance and the magnitude of explanatory variables across different crash 
severity types emphasize the need for multivariate models by severity type in order to provide 
accurate guidelines for designing countermeasures.  

The results showed that for the fatal crash severity level, the only significant variable (at 95% 
confidence level) was the maximum speed limit. This significant positive influence of speed 
limit on fatal pedestrian crashes suggests that pedestrians are more at risk of being killed in a 
crash when vehicles are driving at a higher speed. Previous studies have also revealed that higher 
speed limits are associated with a greater risk of pedestrian crashes, including severe pedestrian 
injuries (Davis, 2001; Jensen, 1998; Zegeer et al., 2006). According to model results, holding all 
other variables constant, the relative risk of a fatal crash for pedestrians at signalized 
intersections increased by around 10% with an increase of one standard deviation in speed limit.  

When the variables for incapacitating injury crashes and non-incapacitating injury crashes were 
investigated, both crash severities had two common significant variables: average daily traffic 
volume on the major approach and the presence of a bus stop.  

As might be expected, the daily traffic volume on the major approach had a positive influence on 
both incapacitating injury crashes and non-incapacitating injury crashes, which conforms to 
previous studies (Harwood et al., 2008; Huang et al., 2017; Zegeer et al., 2001; Zhao et al., 
2018). The relative risk of incapacitating injury crashes and non-incapacitating injury crashes 
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increased by 3.4% and 2.4%, respectively, with an increase of one standard deviation of traffic 
volume (in 1000 vehicles per day). 

In contrast to some earlier studies (Huang et al., 2017; Strauss et al., 2014), the effect of the 
presence of a bus stop around the intersection showed an interesting difference across the two 
crash types. The model results showed that the presence of a bus stop decreased (by 31%) the 
risk of incapacitating injury crashes but increased (by 32%) the risk of non-incapacitating injury 
crashes for pedestrians. This finding may be attributed to the fact that an intersection with bus 
stops, accommodating a lot of pedestrian and bicycle traffic, may decrease the risk of 
incapacitating injury crashes because the speed is generally low and motorists are careful and 
vigilant, but may increase the risk of non-incapacitating injury crashes due to the decreased 
visibility.  

In terms of pedestrian exposure measure, the results indicated that increasing pedestrian volume 
contributes to increasing non-incapacitating injury crashes. Previous studies have also suggested 
a similar relationship (Amoh-Gyimah et al., 2016; Cai et al., 2016; Osama & Sayed, 2017). 
Although at a lower confidence level (t-stat > 1), the pedestrian volume appeared to have a 
negative effect on fatal crashes, which indicates that intersections with higher pedestrian activity 
exhibit lower risk of fatal pedestrian crash. Previous studies have suggested that the relationship 
between pedestrian volume and crashes is complex. While the total number of pedestrian crashes 
at a particular location tends to increase with increasing pedestrian volume, the increase is 
nonlinear in nature (Leden, 2002; Jacobsen, 2003).  

5.2.3 Heterogeneous and Spatial Effects (Unobserved)  

Table 6 presents the variance-covariance and correlation of heterogeneous effects across crash 
severities within intersections. Table 7 presents the variance-covariance and correlation matrix of 
spatial effect for crash counts for three severity types. The diagonal cells of the table indicate the 
variance for each crash severity. The covariance matrix is presented in the upper part of the 
matrix in each table. The correlation matrix is presented in the lower part of the matrix in each 
table. The effect is significant when the standard deviation is lower than the mean and not 
significant when the standard deviation is higher than the mean (Huang et al., 2017).
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Table 6. Variance-Covariance and Correlation Matrix for Heterogeneous Effects. 
 

Fatal Incapacitating Non-incapacitating 

 Mean (Standard Deviation) 

Fatal 0.52 (0.4)a 0.01 (0.19)b −0.05 (0.1)b 

Incapacitating 0.01 (0.39)c 0.38 (0.19)a 0.06 (0.07)b 

Non-incapacitating −0.15 (0.3)c 0.22 (0.24)c 0.17 (0.05)a 
a Variance.  
b Covariance.  
c Correlation. 

Table 7. Variance-Covariance and Correlation Matrix for Spatial Effects. 
 

Fatal Incapacitating Non-incapacitating 

 Mean (Standard Deviation) 

Fatal 0.44 (0.36)a 0.06 (0.22)b 0.02 (0.16)b 

Incapacitating 0.09 (0.39)c 0.51 (0.33)a 0.17 (0.18)b 

Non-incapacitating 0.04 (0.38)c 0.37 (0.32)c 0.32 (0.16)a 
a Variance.  
b Covariance.  
c Correlation. 

 
As Table 6 shows, the variance of heterogeneous effects for the crash count of each severity is 
significant and indicates the need to incorporate a heterogeneous error term in the model. 
Moreover, the value of heterogeneous variance is the highest for fatal crashes, which suggests 
that fatal crashes exhibit more randomness than incapacitating and non-incapacitating injury 
crashes. However, the covariance for heterogenous effects is not significant. In addition, the 
correlation between crash counts of all severity types is not significant, indicating no significant 
unobserved common factor contributing to fatal, incapacitating, and non-incapacitating crash 
counts for pedestrians.  

Similar to heterogenous effects, the results of Table 7 also indicate the significant variance of 
spatial effects for crash counts of each crash severity and suggest that the crash observations of 
different severities exhibit a significant correlation between adjacent intersections. The results 
also indicate the insignificance of the covariance for spatial effects. Furthermore, the correlation 
between fatal and incapacitating crashes and fatal and non-incapacitating crashes for the spatial 
residual is also not significant. This suggests that a higher number of fatal crashes occurring at a 
particular intersection is significantly correlated with a higher number of fatal crashes at its 
adjacent intersection, but is not significantly correlated with crash frequency of incapacitating 
and non-incapacitating crashes at the adjacent intersection. However, a significant correlation 
exists between the crash frequency of incapacitating and non-incapacitating crashes at the 
adjacent intersections.  
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Chapter 6. Discussion  
The findings of the study offer valuable insights into both pedestrian demand and crashes of 
different severity levels in the study area. One of the noteworthy contributions of this study is 
that it incorporated pedestrian volume at all intersections of the study area in the crash analysis—
an aspect most often missing or represented via surrogate measures. Even the 2018 Pedestrian 
Safety Action Plan of the City of Austin (Austin Transportation Department, 2018) highlighted 
the need to incorporate reliable pedestrian volume for safety analysis in the area. The direct 
demand model for pedestrians not only proved to be a crucial component in the crash model but 
also can be used as a standalone pedestrian demand estimation tool needed for nonmotorized 
policy formulation, project prioritization, pollution analysis, and so forth. 

Additionally, the direct demand model yielded valuable insights into the factors affecting 
pedestrian demand in the Austin area. The positive influence of trails (both paved and unpaved) 
shows how the urban trail facilities contribute to pedestrian traffic. The city’s Urban Trails 
Master Plan (City of Austin, 2014) outlines the plan for future expansion of the urban trail 
network throughout the city, and the related model result underscores the promising potential of 
the expansion projects to encourage pedestrian activity. In addition, given that commercial 
establishments and transit stops attract pedestrian activity, city officials should consider 
promoting mixed-use developments and provide facilities such as well-buffered sidewalks near 
transit stops and commercial areas. Another significant determinant of pedestrian activity at 
intersections in the Austin area is the population of employees working remotely. As shown by 
the model, the population working at home contributes to increasing pedestrian activity at nearby 
locations. This finding indicates that home-based employees, who save a significant amount of 
commute time and energy, are probably more likely to walk for physical activity, daily chores, or 
recreation. Employers seeking policies to boost the physical and mental well-being of employees 
may consider flexible work arrangements so that employees can engage in physical activity.  

The pedestrian crash model developed for this study, along with the subsequent results, can be 
beneficial in helping policy makers create both short- and long-term strategies to reduce 
pedestrian crashes of all severity types. While some variables conform to previous studies, other 
variables offer new insights into the crash patterns of the study area. The positive relationship 
between speed limit and fatal crash risk is well supported by observations reported by the Austin 
Transportation Department (2018), which indicated that although crashes are more frequent in 
locations with lower speed limits (30–45 mph), the risk of fatal crashes is the highest (64% from 
2010 to 2015) when the speed limits increase beyond 45 mph. The findings of the model in this 
study highlight the need to perform road safety audits of high-speed roadways and to develop 
criteria to promote safe design speeds of city streets. Educational campaigns to promote safe 
driving and walking behavior may also prove beneficial.  
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The significant positive influence of traffic volume on both incapacitating and non-incapacitating 
injury crashes at intersections also warrants specific policy attention. A road diet strategy that 
involves narrowing or eliminating travel lanes has proven to be an effective strategy for 
improving pedestrian safety conditions by lowering vehicle speed and reducing crossing distance 
(Zegeer et al., 2001). In addition, installation of bike lanes, which provides a buffer between the 
street and the sidewalk, increases driver awareness and expectation as well as reduces potential 
conflict between pedestrians and bicyclists on the sidewalk—both encouraging nonmotorized 
activity and improving road safety conditions.  

The influence of the presence of bus stops at the intersections across incapacitating and non-
incapacitating injury crashes offers interesting insights as well. The negative and positive 
influence of bus stops on incapacitating injury and non-incapacitating injury crashes, 
respectively, can be explained by findings from previous studies. For instance, Clifton et al. 
(2009) found a significant negative influence of bus stops on injury crashes but not on fatal 
crashes. The authors suggested that better transit access might be representative of an urban 
center area where motorists travel at slow speeds and there are fewer crashes with severe 
injuries. On the other hand, the higher risk of incapacitating injury crashes near the transit stops 
may be attributed to more pedestrians walking to board or exit buses. The positive influence of 
bus stops on pedestrian crashes at intersections was also reported by Pulugurtha and Sambhara 
(2011), but the severity of crashes was not differentiated.  

The policies regarding bus stops should aim to reduce pedestrian crashes of all severity types and 
need to consider a combination of design elements. For example, increasing pedestrian crossing 
time, installing high-visibility crosswalks and refuge islands, and ensuring adequate light have 
been proven to be effective in reducing pedestrian crashes (Chen et al., 2013). At the same time, 
extra caution should be exercised before implementing engineering measures such as relocation 
of bus stops (such as to midblock locations), only considering the measure’s positive influence 
on incapacitating injury crashes. A report by the Austin Transportation Department (2018) also 
indicated that despite having more crashes at intersection locations, crashes at midblock 
locations are more often severe. This finding might be attributed to the higher speed and lower 
expectation of pedestrians crossing.  

Finally, the influence of pedestrian volume on different crash severity types provides interesting 
insight. Although at a lower confidence level (t-stat > 1), pedestrian volume appears to have a 
negative effect on fatal crashes, which indicates that intersections with higher pedestrian activity 
exhibit lower risk of fatal pedestrian crashes. This phenomenon might be because severe crashes 
(in the Austin area) are more likely to occur on non-local roads, which generally accommodate 
lower pedestrian volumes than do local roads. On the other hand, intersections with higher 
pedestrian demand tend to experience higher non-incapacitating injury crashes (significant at the 
95% confidence level). The relationship between pedestrian severity type and pedestrian demand 
at intersections merits further investigation. 
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Chapter 7. Conclusion  
Intersection-level crash analyses are essential to obtaining deeper insights into the factors 
affecting safety conditions in order to facilitate policy decisions. The traffic operations at 
signalized intersections are complex, and the pedestrian crash risk of different severities at 
signalized intersections can be influenced by many operational and geometric factors, which 
require profound understanding to design countermeasures.  

This study contributed to the field of research by developing an integrated analysis framework to 
examine the impacts of various factors on crash frequencies across fatal, incapacitating injury, 
and non-incapacitating injury crashes involving pedestrians in the Austin area. The ultimate 
objective was to demonstrate the usability of direct demand models to develop exposure 
measures—a key feature of crash analysis—and to illustrate the potential of complex 
multivariate models to accurately estimate crash parameters to help develop policy-based 
countermeasures aimed at reducing pedestrian crash risk at intersections. 

A multivariate Poisson lognormal spatial model was developed. The results showed that the 
multivariate model accounting for correlation among different crash types provided better model 
fitting, and the use of the multivariate spatial model instead of the univariate spatial model was 
more appropriate in the study context. Moreover, the model could distinguish the difference in 
influence of multiple explanatory variables across the crash types at the intersections in the 
Austin area.  

The analysis is not without limitations. Because the crash data do not identify the name of the 
intersection related to a specific crash, the geo-referenced crash data were used to join and 
identify the nearest intersection. Therefore, the research depended on the accuracy of the 
coordinates input. Issues in the topology of RHiNO data added to the challenge of processing 
data.  

Future studies need to gather more intersection-related features to observe their influence on 
pedestrian crashes of different severity types. In addition to intersection location, crash risk on 
midblock locations should be investigated to design policy measures.  
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