Abstract

TRANPLAN is a package of separate, distinct programs which perform travel demand analysis. TRANPLAN can be used to perform the traditional four-step transportation forecasting process: trip generation, trip distribution, mode choice, and traffic assignment.

This guide is intended for use by the Texas Department of Transportation offices, Metropolitan Planning Organizations, municipalities, counties, and consultants contracted by public agencies in the state of Texas. The guide should be used in conjunction with the TRANPLAN reference manual and the Highway Network Information Systems (HNIS) reference manual.

The information in this manual can be used to train new TRANPLAN users, refresh users who have been minimally exposed to TRANPLAN, and serve as a "template" to aid experienced users. This guide, however, is not intended to provide a comprehensive description of all the capabilities of the TRANPLAN software.
TEXAS TRANPLAN APPLICATION GUIDE

by

George B. Dresser
Research Scientist

and

Tom A. Williams
Assistant Research Scientist

Research Report 947-6
Research Study Number 2-10-88-947

Sponsored by

Texas Department of Transportation

in cooperation with the

U.S. Department of Transportation
Federal Highway Administration

Texas Transportation Institute
The Texas A&M University System
College Station, Texas

August 1992
METRIC (SI*) CONVERSION FACTORS

APPROXIMATE CONVERSIONS TO SI UNITS

LENGTH

<table>
<thead>
<tr>
<th>Symbol</th>
<th>When You Know</th>
<th>Multiply By</th>
<th>To Find</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>in</td>
<td>Inches</td>
<td>2.54</td>
<td>cm</td>
<td>cm</td>
</tr>
<tr>
<td>ft</td>
<td>feet</td>
<td>0.3048</td>
<td>m</td>
<td>m</td>
</tr>
<tr>
<td>yd</td>
<td>yards</td>
<td>0.914</td>
<td>m</td>
<td>m</td>
</tr>
<tr>
<td>mi</td>
<td>miles</td>
<td>1.61</td>
<td>km</td>
<td>km</td>
</tr>
</tbody>
</table>

AREA

<table>
<thead>
<tr>
<th>Symbol</th>
<th>When You Know</th>
<th>Multiply By</th>
<th>To Find</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>in²</td>
<td>square inches</td>
<td>645.2</td>
<td>cm²</td>
<td>cm²</td>
</tr>
<tr>
<td>ft²</td>
<td>square feet</td>
<td>0.0929</td>
<td>m²</td>
<td>m²</td>
</tr>
<tr>
<td>yd²</td>
<td>square yards</td>
<td>0.836</td>
<td>m²</td>
<td>m²</td>
</tr>
<tr>
<td>mi²</td>
<td>square miles</td>
<td>2.59</td>
<td>km²</td>
<td>km²</td>
</tr>
<tr>
<td>ac</td>
<td>acres</td>
<td>0.000247</td>
<td>ha</td>
<td>ha</td>
</tr>
</tbody>
</table>

MASS (weight)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>When You Know</th>
<th>Multiply By</th>
<th>To Find</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>oz</td>
<td>ounces</td>
<td>28.35</td>
<td>g</td>
<td>g</td>
</tr>
<tr>
<td>lb</td>
<td>pounds</td>
<td>0.454</td>
<td>kg</td>
<td>kg</td>
</tr>
<tr>
<td>T</td>
<td>short tons (2000 lb)</td>
<td>0.907</td>
<td>Megagrams (1000 kg)</td>
<td>Mg</td>
</tr>
</tbody>
</table>

VOLUME

<table>
<thead>
<tr>
<th>Symbol</th>
<th>When You Know</th>
<th>Multiply By</th>
<th>To Find</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>fl oz</td>
<td>fluid ounces</td>
<td>29.57</td>
<td>mL</td>
<td>mL</td>
</tr>
<tr>
<td>gal</td>
<td>gallons</td>
<td>3.785</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>ft³</td>
<td>cubic feet</td>
<td>0.0328</td>
<td>m³</td>
<td>m³</td>
</tr>
<tr>
<td>yd³</td>
<td>cubic yards</td>
<td>0.0765</td>
<td>m³</td>
<td>m³</td>
</tr>
</tbody>
</table>

TEMPERATURE (exact)

<table>
<thead>
<tr>
<th>°C</th>
<th>Celsius temperature</th>
<th>9/5 (then add 32)</th>
<th>Fahrenheit temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>-32</td>
<td>32 °F</td>
</tr>
<tr>
<td>100</td>
<td>37 °C</td>
<td>212 °F</td>
<td></td>
</tr>
</tbody>
</table>

* SI is the symbol for the International System of Measurements

NOTE: Volumes greater than 1000 L shall be shown in m³.
ABSTRACT

TRANPLAN is a package of separate, distinct programs to perform travel demand analysis. TRANPLAN can be used to perform the traditional four-step transportation forecasting process: trip generation, trip distribution, mode choice, and traffic assignment.

This guide is intended for use by the Texas Department Transportation offices, Metropolitan Planning Organizations, municipalities, counties, and consultants contracted by public agencies in the state of Texas. The guide should be used in conjunction with TRANPLAN reference manual and the Highway Network Information Systems (HNIS) reference manual.

The information in this manual can be used to train new TRANPLAN users, refresh users who have been minimally exposed to TRANPLAN, and serve as a "template" to aid experienced users. This guide, however, is not intended to provide a comprehensive description of all the capabilities of the TRANPLAN software.

DISCLAIMER

The contents of this report reflect the views of the authors who are responsible for the opinions, findings, and conclusions presented herein. The contents do not necessarily reflect the official views or policies of the Texas Department of Transportation. This report does not constitute a standard, specification, or regulation. Additionally, this report is not intended for construction, bidding, or permit purposes. George B. Dresser, Ph.D., was the Principal Investigator for this project.
TABLE OF CONTENTS

CHAPTER ONE
INTRODUCTION .. 1
- Purpose of This Guide .. 2
- Do You Need TRANPLAN Capability? 2
- How to Get TRANPLAN in Texas 3
- How to Get Technical Help .. 3

CHAPTER TWO
INSTALLING TRANPLAN .. 5
- Recommended Computer Hardware 6
- How to Get TRANPLAN on Your Computer 6
- System Configuration for TRANPLAN 7
- Handy DOS Batch Files .. 8

CHAPTER THREE
USING TRANPLAN ... 9
- Things to Remember .. 10
- Function Files .. 10
- How to Run TRANPLAN .. 10
- Entering "TRNPLN" ... 11
- Entering "TRANPLAN" .. 12

CHAPTER FOUR
TRANPLAN FUNCTIONS .. 13
- Networks .. 14
- Trip Distribution ... 14
- Matrix Utilities .. 14
- Traffic Assignment .. 15
- Plotting .. 16
- Reporting .. 16

CHAPTER FIVE
RUNNING TRANPLAN WITH THE TEXAS PACKAGE 19
- TRANPLAN and the Texas Package 20
- Running the Short Method .. 20
- Running the Long Method .. 23
- Intrazonal Travel Times .. 25

CHAPTER SIX
CONVERTING DATA FROM THE TEXAS PACKAGE 27
- The Texas Package ... 28
- Texas Package Conversion Menu 28
 - Converting Link Data ... 28
 - Data for the Short Method ... 29
 - Data for the Long Method ... 29
 - Intrazonal Impedances .. 29
CHAPTER TEN
TRANPLAN UTILITIES .. 57
 Location of Utility Files ... 58
 Converting Networks .. 58
 NETCARD Formats .. 58
 Defining Speed and Time in NETCARD 59
 Loaded Networks and NETCARD 59
 Converting TRANPLAN Matrix Files 59
 Peeking at TRANPLAN Files 59
 TRANPLAN Turning Movements Utility 60

CHAPTER ELEVEN
ALTERNATIVES ANALYSIS USING TRANPLAN 61
 The Travel Model Paradigm 62
 Two Types of Alternatives 62
 Testing a Capacity Change 63
 Testing a Land Use Change 64
 Generating Trips ... 65
 Balancing Productions and Attractions 65

APPENDIX
FILE FORMATS .. 69
 TRANPLAN Node Data: Large Coordinates 70
 TRANPLAN Node Data: Default Coordinates 70
 TRANPLAN Link Data .. 71
 TRANPLAN Production-Attraction Data 72
 TRANPLAN Friction Factors 72
 Texas Package Links .. 73
 Texas Package Nodes ... 73
 Texas Package Production-Attraction Data 74
 Texas Package Friction Factors 74
 Texas Package Radii Values 75
 TRANPLAN Intrazonal Values 75
 Suggested File Name Extensions: Long Method 76
 Suggested File Name Extensions: Short Method 77
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TRANPLAN Execution Process</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>The Texas TRANPLAN Short Method</td>
<td>21</td>
</tr>
<tr>
<td>3</td>
<td>TRANPLAN Travel Time Decay Function</td>
<td>22</td>
</tr>
<tr>
<td>4</td>
<td>The Texas TRANPLAN "Long Method"</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>HNIS network editing screen</td>
<td>34</td>
</tr>
<tr>
<td>6</td>
<td>The HNIS "LINK COLOR" option</td>
<td>35</td>
</tr>
<tr>
<td>7</td>
<td>Posting information on links with HNIS</td>
<td>36</td>
</tr>
<tr>
<td>8</td>
<td>The HNIS turning movement diagram</td>
<td>37</td>
</tr>
</tbody>
</table>
This chapter describes the use of TRANPLAN in the state of Texas. The following questions are answered:

- What is the purpose of this guide?
- Do you need TRANPLAN capability?
- How do you get TRANPLAN?
- How do you get TRANPLAN technical support?
INTRODUCTION

Purpose of This Guide
This guide is intended for use by Texas Department of Transportation offices, Metropolitan Planning Organizations, municipalities, counties, and consultants contracted by public agencies in the state of Texas. The guide should be used in conjunction with the TRANPLAN reference manual and the Highway Network Information System (HNIS) reference manual.

The information contained in this manual should be used to train new TRANPLAN users, refresh users who have been minimally exposed to TRANPLAN, and serve as a "template" to aid experienced users. This guide is not intended, however, to provide a comprehensive description of all the capabilities of the TRANPLAN software.

Do You Need TRANPLAN Capability?
TRANPLAN is a package of separate, distinct programs to perform travel demand analysis. TRANPLAN can be used to perform the traditional four-step transportation forecasting process: trip generation, trip distribution, mode choice, and traffic assignment. It can also be used to forecast transit ridership. Currently, only trip distribution and traffic assignment are performed using TRANPLAN in most areas of Texas (all four steps are performed in North Central Texas). Transit modeling is not performed.

TRANPLAN can aid in the following areas:

- Development of long range plans by allowing local areas (TxDOT districts, MPO's, and municipalities) to test alternatives in land use scenarios and transportation systems;
- Testing of local system transportation alternatives and traffic impacts from changes in land use;
- Response to questions from local policy bodies concerning traffic.

Unless you are involved in the above areas, you probably do not need TRANPLAN capability. Learning and keeping current with TRANPLAN requires a substantial commitment of time; therefore, it is advised that unless you perform one
of these functions often, or would do so if you had TRANPLAN, you could probably invest your time more wisely.

How to Get TRANPLAN in Texas

Getting TRANPLAN in Texas is easy: the Texas Department of Transportation (TxDOT) currently has a statewide license agreement with the developers of the TRANPLAN software, the Urban Analysis Group (UAG). This license allows TxDOT to distribute TRANPLAN to all public agencies, with the following exceptions:

- All public agencies which are members of the North Central Texas Council of Governments (NCTCOG);
- All public agencies which are in the metropolitan area of Austin, Texas;
- All public agencies which are in the metropolitan area of Houston, Texas.

TxDOT offices anywhere can obtain TRANPLAN. Public agencies in the NCTCOG region can obtain TRANPLAN at a minimal cost through NCTCOG. Agencies in the Austin area have previous agreements with the Urban Analysis Group for the use of TRANPLAN. The Houston area is limited under the state license to the TxDOT district office.

A request must be made to the Transportation Planning Division (D-10) of TxDOT to obtain TRANPLAN. Currently, TxDOT requires that an urbanized area (population of 50,000+) have a validated travel model before approval for TRANPLAN distribution is granted. The mainframe Texas Package model is used for all model validations and is performed by TxDOT.

How to Get Technical Help

TxDOT has authorized the Texas Transportation Institute (TTI) to administer TRANPLAN. TTI can provide several forms of technical assistance:
• Installing TRANPLAN and providing a training session to get you "up and running" at your office;

• Visiting your site for special circumstances requiring on-site training;

• Providing a seminar on the basic usage of TRANPLAN and HNIS each May in College Station;

• Assisting users at any time when they call TTI directly at (409) 845-5200.

The TRANPLAN developers, UAG, would prefer that you call TTI first, and then TTI will contact UAG if further assistance is necessary.

TTI and TxDOT also support a Texas TRANPLAN Users Group. To receive a current list of TRANPLAN Users in Texas, contact TTI. Meetings of the Texas TRANPLAN Users Group are held at least once a year at the Texas Transportation Planning Conference.
CHAPTER TWO
INSTALLING TRANPLAN

This chapter explains the installation procedures for TRANPLAN and provides the following:

- Computer hardware requirements
- TRANPLAN Installation
- System configuration
- Sample DOS batch files
INSTALLING TRANPLAN ON YOUR COMPUTER

The following is a list of recommended hardware required to run TRANPLAN. Actually, TRANPLAN will run on a lesser system than that listed below. However, you will probably want to run other applications on the system; and the following is a common, standard set-up.

Computer Hardware
- i486 DX 33 MHz CPU, OR
 - i486 SX or 386 CPU with math co-processor
- 13"/14" Super VGA color monitor and card
- 100 MByte minimum hard disk
- 4 MByte minimum RAM
- Bus mouse
- 1 5.25" 1.2 MByte high density disk drive
- 1 3.5" 1.4 MByte high density disk drive
- Extended keyboard
- 1 parallel port
- 2 serial ports
- 44 MByte minimum removable cartridge disk drive
- 2 44 MByte removable cartridges
- 2400 baud modem

Printer
- Any printer capable of 132 column print (compressed mode or wide carriage)

Plotter
- Hewlett Packard plotter or any plotter capable of HPGL emulation

Software
- MS-DOS 5.0
- Any text editor capable of reading large files (MS-DOS 5.0 EDIT is suitable in most areas)

How to Get TRANPLAN on Your Computer

Installing TRANPLAN is usually performed by TTI. If you are installing an upgrade of TRANPLAN, an install program can be run from your A: (or B:) drive by typing:

```
C:> A:INSTALL
```
when the TRANPLAN installation disk is in drive A. Also, be sure to read the READ.ME files on your upgrade diskettes. These provide descriptions of the upgrade features. For more information, refer to the TRANPLAN "User Manual Supplement and Installation Instructions" guide.

System Configuration for TRANPLAN

In order for TRANPLAN to run, the C:\TP or C:\TRANPLAN subdirectory must be on the "path" of the computer. To see if it is, type "PATH" at the C: > prompt. The path tells the computer where to find the TRANPLAN programs and is defined when you turn on the computer in the AUTOEXEC.BAT file. Below is a sample AUTOEXEC.BAT file for use on a TRANPLAN computer:

```batch
@ECHO OFF
PROMPT $p$g
PATH = C:\DOS;C:\;C:\UTIL;C:\TP;C:\TP\MISC
```

Note that the system defined above does not have any "Terminate and Stay Resident" (TSR) programs being loaded by the AUTOEXEC.BAT file when the computer is turned on. These programs are loaded into the computer memory and are not cleared when they are done. These programs can, and usually do, cause conflicts with TRANPLAN. It is best to have a very simple AUTOEXEC.BAT file to run TRANPLAN, such as the one listed above.

For TRANPLAN to run correctly, be sure to keep TSRs out of the CONFIG.SYS File. Be sure to have the following included in you CONFIG.SYS file:

```batch
DOS = HIGH
FILES = 30
BUFFERS = 10
```

You will probably be required by other programs on your system to add device drivers, or "DEVICE=..." statements, to your CONFIG.SYS file. Try to run TRANPLAN with the device drivers loaded. If it does not work, delete them from the CONFIG.SYS file, or edit your CONFIG.SYS file and place a "REM " in front of the "DEVICE=..." statement (you must then re-start your computer).
Handy DOS Batch Files

Other files you may need to add to your computer are batch files, or files with the extension "".BAT"". These files can help when running TRANPLAN by performing repetitive, tedious tasks automatically.

One batch file that is necessary will help run HNIS (see Chapter Seven). This file allows you to run HNIS from any subdirectory, such as your model run subdirectory. The batch file should be named "HNIS.BAT" and placed in the "C:\UTIL" or "C:\TP" subdirectory. It assumes you have installed HNIS in a "C:\NIS" subdirectory. The sample HNIS.BAT listed below will help HNIS find the configuration files it needs.

```plaintext
COPY C:\NIS\NIS.CFG
C:\NIS\HNIS
```

Another batch file will help send plot codes to your plotter (individual plotters may vary). Below is a batch file, "TPLOT.BAT" which will send the appropriate codes for a Hewlett Packard plotter and copy a TRANPLAN plot file to the communications port (COMx) that is connected to the plotter. To use the batch file, type "C:>TPLOT filename", where `filename` is the name of a plot file created by TRANPLAN.

```plaintext
@ECHO OFF
MODE COM1:96,N,8,1,P
COPY %1 COM1
ECHO ON
```

All batch files can be saved in a "C:\UTIL" subdirectory or the "C:\TP" subdirectory, which is in the path defined in the AUTOEXEC.BAT file.
CHAPTER THREE
USING TRANPLAN

This chapter describes the elementary steps to use TRANPLAN. The following areas are summarized:

- Function files
- Using TRANPLAN
- Entering "TRNPLN"
- Entering "TRANPLAN"
Running TRANPLAN involves understanding three basic things:

- What exactly you are running
- What the input files are
- What the output files are

TRANPLAN operates in "batch" mode, meaning that a "batch" or "group" of instructions is loaded simultaneously. The "batch" of instructions is held in what are commonly called "setup" files or "function" files, usually with the filename extensions of ".IN" or ".FIL" so that they can be easily identified. To run TRANPLAN you need to create a setup file containing the instructions telling TRANPLAN exactly what model you wish to run. The following general control structure applies to all TRANPLAN functions.

$Function Name
$FILES
 INPUT FILE = FileID, USER ID = $Filename$
 OUTPUT FILE = FileID, USER ID = $Filename$
$HEADERS
 (up to three lines of header records)
$OPTIONS
 (list of options)
$PARAMETERS
 (list of parameters)
$DATA
 (data records)
$END TP FUNCTION

TRANPLAN programs (those ending with "EXE") are normally placed in a subdirectory set aside for TRANPLAN called "D:\TP" or "D:\TRANPLAN", where "D" is a hard disk drive (usually C: or D:). The studies that you do with TRANPLAN are placed in separate, unique subdirectories, with a name you choose to identify the study, such as
"C:\BASE15" for a baseline 2015 model run or "D:\ALTB20" for alternative B of a 2020 model run. Input setups (see Chapter Three) can be stored in a lower subdirectory, for instance, "C:\BASE15\IN" or "C:\BASE15\FIL". Setups usually have the extension of ".IN" or ".FIL", but this is not a requirement. See Figure 1.

To run TRANPLAN:

1) Establish a working subdirectory for executing TRANPLAN.

2) Ensure that the executable TRANPLAN file "TRNPLNXT.EXE" and all required executable modules are in the DOS path.

3) Copy all input TRANPLAN data files to the working directory.

4) Create a TRANPLAN input control file called "TRNPLN.IN".

5) Type in "TRNPLN" to execute TRANPLAN.

TRANPLAN is operated through a control file named TRNPLN.IN that can be created by using any text editing software. You can create a series of setup files for different operations, store them under different names, and copy the appropriate file into TRNPLN.IN prior to execution. You can append several functions together by following the $END TP FUNCTION line with another $Function Name line.

The control file is executed by entering TRNPLN from the keyboard. The package checks to see if all specified programs and input data files are stored on disk; then, it executes the programs in sequence. The output file specified in the setup file is written to disk under the name specified by the user, and reports are stored under the filename "TRNPLN.OUT".
Entering "TRANPLAN"

An alternative method of executing TRANPLAN is as follows:

```
C: >TRANPLAN setup.in report.out
```

where `setup.in` is the filename of the setup function file, and `report.out` is the output report filename.

In summary, TRANPLAN uses input setups which control the function executed, the input data set, and the output data set. Naming this setup file "TRNPLN.IN" and then typing "TRNPLN" or specifying it by typing "TRANPLAN" will execute the model run and create output reports in a file named "TRANPLAN.OUT" or the file specified in the "TRANPLAN" command.
CHAPTER FOUR
TRANPLAN FUNCTIONS

This chapter describes the most commonly used TRANPLAN "functions" or models. Each function performs a specific task, including:

- Network building and editing
- Matrix editing and reporting
- Traffic assignment
- Plotting
TRANPLAN FUNCTIONS

Networks

$BUILD HIGHWAY NETWORK
Converting an ASCII format, 80-column network (NETDATA) to TRANPLAN binary compressed format. Can also be used to perform network editing, such as adding or deleting links or nodes, or changing attribute values on links.

$MACRO HIGHWAY NETWORK UPDATE
Performs macro, or multiple, updates to a network in TRANPLAN format. Deletes, adds, subtracts, multiplies, divides, or replaces link attributes. For example, system-wide capacity changes based on area type and number of lanes.

$HIGHWAY SELECTED SUMMATION
Builds a matrix of minimum time, distance, or travel cost by "skimming" attributes along minimum paths from zone to zone in a network. Can build minimum paths based on one network attribute and then report to the output matrix the cumulative total of another attribute; for example, link lengths along a minimum travel time path. TRANPLAN format network is input to this function.

Trip Distribution

$GRAVITY MODEL
Performs the classic formulation of the traffic forecasting gravity model. Input files include an ASCII production-attraction file with friction factors (by trip purpose) appended to the bottom of the file. Also, input is a minimum impedance matrix in TRANPLAN format. Outputs a single, total-purpose trip matrix and/or a multiple, separate-purpose trip matrix file.

$FRATAR MODEL
An iterative FRATAR expansion model based on origin-destination growth factors. Used to "grow" a trip table.

Matrix Utilities

$MATRIX UPDATE
Addition, subtraction, multiplication (by a constant) and replacement operations on matrix files (trip tables and minimum impedance matrices). Optional conditional operation (EQ, LT, GT) and selected zones available.

$MATRIX MANIPULATE
Merges multiple table trip matrices (e.g., sums all trip purposes on one matrix) and performs addition, subtraction,
multiplication, and division on multiple combinations of tables and matrices.

$M A T R I X \text{ COMPRESS}$
Aggregates Traffic Analysis Zones (or other zones) into districts, or larger zones. Function input usually a trip table; the output compression either printed or output to a second matrix (of fewer zones). The cell values of the output zones (or districts) are accumulations of the aggregated zones.

$M A T R I X \text{ EXPAND}$
Opposite of $M A T R I X \text{ COMPRESS}$. De-aggregates large districts into smaller zones. Values of the smaller zones in the resultant trip matrix, or factor matrix, are equal to the values of the districts in which they fell (or were specified in the function file).

$M A T R I X \text{ TRANSPOSE}$
Transposes a TRANPLAN format trip matrix, usually a trip table. Each matrix cell $A(i,j)$ becomes $A(j,i)$. Also, will convert a production-attraction format trip table to origin-destination format.

<table>
<thead>
<tr>
<th>Traffic Assignment</th>
<th>$L O A D \ H I G H W A Y \text{ NETWORK}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Loads a trip table onto the minimum paths through a network. Inputs a TRANPLAN format network and trip matrix and outputs either a "loaded history file" or a network with assigned traffic volumes. Capabilities include All-or-Nothing assignments, Capacity-Restrained assignments, and Turning Movements.</td>
</tr>
</tbody>
</table>

$L O A D \ H I G H W A Y \text{ SELECTED LINKS}$
Same as $L O A D \ H I G H W A Y \text{ NETWORK}$ but also generates a selected link "history" file. The output includes loadings on specific links identified in the function file. The output is then read into $B U I L D \text{ SELECTED LINK TRIP TABLE}$ to analyze the origin and destination of trips using the selected links.

$B U I L D \text{ SELECTED LINK TRIP TABLE}$
Combines a trip table and a selected link history file to produce a trip matrix of trips using the specified selected links. Generally followed by a $C O M P R E S S \text{ MATRIX}$ function to analyze the resultant trip origin and destination patterns.
Plotting

$PLOT HIGHWAY NETWORK
Creates a plot file ready for sending to a plotter. Generally used to plot highway networks for coding base maps and debugging. Links can be selectively plotted and colored using Link Group codes or Assignment Group codes. Node numbers can also be plotted.

$PLOT HIGHWAY LOAD
Plots a loaded highway network with the same options as $PLOT HIGHWAY NETWORK. Also plots assigned volumes and band widths based on the assigned volume. Can optionally plot network colored by range of volume-to-capacity ratio.

$PLOT HIGHWAY PATHS
Plots the minimum impedance paths from selected origin zones. Good method of checking network coding. Output resembles a "tree" branching out from the origin node. TRANPLAN uses a "vine" builder to build minimum paths.

Reporting

$REPORT HIGHWAY NETWORK
Reports link descriptions, prohibited turns, node coordinates and unused nodes. Options using "OR" and/or "AND" specifications permit the reporting of selected portions of the network.

$REPORT HIGHWAY NETWORK SUMMARY
Reports summaries of highway network characteristics stratified by link class (i.e., link group and assignment group code values). The reports may be one-, two-, or three-dimensional tables. Summaries may be reported by cost, distance, time, user impedance, vehicle cost, vehicle distance, vehicle hours, vehicle user impedance, capacity time, capacity distance and volume capacity. Screenline summary reporting is also available.

$REPORT HIGHWAY LOAD
Reports link loadings in A-B, B-A, and total format. Turning movements are presented in an easy-to-read matrix format with one-way and two-way link totals. Options using "OR" and/or "AND" specifications permit the reporting of selected portions of the network. Zero volume links can be
suppressed from the report. Reporting of selected loading by iteration and trip purpose is permitted.

$REPORT HIGHWAY INCREMENTAL SUMMARY
Optionally generates three types of reports which describe the time, speed, and volume changes on a highway network during iterative loading. The first report is detailed by selected links of time, speed, and volume by iteration. The second report is a frequency distribution stratified by ratios of projected volume/capacity ratio and by time/speed ratio differences. The third report is a ground count comparison which is useful in validating the travel model.

$REPORT HIGHWAY PATHS
Reports the minimum paths, for the user-specified travel impedance, in either a detailed (non-destructive) format or in a compressed (destructive) format. All paths are built with a vine builder which guarantees the minimum path with turn prohibitors and turn penalties.

$REPORT MATRIX
Reports trip tables and selected summation (skim) file matrices, via either the body of the matrix or a trip end summary (for trip tables). Selected trip purpose and origin zone control the level of output.

$REPORT MATRIX COMPARISON
Compares two trip tables, usually survey origin-destination with model output. Reports zone-to-zone differences and rations, frequency distributions, statistical summaries by volume groups and trip end differences, and ratios.

$REPORT TRIP LENGTH FREQUENCY
Reports standard trip length frequency statistics based upon an input trip table and selected summation separation matrices. Reports include:

1. trips by impedance: unit, average statistics and
2. histograms by impedance unit and by accumulated units.
This chapter explains how to run the TRANPLAN model in conjunction with the Texas Package. Two methods are outlined:

- The Short Method using a trip table from the Texas Package
- The Long Method using productions and attractions from the Texas Package
RUNNING TRANPLAN
WITH THE TEXAS PACKAGE

TRANPLAN and the Texas Package

TRANPLAN is operated in conjunction with the Texas Travel Demand Package forecasting software which is maintained by TxDOT. Essentially, validation and calibration of the models in Texas (with the exception of the NCTCOG urbanized area) are performed using the mainframe TxDOT model system. Once an urbanized area is validated to existing conditions, the networks and demographics are downloaded from the mainframe to microcomputers for use in TRANPLAN by local offices.

TxDOT has authorized local areas to use TRANPLAN to perform alternatives analysis and then provide D-10 with final numbers for approval (documenting all assumptions). There are two methods of using data obtained from the Texas Package with TRANPLAN:

- Download a trip table and a network, referred to as the "Short Method"
- Download a vehicle trip generation file and network, referred to as the "Long Method"

Running the Short Method

Using the Short Method, a network (link and node coordinate data) is downloaded from the Texas Package. The network is then converted to TRANPLAN ASCII format with TTI conversion programs which are executed through the DOWN menu system (which stands for DOWNload). Next, a valid trip table is downloaded from the Texas Package and converted to TRANPLAN binary format using the DOWN menu system (when in binary, this file cannot be viewed with your text editor). Refer to Figure 2.

Once the network is converted to TRANPLAN ASCII format, the TRANPLAN function $BUILD HIGHWAY NETWORK is run. The output from the $BUILD HIGHWAY NETWORK function is a binary TRANPLAN network which can be viewed and edited using HNIS. With HNIS, you can make network additions, deletions, or modifications with interactive color graphics.
The final step in the Short Method is to load the origin-destination trip table onto the network using the $LOAD HIGHWAY NETWORK function. The standard type of loading, or traffic assignment, used for TRANPLAN in Texas is the incremental capacity restraint method. This method has two main features:

- Trips are loaded onto the network in five pre-specified increments or "Load Percentages." This means that if there are 100 trips between two zones and the load percentages are 15, 15, 20, 20, 30, then 15 trips will be loaded during the first increment onto the shortest travel time path, and the network travel times will be updated.
- The network travel times are updated after each increment of trips is loaded onto the network using the shortest travel time path between two given zones. The travel times are increased by a certain percentage according to a travel time decay function which relates the volume-to-capacity ratio (how much the network is congested) and a percentage increase in travel time (see Figure 3).

![Figure 3 TRANPLAN Travel Time Decay Function](image)

After the trips are loaded onto the network, the link traffic volumes can be viewed with HNIS or by creating a TRANPLAN plot file using the $PLOT HIGHWAY LOAD function. The $PLOT HIGHWAY LOAD function creates a computer plot file which can be sent to your plotter (usually with a DOS "COPY" command or with the sample "TPLOT.BAT" batch file).
In summary, the short method uses the following TRANPLAN steps:

1) Convert the Texas Package trip table, network, and x/y coordinates to TRANPLAN format.

2) Run $BUILD HIGHWAY NETWORK to check the network and convert it to binary.

3) Optionally, edit the network with HNIS.

4) Run $LOAD HIGHWAY NETWORK and check the results.

Running the Long Method

The TRANPLAN Long Method uses the same data conversion program (DOWN) as the Short Method to convert the network links and nodes to TRANPLAN ASCII format. Productions, attractions, and friction factors are also converted to TRANPLAN ASCII format and placed in the same file. The production-attraction file is created from the Texas Package trip generation model by TxDOT from zonal population and employment data collected by serial zone. Typically, the external trip ends on this file are not converted to TRANPLAN.

The following steps are used in the Texas TRANPLAN Long Method.

1) The ASCII network is checked and converted to binary by running $BUILD HIGHWAY NETWORK. This function is executed several times if problems are found on the network. The network can then be optionally edited with HNIS.

2) $HIGHWAY SELECTED SUMMATION "skims" the minimum travel time paths from each zone to all other zones and creates a matrix of cumulative travel times.

3) Radius data are converted from the Texas Package and used to update the intrazonal travel times (see next section of this guide for more detail).

4) The $GRAVITY MODEL takes productions and attractions from each zone and the minimum travel time matrix and distributes them using the gravity model formula. The result is a production/attraction format trip table.
Figure 4 The Texas TRANPLAN "Long Method"
5) The $MATRIX TRANSPOSE function converts the trip table into an origin/destination format where each zonal interchange has the same number of trip ends as the opposite zonal interchange (e.g., the trip ends from zone 2 to zone 1 must equal the trip ends from zone 1 to zone 2). The trip ends are equal only when the trip table represents a full day.

6) Trips originating outside the study area (external trips) must be "borrowed" from the Texas Package trip table. A $MATRIX UPDATE function places a zero in all internal-to-internal trip interchanges of the Texas Package trip table, leaving only the external trips. The external trip table is then added to the internal-to-internal trip table to create a total trip table.

7) The final step in the Long Method is to load the trip matrix onto the shortest paths of the network using the $LOAD HIGHWAY NETWORK function. The Long Method uses the same incremental assignment technique used in the Short Method. Note that the loaded network in the Long Method is different than the loaded network used in the Short Method because the trip tables differ.

<table>
<thead>
<tr>
<th>Intrazonal Travel Times</th>
</tr>
</thead>
</table>

Sometimes it is necessary to estimate the intrazonal travel times more precisely than the TRANPLAN HIGHWAY SELECTED SUMMATION model is capable of doing. The Texas Package trip distribution model utilizes a zonal radius which is converted to data cards to represent centroid connector travel times used in the $MATRIX UPDATE function. For more information see Appendix C of TTI Research Report #1110-4F, "Subarea Analysis Using TRANPLAN/NEDS."
CHAPTER SIX
CONVERTING DATA
FROM THE TEXAS PACKAGE

This chapter explains in detail how to convert networks and trips from the Texas Package mainframe model to TRANPLAN.
CONVERTING DATA FROM THE TEXAS PACKAGE

The Texas Package

TRANPLAN is run in Texas in coordination with the Texas Package of travel demand forecasting programs. The Texas Package is operated by Division 10 of TxDOT on a mainframe computer. Data can be easily converted from the Texas Package to TRANPLAN for use in your urbanized area. The North Central Texas Council of Governments maintains a similar TRANPLAN mainframe model process using the Dallas-Fort Worth Regional Travel Model.

Texas Package Conversion Menu

Data are downloaded to microcomputer and then sent to your office on diskette. Although the data are in ASCII format, the networks, node and zone centroid coordinates, trip tables, friction factors, and production-attraction data are not in the required format for TRANPLAN.

A menu-driven set of conversion programs has been developed by TTI to facilitate the transfer of data between TRANPLAN and the Texas Package. This menu is a DOS batch file called "DOWN.BAT." Typing "DOWN" at the DOS prompt will produce the following menu selections:

CONVERSION PROGRAM MENU
FOR SUBAREA ANALYSIS

DOWNLOADING (FROM TEXAS PACKAGE TO TRANPLAN)
1. LINK DATA CONVERSION
2. COORDINATE DATA CONVERSION
3. TRIP TABLE CONVERSION
4. P/A DATA CONVERSION
5. FRICTION-FACTOR CONVERSION
6. ZONAL RADII CONVERSION

UPLOADING (FROM TRANPLAN TO TEXAS PACKAGE)
7. LINK DATA CONVERSION
8. P/A DATA CONVERSION
E. EXIT TO DOS

Selecting one of the first six from the menu will execute a FORTRAN program to convert data from the Texas Package to TRANPLAN. The FORTRAN programs will then prompt you for input file names and output file names.

Converting Link Data

Selecting "LINK DATA CONVERSION" from the DOWN menu system will run a program to convert a downloaded network to TRANPLAN ASCII format. Selecting "COORDINATE DATA CONVERSION" will convert node
numbers and coordinates to TRANPLAN ASCII format. These two files must then be concatenated; the node data usually come first. This combined node and link data file will then be input into the $BUILD HIGHWAY NETWORK function.

Data for the Short Method

When running the Short Method, you can select "TRIP TABLE CONVERSION." This program will convert a Texas Package ASCII format trip table to TRANPLAN binary format. The resulting file can be loaded onto a network using the $LOAD HIGHWAY NETWORK function.

Data for the Long Method

When running the Long Method, "P/A DATA CONVERSION" should be selected. This will convert a Texas Package production-attraction file to TRANPLAN ASCII format. "FRICTION FACTOR" conversion will produce a file of friction factors by trip purpose. These two files must be combined onto one file, the friction factors usually coming last. A DOS command can be used to concatenate files as follows:

```
C:\>COPY file1 + file2 file3
```

where, *file1* and *file2* are the two files to be combined and *file3* is the resulting output for use with TRANPLAN.

Intrazonal Impedances

In some areas "ZONAL RADII CONVERSION" is performed. The output is a list of zone interchanges with intrazonal impedances for use in the $MATRIX UPDATE function to replace the TRANPLAN default intrazonal impedance values.

Most urbanized areas will need to convert data only on specific occasions. A validated model network and trip table should be converted along with the production-attraction file. In some cases, production-attraction data will need to be converted when land use changes are made through TxDOT.
This chapter reviews some of the most used aspects of the TRANPLAN graphics network editing program, HNIS. The topics covered are:

- Choosing a method to edit networks
- Using HNIS to edit networks
- Using HNIS to display information
- Other helpful tips
Graphics Editing System

TRANPLAN is accompanied by the Highway Network Information System (HNIS). HNIS is a full-featured, interactive graphics, network editing program. TRANPLAN networks and loaded networks can be edited or displayed in many different forms. For a full description of HNIS menus and commands, please refer to the HNIS manual.

HNIS can be divided into two main functional areas:

- Editing network information
- Displaying network attributes

Choosing an Editing System

TRANPLAN networks can be edited using one of the following methods:

- Edit the TRANPLAN format ASCII file with a text editor and then run $BUILD HIGHWAY NETWORK
- Create edit cards for $BUILD HIGHWAY NETWORK or $MACRO HIGHWAY NETWORK UPDATE
- Use HNIS with interactive graphics

Although HNIS is perhaps the most appealing of the three methods, it is not always the most efficient solution. Editing the network ASCII file can be very time consuming and tedious, but it is sometimes more efficient than HNIS. However, network ASCII files should probably be edited only when one or two changes need to be made.

When large-scale editing is needed, such as creating a baseline alternative for a long range plan or a thoroughfare plan where several hundred network changes are required, creating a $BUILD HIGHWAY NETWORK update file is probably the best solution. To save time and effort, you should plot a base map, draw the network changes, and code the attributes on forms keeping a permanent copy of all the changes. For information on how to add, modify, and delete
update records for input to the $BUILD HIGHWAY NETWORK function, refer to the TRANPLAN User Manual.

Editing Networks

HNIS is suitable for small- or large-scale network modifications, although some computer systems and networks run rather slowly. Adding a route alignment alternative or changing capacities on a thoroughfare are good examples of HNIS editing capability. The advantage to using HNIS for editing is the interactive capability; you can see the changes as you make them.

HNIS Configuration

HNIS provides several configuration files which set the default parameters for drawing and editing networks. These configuration files must be present in the working directory when you execute HNIS. Another method is to create a DOS batch file.

A common error message when using HNIS is "NIS.CFG not found." To correct this error, use the HNIS.BAT file found in Chapter Two of this guide, making sure the file is in the DOS path.

Some HNIS Tips

A time-saving feature of HNIS is the "STOP DRAW" function. When drawing a large network, press and hold the right mouse button. This will cause HNIS to cease drawing, saving time if you already have what you want drawn on the screen.

Another important editing feature is the "SETUP TEMP" function. This allows you to create a "template", a set of default attributes on a link. The "COPY TEMP" function is used to copy the default attributes to other links by just pointing the cursor at them, saving time.

When performing large-scale changes, a combination of the above methods may be suitable. Coding nodes using HNIS and links using $BUILD HIGHWAY NETWORK versus calculating node coordinates by hand may save time. Experimentation and experience will lead to the best coding application for you.
Displaying Information with HNIS

HNIS is best suited to displaying information from a loaded network. Traffic volumes, traffic counts, and speeds can be displayed after a $LOAD HIGHWAY NETWORK$ has been run. One way to display information on links graphically is by using the "POST SETUP" selection, then the "POST LINK" or "AUTO POST" selection, and then "REDRAW" the network. To display a list of all the attributes of a particular link, select "EDIT ATR"; and then close the menu without editing anything.

![HNIS network editing screen](image)

Figure 5 HNIS network editing screen

The assignment method recommended for use in Texas is the Incremental Capacity Restraint. TRANPLAN saves all five iterations on the output network file. When reading a loaded network, HNIS will prompt you for the "iteration for loaded volumes" and "iteration for loaded speeds". These are always set to the highest number of iterations that have been executed in the $LOAD HIGHWAY NETWORK$ run, usually five. When set to the highest iteration, HNIS will use the final iteration speeds and volumes to display and calculate minimum paths.

Capacity 1 or Capacity 2?

HNIS also prompts you for a default capacity. Capacity 1 is always used to store the theoretical daily capacity of the link. Capacity 2 is sometimes used to store an observed traffic count. This can be useful. Specifying Capacity 2 as the
default will cause HNIS to calculate V/C and other volume-to-capacity comparisons (band widths, colors) using the ground count. Thus a V/C ratio would really be a volume-to-ground count comparison.

Coloring Links with HNIS

Loading a network in all one color, usually white, is not descriptive. Therefore, a network can be colored by functional class if desired. Specify LINK COLOR in HNIS and choose the field where functional class is stored (usually LG1, which is short for "link group 1"). Then pick the colors desired for each functional class, and re-draw the network.

To choose the colors, click the mouse once on top of the color bars (see Figure 6). Then click on top of the coded link value which will represent the color chosen. The coded link values are arranged starting at 0 and going through 9 on the first row, then starting with 10 and going through 19 on the second row, and so on.

![Figure 6 The HNIS "LINK COLOR" option](image)

The settings do not have to be specified each time you load HNIS. Save the desired color settings by picking "SAVE UPRF" (for "save user profile") and give HNIS a filename. The next time you load HNIS, select "READ UPRF" and "LINK COLOR" (by LG1), and the default color settings will be restored.
To display the network in color according to level of service (LOS), select "CLR BAND" (for "color band"). Simply select V/C and choose the colors for the ranges of V/C that define each level of service.

Figure 7 Posting information on links with HNIS

Sometimes it is necessary to show the differences between two traffic assignment runs. HNIS provides a quick method to view the changes between alternatives graphically. The method to compare two traffic assignments is as follows:

1) Read the base network into HNIS first or the loaded network upon which the alternative was coded.

2) Select "COMP NETS" (for "compare networks") and specify the Capacity 2 field as the place for the volumes from the second network.

3) Draw a band width comparison of the two traffic assignments using the "BAND AB" function and selecting volume, Capacity 2, or other comparison variables.
Detailed turning movement diagrams can be drawn quickly on the computer screen using HNIS. Turning movement nodes must be specified in the $LOAD HIGHWAY NETWORK function. The loaded network will then have turning movements saved for each node specified. In HNIS, select "TURN MOVES" and specify a node for which the turning movements were saved during the traffic assignment. A detailed display and bandwidth of all turning movements at that node will be displayed.

Figure 8 The HNIS turning movement diagram
This chapter explains:

• How to create network plots
• How to create traffic assignment plots
• Tips to help send plots to your plotter
Plotting the network and traffic assignments of a TRANPLAN model run is one of the most important tasks you can perform. Effective displays of the information for public meetings and technical meetings can help create a successful project. Fortunately, creating plots with TRANPLAN is relatively simple if you have all of the equipment and connections set up properly.

TRANPLAN plots are created with a function file. The output from the function is a plotter file which can be copied directly to your plotter. Plotters have different graphics languages, so you must specify the plotter in the TRANPLAN setup. Many plotters will emulate, or interpret, the Hewlett-Packard Graphics Language (HPGL). HPGL is a common plotter format and TRANPLAN is well suited for its use.

Copying a plotter file to your plotter can involve setting the attributes of the communications port on your computer (COMx, where x=1, 2, or 3). A sample TPLOT.BAT file is described in Chapter Two which should simplify the task.

The following are some common examples of $PLOT HIGHWAY NETWORK and $PLOT HIGHWAY LOAD function files.

In this example, all links, nodes, zones, centroid connectors, and zone/node numbers will be plotted for the entire network. If only a portion of the network is desired, add a MINIMUM and a MAXIMUM X and Y in the $PARAMETERS section. The SELECTION ATTRIBUTE in this case is ASSIGNMENT GROUP, the field in which functional classification is stored. Each COLOR statement refers to a pen position in the order in which they occur (a black pen would be loaded into pen position 1 on the plotter, etc.).

```
$PLOT HIGHWAY NETWORK
$FILES
INPUT FILE = HWYNET, USER ID = $HWYNET.DAT$
OUTPUT FILE = TPLOT, USER ID = $PLOTNET.DAT$
$HEADERS
PLOT HIGHWAY NETWORK
```
Traffic Assignment Volume Plot

In the example below, the $PLOT$ HIGHWAY LOAD function is used to plot a network with volumes posted on each link. The links will be drawn using the pen placed in position one on the plotter.

$PLOT$ HIGHWAY LOAD
$FILES
INPUT FILE = LODHIST, USER ID = $INCASSN.DAT$
OUTPUT FILE = TPL, USER ID = $PLOTVOL.DAT$
$HEADERS
PLOT HIGHWAY LOAD
VOLUMES FROM INCREMENTAL ASSIGNMENT
$OPTION
NO CENTROID LINKS
ONLY CENTROID NODES
$PARAMETERS
PLOTTER = HP7475
PAPER = NORMALA
PLOT SIZE = 8
MINIMUM X = 36600
MAXIMUM X = 41000
MINIMUM Y = 10500
MAXIMUM Y = 14800
CHARACTER HEIGHT = 0.06
LINK ANNOTATION = VOLUME CAPACITY RATIO
$DATA
$END TP FUNCTION

Traffic Assignment LOS Plot

In this example, the network will be colored according to the level of service. A range for the V/C ratio is defined for each LOS and is used for the SELECTION ATTRIBUTE.

$PLOT$ HIGHWAY LOAD
$FILES
INPUT FILE = LODHIST, USER ID = $INCASSN.DAT$
OUTPUT FILE = TPL, USER ID = $PLOTVC.DAT$
$HEADERS
PLOT HIGHWAY LOAD
VOLUME/CAPACITY RATIO FROM INCREMENTAL ASSIGNMENT

$OPTION
NO CENTROID LINKS
ONLY CENTROID NODES

$PARAMETERS
PLOTTER = HP7475
PAPER = NORMA
PLOT SIZE = 8
MINIMUM X = 36600
MAXIMUM X = 41000
MINIMUM Y = 10500
MAXIMUM Y = 14800
CHARACTER HEIGHT = 0.06
LINK ANNOTATION = VOLUME CAPACITY RATIO
SELECTION ATTRIBUTE = VOLUME CAPACITY RATIO

$DATA
COLOR = BLACK, ATTRIBUTE = 0-10
COLOR = GREEN, ATTRIBUTE = 11-30
COLOR = BLUE, ATTRIBUTE = 31-50
COLOR = ORANGE, ATTRIBUTE = 51-70
COLOR = PURPLE, ATTRIBUTE = 71-90
COLOR = RED, ATTRIBUTE = 91-99999

$END TP FUNCTION

Volume Band Width Plot

The BAND WIDTH FACTOR in the setup below will cause TRANPLAN to plot a band width of the attribute in the LINK ANNOTATION statement. The factor 0.00002 is multiplied by the total volume which will result in a band width of 50,000 vehicles per inch. The BAND INCREMENT specifies the spacing between fill lines; 0.06 will cause a partial filling of the bands.

$PLOT HIGHWAY LOAD
$FILES
INPUT FILE = LODHIST, USER ID = $INCASSN.DAT$
OUTPUT FILE = TPLLOT, USER ID = $PLOTBAND.DAT$
$HEADERS
PLOT HIGHWAY LOAD
BAND WIDTHS OF VOLUMES FROM INCREMENTAL ASSIGNMENT

$OPTION
SUPPRESS NODE NUMBERS
NO CENTROID LINKS

$PARAMETERS
PLOTTER = HP7595
PAPER = EXPANDS
PLOT SIZE = 11
MINIMUM X = 12000
MAXIMUM X = 17000
MINIMUM Y = 19000
MAXIMUM Y = 22800
LINK ANNOTATION = TOTAL VOLUME
BAND WIDTH FACTOR = 0.00002
BAND INCREMENT = 0.06

$DATA
$END TP FUNCTION
Plotting Paths

The \$PLOT HIGHWAY PATHS function will plot a "tree" of the shortest paths from the root zone to all other zones. The root zone is specified in the SELECTED ZONES statement. This function is a good way to check the connectivity of your network.

\$PLOT HIGHWAY PATHS
\$FILES
 INPUT FILE = HWYNET, USER ID = HWYNET.DAT$
 OUTPUT FILE = TPlot, USER ID = PATH.PLT$
\$HEADERS
 PLOT HIGHWAY PATHS
 SELECTED ORIGIN ZONE = 1$
\$OPTION
 SUPPRESS NODE NUMBERS$
\$PARAMETERS
 PLOTTER = HP7475
 PAPER = NORMALA
 IMPEDANCE = TIME2
 SELECTED ZONES = 1
 PLOT SIZE = 8
 SELECTION ATTRIBUTE = ASSIGNMENT GROUP$
\$DATA
 COLOR = BLACK, ATTRIBUTE = 0.9$
\$END TP FUNCTION
This chapter describes some of the more important TRANPLAN reporting functions. TRANPLAN reports can be generated to print:

- Network and minimum path information
- Traffic assignment summaries
- Trip table and travel time matrices
The TRANPLAN function REPORT HIGHWAY NETWORK will produce four important reports:

1) A list of unused nodes (helpful in avoiding coding duplicate nodes when adding new network links)

2) A detailed, formatted printout of all network links or selected groupings based on area (WINDOW), ASSIGNMENT GROUP, or LINK GROUP

3) A list of nodes and coordinates

4) A list of turn prohibitor nodes

In the following, sample setup file network links are printed for $ASSIGNMENT GROUPS 1, 6, and 7.

$REPORT HIGHWAY NETWORK
$FILES
 INPUT FILE = HWYNET, USER ID = $HWYNET.DAT$
$HEADERS
 REPORT HIGHWAY NETWORK
$OPTION
 PRINT UNUSED NODES
 PRINT COORDINATES
$PARAMETERS
 IMPEDANCE = TIME2
 ASSIGNMENT GROUP = 1,6-7
$END TP FUNCTION

REPORT HIGHWAY NETWORK

NODE COORDINATES

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8600</td>
<td>6000</td>
<td>2</td>
<td>8600</td>
<td>2900</td>
<td>3</td>
<td>5000</td>
<td>5000</td>
<td>4</td>
<td>1900</td>
<td>6500</td>
<td>5</td>
<td>1700</td>
<td>2500</td>
</tr>
<tr>
<td>6</td>
<td>4300</td>
<td>2800</td>
<td>7</td>
<td>4300</td>
<td>1100</td>
<td>8</td>
<td>7000</td>
<td>1100</td>
<td>9</td>
<td>1400</td>
<td>500</td>
<td>10</td>
<td>9000</td>
<td>500</td>
</tr>
<tr>
<td>11</td>
<td>1500</td>
<td>4000</td>
<td>100</td>
<td>2500</td>
<td>6000</td>
<td>102</td>
<td>2500</td>
<td>5000</td>
<td>104</td>
<td>2500</td>
<td>4000</td>
<td>106</td>
<td>2500</td>
<td>1700</td>
</tr>
<tr>
<td>108</td>
<td>2500</td>
<td>500</td>
<td>110</td>
<td>3100</td>
<td>6000</td>
<td>112</td>
<td>4600</td>
<td>4000</td>
<td>114</td>
<td>4000</td>
<td>8000</td>
<td>116</td>
<td>5300</td>
<td>4000</td>
</tr>
<tr>
<td>118</td>
<td>5000</td>
<td>6000</td>
<td>120</td>
<td>8000</td>
<td>6000</td>
<td>122</td>
<td>6000</td>
<td>5000</td>
<td>124</td>
<td>9000</td>
<td>4000</td>
<td>126</td>
<td>8000</td>
<td>1700</td>
</tr>
</tbody>
</table>
Minimum path trees, can be reported from a network before or after traffic assignment. This report can be useful in determining the paths chosen when loading each iteration (or increment of the trip table) of the traffic assignment in $LOAD HIGHWAY NETWORK$. Specify the parameter "SELECTED ITERATIONS =" to report a path from an incremental traffic assignment.

Two reports are produced by the REPORT HIGHWAY PATHS function. A "non-destructive" trace will produce a string of nodes backwards from the destination zone to the home node or zone (specified in the SELECTED ZONES statement). Also, the travel time is reported from the home node to each node in the node string. A "destructive" trace
will trace all nodes backward to the home node without duplicating a path already traced.

The following setup will produce both destructive and non-destructive trace reports for Zones 1 through 4, and Zone 8.

```
$REPORT HIGHWAY PATHS
$FILES
  INPUT FILE = HWYNET, USER ID = $HWYNET.DAT$
$HEADERS
  REPORT HIGHWAY PATHS (TREES)
$OPTIONS
  PRINT NONDESTRUCTIVE TRACES
  PRINT DESTRUCTIVE TRACES
$PARAMETERS
  IMPEDANCE = TIME 2
  SELECTED ZONES = 1-4,8
$END TP FUNCTION
```

```
REPORT HIGHWAY PATHS (TREES)

NON-DESTRUCTIVE VINE TRACE - VINE NO. 1

<table>
<thead>
<tr>
<th>TO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>THRU</td>
<td>HOME NODE</td>
<td>13.00</td>
<td>12.00</td>
<td>17.80</td>
</tr>
<tr>
<td>TIME 2</td>
<td>144</td>
<td>118</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>THRU</td>
<td>9.00</td>
<td>8.00</td>
<td>13.00</td>
<td></td>
</tr>
<tr>
<td>TIME 2</td>
<td>132</td>
<td>120</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>THRU</td>
<td>8.00</td>
<td>6.00</td>
<td>11.80</td>
<td></td>
</tr>
<tr>
<td>TIME 2</td>
<td>130</td>
<td>130</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>THRU</td>
<td>2.00</td>
<td>2.00</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>TIME 2</td>
<td>1</td>
<td>1</td>
<td>118</td>
<td></td>
</tr>
</tbody>
</table>

REPORT HIGHWAY PATHS (TREES)

DESTRUCTIVE VINE TRACE - VINE NO. 1

<table>
<thead>
<tr>
<th>TO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>THRU</td>
<td>HOME NODE</td>
<td>13.00</td>
<td>12.00</td>
<td>17.80</td>
</tr>
<tr>
<td>TIME 2</td>
<td>144</td>
<td>118</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>THRU</td>
<td>9.00</td>
<td>8.00</td>
<td>13.00</td>
<td></td>
</tr>
<tr>
<td>TIME 2</td>
<td>132</td>
<td>120</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>THRU</td>
<td>8.00</td>
<td>6.00</td>
<td>11.80</td>
<td></td>
</tr>
<tr>
<td>TIME 2</td>
<td>130</td>
<td>130</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>THRU</td>
<td>2.00</td>
<td>2.00</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>TIME 2</td>
<td>-1-</td>
<td>-1-</td>
<td>118</td>
<td></td>
</tr>
</tbody>
</table>
```

Printing Traffic Assignment Data

Several TRANPLAN functions will produce reports of selected iterations from a traffic assignment. The functions include:

- $REPORT HIGHWAY NETWORK
- $REPORT HIGHWAY LOAD
$REPORT HIGHWAY NETWORK SUMMARY

$REPORT HIGHWAY INCREMENTAL SUMMARY

All of the functions produce reports which are best suited to a particular piece of information which may be desired.

Printing Traffic Volumes

$REPORT HIGHWAY LOAD will produce a report of volumes in A-B, B-A, and both directions. Also, a matrix report for each turning movement node is reported. Below is a sample function file:

$REPORT HIGHWAY LOAD
$FILES
 INPUT FILE = L0DHIST, USER ID = "$INCASSN.DAT$
$HEADERS
 REPORT HIGHWAY LOAD
$OPTIONS
 MINIMUM REPORT
 PRINT TURNS
$END TP FUNCTION

REPORT HIGHWAY LOAD
LINK VOLUME REPORT OF ALL-OR-NOTHING
ASSIGNED VOLUMES - 100 PERCENT LOADING - PURPOSE 1

<table>
<thead>
<tr>
<th>ANODE</th>
<th>BNODE</th>
<th>A-B</th>
<th>B-A TWOWAY</th>
<th>ANODE</th>
<th>BNODE</th>
<th>A-B</th>
<th>B-A TWOWAY</th>
<th>ANODE</th>
<th>BNODE</th>
<th>A-B</th>
<th>B-A TWOWAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>130</td>
<td>27572</td>
<td>27574</td>
<td>55146</td>
<td>134</td>
<td>25750</td>
<td>24217</td>
<td>49967</td>
<td>3</td>
<td>102</td>
<td>2354</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>23074</td>
<td>23074</td>
<td>46148</td>
<td>106</td>
<td>33582</td>
<td>33581</td>
<td>67183</td>
<td>6</td>
<td>230</td>
<td>8450</td>
</tr>
<tr>
<td></td>
<td>4918</td>
</tr>
<tr>
<td>7</td>
<td>231</td>
<td>27429</td>
<td>31298</td>
<td>56725</td>
<td>235</td>
<td>39828</td>
<td>48068</td>
<td>84696</td>
<td>9</td>
<td>108</td>
<td>14005</td>
</tr>
<tr>
<td></td>
<td>13427</td>
</tr>
<tr>
<td>10</td>
<td>142</td>
<td>18874</td>
<td>18874</td>
<td>37748</td>
<td>104</td>
<td>21822</td>
<td>21821</td>
<td>43643</td>
<td>100</td>
<td>4</td>
<td>23074</td>
</tr>
<tr>
<td></td>
<td>23074</td>
</tr>
</tbody>
</table>

REPORT HIGHWAY LOAD
LINK VOLUME REPORT OF ALL-OR-NOTHING
ASSIGNED TURN VOLUMES - 100 PERCENT LOADING - PURPOSE 1

<table>
<thead>
<tr>
<th>AT</th>
<th>FROM -------- TO ---------</th>
<th>SUM IN</th>
<th>TWOWAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>-112-</td>
<td>104</td>
<td>5181</td>
<td>3053</td>
</tr>
<tr>
<td></td>
<td>116</td>
<td>1764</td>
<td>8234</td>
</tr>
<tr>
<td></td>
<td>204</td>
<td>1126</td>
<td>9998</td>
</tr>
<tr>
<td></td>
<td>1764</td>
<td>6307</td>
<td>3053</td>
</tr>
</tbody>
</table>
The $REPORT HIGHWAY NETWORK SUMMARY function will produce several reports on groups of links. This function is useful in analyzing the gross effects of major system alternatives, such as changes in vehicle miles traveled and volume of travel crossing screenlines. A report by screenline of traffic counts and estimated volumes can be produced by specifying the option "CAPACITY 2" and placing ground counts in the Capacity 2 field of the network.

The following example illustrates the $REPORT HIGHWAY NETWORK SUMMARY function:

$REPORT HIGHWAY NETWORK SUMMARY
$FILES
 INPUT FILE = LODHIST, USER ID = $INCASSN.DAT$
$HEADERS
$OPTIONS
$PARAMETERS
 SCREENLINE = 1, LINK = 120-130,130-120,124-132,132-124,126-235,
 235-126,128-236,236-128,218-220,206-208
 SCREENLINE = 2, LINK = 104-102,102-104,202-204,222-224,122-124,
 124-122,130-132,132-130
$DATA
 ID, V/C RATIO RESULTS BY FUNCTIONAL CLASSIFICATION
 TABLE = 1, UNITS = VEHICLE-DISTANCE,
 LINK CODE = ASSIGNMENT GROUP, RANGES = 1,2,3,4,
 TABLE = 2 UNITS = VOLUME/CAPACITY
 LINK CODE = ASSIGNMENT GROUP, RANGES = 1,2,3,4
$END TP FUNCTION

REPORT HIGHWAY NETWORK SUMMARY
FOR LOADING OF ALL-OF-NOTHING
TABLE NO. 1 - V/C RATIO RESULTS BY FUNCTIONAL CLASSIFICATION
TABLE UNITS - VEHICLE - MILES

<table>
<thead>
<tr>
<th>ASSIGNMENT GROUP</th>
<th>VV</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>52662.0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>155632.0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>718787.0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>452769.7</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>1380851.0</td>
<td></td>
</tr>
</tbody>
</table>

TABLE NO. 2 -
TABLE UNITS - VOLUME/CAPACITY

<table>
<thead>
<tr>
<th>ASSIGNMENT GROUP</th>
<th>VV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.14</td>
</tr>
<tr>
<td>2</td>
<td>.45</td>
</tr>
<tr>
<td>3</td>
<td>.86</td>
</tr>
<tr>
<td>4</td>
<td>.00</td>
</tr>
<tr>
<td>TOTAL</td>
<td>.90</td>
</tr>
</tbody>
</table>
Printing Assignment Iterations

$\text{REPORT HIGHWAY INCREMENTAL SUMMARY}$ will produce a detailed report of each iteration of an incremental traffic assignment. Also a report of traffic counts to estimated volumes can be printed if traffic counts are retained in the Capacity 2 field of the network. This report is classified by "Count Volume Group." This is a range of traffic counts by which the average percent deviation from the estimated volume is reported. Refer to NCHRP Report 255 for more detailed information on comparing ground counts to estimated volumes.

$\text{REPORT HIGHWAY INCREMENTAL SUMMARY}$

FILES

$\text{INPUT FILE} =$ \text{LODHIST, USER ID} =$ \text{INCASSN.DAT}$

HEADERS

$\text{REPORT HIGHWAY INCREMENTAL SUMMARY}$

OPTIONS

PRINT LINK SUMMARY
PRINT GROUND COUNT COMPARISON

END TP FUNCTION

TABLE: SCREEN LINE VOLUME REPORT

<table>
<thead>
<tr>
<th>A-NODE</th>
<th>B-NODE</th>
<th>VOLUME</th>
<th>CAPACITY</th>
<th>V/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>130</td>
<td>16812</td>
<td>20000</td>
<td>0.95</td>
</tr>
<tr>
<td>130</td>
<td>120</td>
<td>14231</td>
<td>20000</td>
<td>0.71</td>
</tr>
<tr>
<td>124</td>
<td>132</td>
<td>4371</td>
<td>20000</td>
<td>0.22</td>
</tr>
<tr>
<td>132</td>
<td>124</td>
<td>4586</td>
<td>20000</td>
<td>0.22</td>
</tr>
<tr>
<td>126</td>
<td>235</td>
<td>-29762</td>
<td>30000</td>
<td>-0.99</td>
</tr>
<tr>
<td>235</td>
<td>126</td>
<td>-19107</td>
<td>30000</td>
<td>-0.64</td>
</tr>
<tr>
<td>128</td>
<td>236</td>
<td>13606</td>
<td>20000</td>
<td>0.69</td>
</tr>
<tr>
<td>236</td>
<td>128</td>
<td>10615</td>
<td>20000</td>
<td>0.53</td>
</tr>
<tr>
<td>218</td>
<td>200</td>
<td>4053</td>
<td>40000</td>
<td>0.1</td>
</tr>
<tr>
<td>206</td>
<td>208</td>
<td>6875</td>
<td>40000</td>
<td>0.17</td>
</tr>
</tbody>
</table>

SCREEN LINE TOTAL

<table>
<thead>
<tr>
<th>VOLUME</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>26360</td>
<td>290000</td>
</tr>
</tbody>
</table>
There are two basic types of matrices that are used with TRANPLAN:

- **Trip matrices**
- **Travel impedance matrices**

A trip matrix is one or many tables representing trips from all origins to all destinations (zones) contained in a unique file. For instance, a trip matrix can contain a table for all trip purposes combined and tables for each of the trip purposes separately.

Another type of matrix is the travel impedance matrix. This contains the minimum path travel impedances (time or distance) from all origin zones to all destination zones. Travel impedance matrices can have several tables also. In a TRANPLAN impedance matrix, the tables on an impedance matrix are reserved according to the following:

<table>
<thead>
<tr>
<th>TABLE</th>
<th>IMPEDANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cost</td>
</tr>
<tr>
<td>2</td>
<td>Distance</td>
</tr>
<tr>
<td>3</td>
<td>Time 1</td>
</tr>
<tr>
<td>4</td>
<td>Time 2</td>
</tr>
</tbody>
</table>

There are two basic functions which will print matrix information:

- REPORT MATRIX
- $\text{MATRIX COMPRESSION}$
Printing a Large Matrix File

$REPORT MATRIX is useful for reporting selected origin zones and trips or travel times to all other zones on a large matrix. It is not efficient to print an entire matrix using $REPORT MATRIX. A 200 by 200 matrix will produce 40,000 cell entries and many pages of output. However, $REPORT MATRIX can selectively print just a few rows from the matrix.

The following example show the typical function file for printing an impedance matrix. The "SELECTED IMPEDANCES =" statement refers to the table number on the matrix.

```
$REPORT MATRIX
$FILES
   INPUT FILE = RTABIN, USER ID = $HWYSKIM.DAT$
$HEADERS
   REPORT SEPARATION MATRICES
$OPTIONS
   PRINT TABLE
$PARAMETERS
   SELECTED IMPEDANCES = TIME 2
   SELECTED ZONES = 2, 4, 8
$END TP FUNCTION
```

```
REPORT SEPARATION MATRICES

<table>
<thead>
<tr>
<th>ORIGIN ZONE</th>
<th>2 SKM VALUE</th>
<th>TIME 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO ZONE</td>
<td>-1-</td>
<td>-2-</td>
</tr>
<tr>
<td>1</td>
<td>13.20</td>
<td>0.00</td>
</tr>
<tr>
<td>11</td>
<td>20.36</td>
<td></td>
</tr>
</tbody>
</table>
```

The example below is a useful tool used to print trips and trip ends. The trip ends are actually the column and row totals from the selected zones in the matrix.

```
$REPORT MATRIX
$FILES
   INPUT FILE = RTABIN, USER ID = $GMTVOLDAT$
$HEADERS
   REPORT FOR TRIP ENDS AND TABLE
$OPTIONS
   PRINT TRIP ENDS
   PRINT TABLE
$PARAMETERS
   SELECTED IMPEDANCES = TIME 2
   SELECTED PURPOSES = 1
   SELECTED ZONES = 1-2
$END TP FUNCTION
```
Producing a Summary Trip Table

MATRIX COMPRESS will print and/or produce an output trip table that contains an aggregate of zones into districts. The DATA section of the function file contains specifications for the aggregation of zones to districts. The zone-to-district equivalencies will need to be sketched out on a plot. MATRIX COMPRESS is useful for printing (or creating a file) the entire trip matrix to check trip totals and travel patterns. Since the DATA section aggregates zonal values, this function is not recommended for use with travel impedance matrices. Aggregated zone-to-zone impedances are not useful.

$\text{MATRIX COMPRESS}
\text{FILES}
\text{INPUT FILE = COMPIN, USER ID = ODTABLE.DAT}
\text{HEADERS REPORT COMPRESSED TABLE}
\text{OPTIONS PRINT COMPRESSED MATRIX}
\text{PARAMETERS NUMBER OF DISTRICTS = 4}
\text{DATA DISTRICT = 1, ZONES = 1-100}
\text{DISTRICT = 2, ZONES = 101-200}
\text{DISTRICT = 3, ZONES = 201-300}
\text{DISTRICT = 4, ZONES = 301-325}
\text{END TP FUNCTION}
REPORT COMPRESSED TRIP TABLE

COMPRESSED DISTRIBUTION FOR ALL 1 PURPOSE(S)

<table>
<thead>
<tr>
<th>DISTRICT</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>92292</td>
<td>51459</td>
<td>30791</td>
<td>13518</td>
<td>184060</td>
</tr>
<tr>
<td>2</td>
<td>5143</td>
<td>97210</td>
<td>35212</td>
<td>15418</td>
<td>193323</td>
</tr>
<tr>
<td>3</td>
<td>30813</td>
<td>35210</td>
<td>23975</td>
<td>3073</td>
<td>93071</td>
</tr>
<tr>
<td>4</td>
<td>13913</td>
<td>15896</td>
<td>3153</td>
<td>6794</td>
<td>39758</td>
</tr>
<tr>
<td>TOTAL</td>
<td>185501</td>
<td>189775</td>
<td>93131</td>
<td>36803</td>
<td>490210</td>
</tr>
</tbody>
</table>
CHAPTER TEN
TRANPLAN UTILITIES

TRANPLAN is operated most often using the function files. However, sometimes it is necessary to manipulate TRANPLAN input and output to suit a specific need. TRANPLAN utilities can help.
TRANPLAN UTILITIES

Location of Utility Files

The TRANPLAN package provides several utilities to perform operations on TRANPLAN files outside of the function file framework. Many of the utilities can be used to convert TRANPLAN information to a format that can be used in other programs such as spreadsheets, database management systems, and geographic information systems.

These utilities are located under the "C:\TP\MISC" subdirectory. This subdirectory must be specified in the AUTOEXEC.BAT file in order to have the ability to execute them from any working subdirectory. All of the utilities are executed by entering the name of the utility at the DOS prompt.

Converting Networks

Network conversion utilities provided with TRANPLAN include NETCARD, LODPAK, and LODUNP. NETCARD converts a TRANPLAN binary format network or a TRANPLAN loaded network into ASCII format. LODUNP converts a loaded TRANPLAN network into ASCII format.

NETCARD will prompt for an input filename and an output filename. It will also ask if you wish to report speeds or travel times. The output is a formatted ASCII file capable of being used as the input data in the $BUILD HIGHWAY NETWORK function. Therefore, NETCARD can be used to convert a TRANPLAN binary network to ASCII and to edit the ASCII file directly with a text editor.

NETCARD Formats

NETCARD stores all nodes and links on the same ASCII file. The links normally follow the nodes. There are two types of node formats:

- Large Coordinate format places one node, X-coordinate, and Y-coordinate on each line.
- Default format places several nodes and their coordinates on each line. However, the coordinate values cannot be more than 9,999.
The tables in the Appendix define the NETCARD node and link formats.

Defining Speed and Time in NETCARD

Note that the Speed/Time Flag will be an "S" for speeds and a "T" for times. If the B-A direction Speed/Time Flag is neither an "S" or a "T" but is a "2", then the B-A direction variable fields are left blank. In this case, the B-A direction variables are identical to the A-B direction variables. If the Speed/Time Flag is a "1", then the link has only an A-B direction.

Loaded Networks and NETCARD

When converting a network prior to being loaded, columns 39-44 and columns 68-73 will contain information coded as Capacity 2. Ground counts are normally placed in this field. Conversion of a loaded network after traffic assignment will cause NETCARD to ask whether you want the Capacity 2 field as initially coded or as loaded volumes to be placed in columns 39-44 and 68-73.

NETCARD also asks if you want a specific iteration travel time to be placed in the Time 2 field. During an incremental capacity restraint assignment, the travel times are updated according to the V/C ratio on the link at each iteration.

Converting TRANPLAN Matrix Files

The TRANPLAN utilities CARDTP will convert a matrix from "card" or ASCII format to TRANPLAN binary format. TPCARD will convert from TRANPLAN binary to ASCII format. There are a few variations of the original programs, notably TPCARD1. TPCARD1 will output an ASCII format file with the origin zone, destination zone, and number of trips on each line.

Peeking at TRANPLAN Files

A utility program used to "peek" at a description of a TRANPLAN file is called HEADER. This utility will list any information on a TRANPLAN binary format file which was coded under the "$HEADERS" section of the function by which it was created. Also, HEADER will give miscellaneous information about the contents of the file, depending on the file type.
An executable program, TURNS.EXE, will produce a file containing a formatted list of turning movement data from a TRANPLAN loaded network. The program will prompt you on the desired sort field and produce a list of turning movements with the "from" node, "through" node, "to" node, and turn volumes on each line.
This chapter provides descriptive examples of alternatives analysis using the TRANPLAN model. Specific cases are outlined for:

- Transportation system alternatives
- Land use alternatives
Travel Model Paradigm

The typical procedure for developing and maintaining a travel model is the same regardless of software or hardware used. The following steps are used in travel demand forecasting:

1) Model calibration
2) Model validation
3) Baseline forecasting or first alternative
4) Alternatives analysis

First, the model is developed from travel survey information; and the main parameters, such as gravity model friction factors, are calibrated.

Second, a test run of the model is performed to simulate existing conditions (or a recent year). The ADT estimates produced by the model are compared to traffic counts, and the model is adjusted to correlate with the observed data.

Third, a baseline forecast is done using a horizon year (20-year) network representing projects that are funded or committed. The baseline forecast is then used to compare separate alternative changes to the network or activity level.

Two Types of Alternatives

Changes from the baseline forecast can be made in one of two ways:

1) A change in the network
2) A change in the activity level (or travel demand level)

A change in the network represents an addition (or subtraction) of supply to the system, either in additional facilities or by adding capacity to existing links. A change in the demand can be a result of a change in land use, such as
the addition of a shopping center or residential area. Also, an increase or decrease in activity level can result from a change in travel demand (for highways) introduced by reduced travel or transit mode choice.

The steps followed when testing an alternative are:

1) Determine the scenario
2) Code the network or land use change
3) Run the appropriate TRANPLAN functions
4) Analyze and document the alternative assumptions and results

Testing a Capacity Change

One basic question asked concerning a travel demand model is, "What will happen if the performance of the transportation system is improved?" An increase in the number of lanes could result in decreased congestion but may unexpectedly attract additional traffic.

The first step is to determine the scenario. What is the question that you are trying to answer regarding the capacity change? Is the change going to take place in the near future or is it a long-term (20-year) idea? Which network should be used? Which demographics (trips) should be used?

Once the scenario is assumed, the network should be coded to reflect the capacity change. The network speeds and capacities should be clearly defined and consistently applied within your study area. Link speeds and capacities are based on tables by functional class, area type, and number of lanes. Since areas may differ, you should obtain the look-up table specific to your area directly from TxDOT D-10.

In the following example, a mid-range forecast year was chosen to test the capacity change by the addition of lanes on an arterial. A previous model run has created the trip table. Thus, the steps needed to test the network change are:

1) Code and check the network change
2) Run only the traffic assignment with the new network
3) Plot and compare the results of the capacity change to the base network

In this case, the network was coded using HNIS. A template was used (SET TEMP) with all of the correct speeds and capacities. The template was then copied (COPY TEMP) to each of the links to be changed. A visual inspection of the capacity changes was performed by posting the capacities on each link in HNIS. Then the following function was run using the existing trip table:

```
$LOAD HIGHWAY NETWORK
$FILES
  INPUT FILE = HWYNET, USER ID = $C:\NEWNET.95$
  INPUT FILE = HWYTRIP, USER ID = $BASE95.00$
  OUTPUT FILE = LODHIST, USER ID = $NEW95.VOL$
$HEADER
  LOAD HIGHWAY NETWORK
  1995 325-ZONE NETWORK
  CAPACITY CHANGE ON 25TH STREET FROM A ST. TO M ST.
$OPTIONS
  BASE NETWORK
  ADJUST 100
$PARAMETERS
  IMPEDANCE = TIME2
  LOAD PERCENTAGES = 15,15,20,20,30
$DATA
  ASSIGNMENT GROUP = 0-9, XYDATA = (0.0,1.087) (0.5,1.076) (1.0,0.935)
    (1.5,0.595) (2.0,0.301) (2.4,0.167)
    (4.0,0.167)
$END TP FUNCTION
```

A plot was made of the two assignments: the base network and the new network with the capacity change. After inspection of the plot, HNIS was used to compare the two traffic assignments using the "COMP NETS" feature. Finally, all assumptions were documented.

Testing a Land Use Change

Testing the impacts of a land use change is more involved than network modification. Many new elements are added to the system when new development occurs. The basic four steps are followed (determine the scenario, code the change, run the model, analyze the results) but with many new questions:

- How much traffic will the development create?
- At what points will there be access to the development?
• From what direction will most of the traffic be coming from? What effect will street improvements have on this?

Many of these questions will need to be answered with assumptions prior to running the model. The model can then be used to:

• Tell which direction the demand will be coming from, and
• Tell what impact the additional traffic will have on the existing (or proposed) street system.

Generating Trips

Coding the number of vehicle trips can be performed by submitting the projected number of employees or households and other variables such as income to D-10 for generation of vehicle trips. This procedure is recommended if large scale land use changes are being tested.

However, small scale traffic impact analysis can be performed by obtaining the trip rates for your area from D-10 and manually calculating vehicle trips to and from the site. Since trip rates vary by urban area, it is important to obtain the specific look-up table for your area.

Vehicle trip attractions and productions are produced by multiplying the employees or households by the appropriate trip rate in the table obtained from TxDOT D-10 in Austin. These are coded, using a text editor, directly in the appropriate column of the ASCII production-attraction file.

Balancing Productions and Attractions

After the productions and attractions are calculated, the balance between total productions and attractions in the urban area needs to be checked. The ratio of total productions to total attractions needs to be in the range of 0.90 to 1.10. Additional productions or attractions may need to be added to the data set, or a simple re-allocation from other zones should take place to ensure an adequate balance.

Special generators are activities which create an amount of trips that is not in line with the standard trip generation rates. Examples of special generators include airports, theme

TRANPLAN Application Guide Page 65 of 77
parks, hospitals, universities, and regional shopping malls. Trip productions and attractions for these facilities can be estimated from ground counts.

After the production-attraction file is updated, the following TRANPLAN function files can be executed.

```
$BUILD HIGHWAY NETWORK
$FILE
   INPUT FILE = NETDATA, USER ID = $J87LNXXY.ANT$
   OUTPUT FILE = HWYNET, USER ID = $J87HWY.NET$
$HEADERS
   BUILD HIGHWAY NETWORK
   681 ZONES
$OPTIONS
   LARGE COORDINATES
   NETDATA
$PARAMETERS
   NUMBER OF ZONES = 681
   MAXIMUM NODE = 9999
   ERROR LIMIT = 50
$END TP FUNCTION
$HIGHWAY SELECTED SUMMATION
$FILE
   INPUT FILE = HWYNET, USER ID = $J87HWY.NET$
   OUTPUT FILE = HWYSKIM, USER ID = $J87SKIM.SEL$
$HEADERS
   SKIM THE MINIMUM IMPEDANCE PATHS
$PARAMETERS
   IMPEDANCE = TIME 2
$DATA
   TABLE = TIME 2
$END TP FUNCTION
$MATRIX UPDATE
$FILE
   INPUT FILE = UPDIN, USER ID = $J87SKIM.SEL$
   INPUT FILE = MUPDATA, USER ID = $J87.RAD$
   OUTPUT FILE = UPDOUT, USER ID = $J871NTRA.SKM$
$HEADERS
   ADD RADII VALUES TO REFLECT INTRAZONAL IMPEDANCES
$OPTIONS
   MUPDATA
$END TP FUNCTION
$GRAVITY MODEL
$FILE
   INPUT FILE = GM_SKIM, USER ID = $J87INTRA.SKM$
   INPUT FILE = GRVDATA, USER ID = $J87.PNA$
   OUTPUT FILE = GMTVOL, USER ID = $J87GMT.PAT$
$HEADERS
   GRAVITY MODEL
   TO PRODUCE A P-A TRIP TABLE
$OPTIONS
   TOTAL PURPOSE FILE
   GRVDATA
   PRINT TRIP LENGTH STATISTICS
$PARAMETERS
   MAXIMUM PURPOSE = 4
   SELECTED PURPOSES = 1-4
   MAXIMUM TIME = 50
   IMPEDANCE = TIME 2
   ITERATIONS ON ATTRACTIONS = 5
   ATTRACTION CLOSURE = 5
```
The first step of the model, $HIGHWAY SELECTED SUMMATION, creates a minimum impedance, zone-to-zone, travel time matrix based on the minimum paths "skimmed" from the Time 2 field on the network. The $GRAVITY MODEL reads the minimum travel time matrix and the production-attraction file (with friction factors included) and creates a production-attraction format trip table.
The **$GRAVITY MODEL** does not allocate daily trips in a round-trip fashion. Instead, it "sends" productions to the best attraction points according to the gravity model equation. Therefore, it does not satisfy the round trip. The resulting production-attraction format trip table must be converted to an origin-destination format. The **$MATRIX TRANSPOSE** function of **TRANPLAN** version 7.1 will perform this task.

The final step is to load the trip table on the network with the **$LOAD HIGHWAY NETWORK** function. Note that this is the same function used in the Short Method. Finally, all data should be carefully summarized and documented for future reference.
TRANPLAN Node Data: Large Coordinates

<table>
<thead>
<tr>
<th>NODE DATA</th>
<th>Variable</th>
<th>Units</th>
<th>Range</th>
<th>Columns</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Card Type</td>
<td>N</td>
<td>1-9,999</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Node Number</td>
<td>Number</td>
<td>1-9,999,999</td>
<td>2-6</td>
</tr>
<tr>
<td></td>
<td>X-Coordinate</td>
<td>Feet</td>
<td>1-9,999,999</td>
<td>7-17</td>
</tr>
<tr>
<td></td>
<td>Y-Coordinate</td>
<td>Feet</td>
<td>1-9,999,999</td>
<td>18-28</td>
</tr>
<tr>
<td></td>
<td>User Identification</td>
<td>Any</td>
<td>Any</td>
<td>29-80</td>
</tr>
</tbody>
</table>

TRANPLAN Node Data: Default Coordinates

<table>
<thead>
<tr>
<th>NODE DATA</th>
<th>Variable</th>
<th>Units</th>
<th>Range</th>
<th>Columns</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Card Type</td>
<td>N</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Node Number</td>
<td>Number</td>
<td>1-16,000</td>
<td>2-6</td>
</tr>
<tr>
<td></td>
<td>X-Coordinate</td>
<td>Feet</td>
<td>1-9,999</td>
<td>9-13</td>
</tr>
<tr>
<td></td>
<td>Y-Coordinate</td>
<td>Feet</td>
<td>1-9,999</td>
<td>14-18</td>
</tr>
<tr>
<td></td>
<td>Alternate Node, X, and Y</td>
<td></td>
<td></td>
<td>20-72</td>
</tr>
<tr>
<td></td>
<td>User Identification</td>
<td>Any</td>
<td>Any</td>
<td>74-80</td>
</tr>
</tbody>
</table>
TRANPLAN Link Data

<table>
<thead>
<tr>
<th>LINK DATA</th>
<th>Variable</th>
<th>Units</th>
<th>Range</th>
<th>Columns</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A-Node</td>
<td>Number</td>
<td>1-9,999</td>
<td>1-5</td>
</tr>
<tr>
<td></td>
<td>B-Node</td>
<td>Number</td>
<td>1-9,999</td>
<td>6-10</td>
</tr>
<tr>
<td></td>
<td>Assignment Group</td>
<td>Number</td>
<td>0-9</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Distance</td>
<td>Miles*100</td>
<td>1-4,095</td>
<td>12-15</td>
</tr>
<tr>
<td></td>
<td>Speed/Time Flag</td>
<td>Letter</td>
<td>S or T</td>
<td>16</td>
</tr>
<tr>
<td>A-B Direction Data</td>
<td>Time 1 or Speed 1</td>
<td>MPH or MIN * 100</td>
<td>0-4,095</td>
<td>17-20</td>
</tr>
<tr>
<td></td>
<td>Time 2 or Speed 2</td>
<td>MPH or MIN * 100</td>
<td>0-4,095</td>
<td>21-24</td>
</tr>
<tr>
<td></td>
<td>Direction Code</td>
<td>Number</td>
<td>1-16</td>
<td>25-26</td>
</tr>
<tr>
<td></td>
<td>Link Group 1</td>
<td>Number</td>
<td>0-99</td>
<td>27-28</td>
</tr>
<tr>
<td></td>
<td>Link Group 2</td>
<td>Number</td>
<td>0-99</td>
<td>29-30</td>
</tr>
<tr>
<td></td>
<td>Link Group 3</td>
<td>Number</td>
<td>0-99</td>
<td>31-32</td>
</tr>
<tr>
<td></td>
<td>Capacity 1</td>
<td>Vehicles/Day</td>
<td>0-999,999</td>
<td>33-38</td>
</tr>
<tr>
<td></td>
<td>Capacity 2 or Volume</td>
<td>Vehicles/Day</td>
<td>0-999,999</td>
<td>39-44</td>
</tr>
<tr>
<td>B-A Direction Data</td>
<td>Speed/Time Flag</td>
<td>Letter or Number</td>
<td>S, T, 2, or 1</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Time 1 or Speed 1</td>
<td>MPH or MIN * 100</td>
<td>0-4,095</td>
<td>46-49</td>
</tr>
<tr>
<td></td>
<td>Time 2 or Speed 2</td>
<td>MPH or MIN * 100</td>
<td>0-4,095</td>
<td>50-53</td>
</tr>
<tr>
<td></td>
<td>Direction Code</td>
<td>Number</td>
<td>1-16</td>
<td>54-55</td>
</tr>
<tr>
<td></td>
<td>Link Group 1</td>
<td>Number</td>
<td>0-99</td>
<td>56-57</td>
</tr>
<tr>
<td></td>
<td>Link Group 2</td>
<td>Number</td>
<td>0-99</td>
<td>58-59</td>
</tr>
<tr>
<td></td>
<td>Link Group 3</td>
<td>Number</td>
<td>0-99</td>
<td>60-61</td>
</tr>
<tr>
<td></td>
<td>Capacity 1</td>
<td>Vehicles/Day</td>
<td>0-999,999</td>
<td>62-67</td>
</tr>
<tr>
<td></td>
<td>Capacity 2 or Volume</td>
<td>Vehicles/Day</td>
<td>0-999,999</td>
<td>68-73</td>
</tr>
</tbody>
</table>
TRANPLAN

Production-Attraction Data

<table>
<thead>
<tr>
<th>Variable</th>
<th>Units</th>
<th>Columns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identifier</td>
<td>GP or GA</td>
<td>1-2</td>
</tr>
<tr>
<td>Zone Centroid</td>
<td>Number</td>
<td>4-7</td>
</tr>
<tr>
<td>NHB Productions</td>
<td>Trip Ends/Day</td>
<td>11-17</td>
</tr>
<tr>
<td>NHB Attractions</td>
<td>Trip Ends/Day</td>
<td>11-17</td>
</tr>
<tr>
<td>HBW Productions</td>
<td>Trip Ends/Day</td>
<td>18-24</td>
</tr>
<tr>
<td>HBW Attractions</td>
<td>Trip Ends/Day</td>
<td>18-24</td>
</tr>
<tr>
<td>HBNW Productions</td>
<td>Trip Ends/Day</td>
<td>25-31</td>
</tr>
<tr>
<td>HBNW Attractions</td>
<td>Trip Ends/Day</td>
<td>25-31</td>
</tr>
<tr>
<td>LOEX Productions¹</td>
<td>Trip Ends/Day</td>
<td>32-38</td>
</tr>
<tr>
<td>EXLO Attractions²</td>
<td>Trip Ends/Day</td>
<td>32-38</td>
</tr>
<tr>
<td>TRTX Productions³</td>
<td>Trip Ends/Day</td>
<td>39-45</td>
</tr>
<tr>
<td>TRTX Attractions³</td>
<td>Trip Ends/Day</td>
<td>39-45</td>
</tr>
</tbody>
</table>

¹LOEX = Local-external
²EXLO = External-local
³TRTX = Truck-taxi

TRANPLAN Friction Factors

<table>
<thead>
<tr>
<th>Variable</th>
<th>Units</th>
<th>Columns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impedance</td>
<td>Minutes</td>
<td>4-7</td>
</tr>
<tr>
<td>NHB F-Factor</td>
<td>Number</td>
<td>11-17</td>
</tr>
<tr>
<td>HBW F-Factor</td>
<td>Number</td>
<td>18-24</td>
</tr>
<tr>
<td>HBNW F-Factor</td>
<td>Number</td>
<td>25-31</td>
</tr>
<tr>
<td>TRTX F-Factor</td>
<td>Number</td>
<td>32-38</td>
</tr>
</tbody>
</table>
Texas Package Links

<table>
<thead>
<tr>
<th>Variable</th>
<th>Units</th>
<th>Columns</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-Node</td>
<td>Number</td>
<td>7-11</td>
</tr>
<tr>
<td>B-Node</td>
<td>Number</td>
<td>13-17</td>
</tr>
<tr>
<td>Direction Sign or Code</td>
<td>Number or Code</td>
<td>19-20</td>
</tr>
<tr>
<td>One-Way Flag</td>
<td>Number</td>
<td>22</td>
</tr>
<tr>
<td>Length</td>
<td>Miles*100</td>
<td>24-26</td>
</tr>
<tr>
<td>Speed</td>
<td>MPH</td>
<td>28-29</td>
</tr>
<tr>
<td>Traffic Count</td>
<td>Vehicles/Day</td>
<td>31-36</td>
</tr>
<tr>
<td>Capacity</td>
<td>Vehicles/Day</td>
<td>38-43</td>
</tr>
<tr>
<td>Functional Classification</td>
<td>Code</td>
<td>45</td>
</tr>
<tr>
<td>Administrative Jurisdiction</td>
<td>Code</td>
<td>47</td>
</tr>
<tr>
<td>Location of A-Node (Literal)</td>
<td>Description</td>
<td>71-80</td>
</tr>
</tbody>
</table>

Texas Package Nodes

<table>
<thead>
<tr>
<th>Variable</th>
<th>Units</th>
<th>Columns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>"CENTROID" or "NODE"</td>
<td>1-8</td>
</tr>
<tr>
<td>Zone or Node</td>
<td>Number</td>
<td>16-20</td>
</tr>
<tr>
<td>X-Coordinate</td>
<td>Number (F13.4)</td>
<td>24-37</td>
</tr>
<tr>
<td>Y-Coordinate</td>
<td>Number (F13.4)</td>
<td>41-54</td>
</tr>
</tbody>
</table>
Texas Package
Production-Attraction Data

<table>
<thead>
<tr>
<th>Variable</th>
<th>Units</th>
<th>Columns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literal Description</td>
<td>"GENERATION" or</td>
<td>1-10</td>
</tr>
<tr>
<td></td>
<td>"FORECAST"</td>
<td></td>
</tr>
<tr>
<td>Zone Centroid</td>
<td>Number</td>
<td>11-15</td>
</tr>
<tr>
<td>NHB Productions</td>
<td>Trip Ends/Day</td>
<td>16-20</td>
</tr>
<tr>
<td>NHB Attractions</td>
<td>Trip Ends/Day</td>
<td>21-25</td>
</tr>
<tr>
<td>HBW Productions</td>
<td>Trip Ends/Day</td>
<td>26-30</td>
</tr>
<tr>
<td>HBW Attractions</td>
<td>Trip Ends/Day</td>
<td>31-35</td>
</tr>
<tr>
<td>HBNW Productions</td>
<td>Trip Ends/Day</td>
<td>36-40</td>
</tr>
<tr>
<td>HBNW Attractions</td>
<td>Trip Ends/Day</td>
<td>41-45</td>
</tr>
<tr>
<td>LOEX Productions</td>
<td>Trip Ends/Day</td>
<td>46-50</td>
</tr>
<tr>
<td>EXLO Attractions</td>
<td>Trip Ends/Day</td>
<td>51-55</td>
</tr>
<tr>
<td>TRTX Productions</td>
<td>Trip Ends/Day</td>
<td>56-60</td>
</tr>
<tr>
<td>TRTX Attractions</td>
<td>Trip Ends/Day</td>
<td>61-65</td>
</tr>
</tbody>
</table>

1LOEX = Local-external
2EXLO = External-local
3TRTX = Truck-taxi

Texas Package
Friction Factors

<table>
<thead>
<tr>
<th>Variable</th>
<th>Units</th>
<th>Columns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Separation</td>
<td>Minutes</td>
<td>6-10</td>
</tr>
<tr>
<td>NHB Relative Value</td>
<td>Number</td>
<td>91-102</td>
</tr>
<tr>
<td>HBW Relative Value</td>
<td>Number</td>
<td>91-102</td>
</tr>
<tr>
<td>HBNW Relative Value</td>
<td>Number</td>
<td>91-102</td>
</tr>
<tr>
<td>TRTX Relative Value</td>
<td>Number</td>
<td>91-102</td>
</tr>
</tbody>
</table>
Texas Package Radii Values*

<table>
<thead>
<tr>
<th>Variable</th>
<th>Units</th>
<th>Columns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literal</td>
<td>"R-VALUE" or "RADIUS"</td>
<td>1-7</td>
</tr>
<tr>
<td>Zone</td>
<td>Number</td>
<td>9-12</td>
</tr>
<tr>
<td>Radius of Zone</td>
<td>Minutes</td>
<td>15-20</td>
</tr>
</tbody>
</table>

TRANPLAN Intrazonal Values**

<table>
<thead>
<tr>
<th>Variable</th>
<th>Units</th>
<th>Columns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literal</td>
<td>"TIME2"</td>
<td>6-10</td>
</tr>
<tr>
<td>Zone</td>
<td>Number</td>
<td>12-19</td>
</tr>
<tr>
<td>Intrazonal Impedance</td>
<td>Minutes*100</td>
<td>23-25</td>
</tr>
</tbody>
</table>

*These data are used to replicate intrazonal impedances according to the following formula:

\[
I_{aa} = \frac{2}{3}(2R_\text{a})
\]

Where:

\[
I_{aa} = \text{the calculated intrazonal impedance in zone a}
\]

\[
R_\text{a} = \text{the R-VALUE in zone a}
\]

**These data will be written out in a format for inclusion in the $DATA$ section of the $MATRIX$ UPDATE function.
Suggested File Name Extensions: Long Method

LNK
ASCII Texas Package links after downloading from mainframe. Typically, this file is not used except during initial installation of a new validation.

XY
ASCII Texas Package node numbers and coordinates, zone centroids, and other nodes typically used only during installation.

GEN
ASCII Texas Package TRIPCALX results. Trip generation data for all trip purposes.

PNA
ASCII TRANPLAN GRVDATA. Productions and attractions for all trip purposes and friction factors for all trip purposes (at end of file).

ANT
ASCII TRANPLAN NETDATA network file.

NET
Binary TRANPLAN HWYNET network file.

SEL
HWYSKIM minimum impedance path matrix, before updating intrazonal travel times with zonal radii, if used.

RAD
TRANPLAN format update records used to change the intrazonal travel times to reflect the measured radius of the zone.

SKM
HWYSKIM minimum impedance path matrix, after updating intrazonal travel times.

PAT
Production/attraction format trip table, normally representing the total of all trip purposes (TRANPLAN GMTVOL).

INT
Internal-to-internal urban area origin/destination format trip table. Typically, external and external-through trips are not calculated using the TRANPLAN $GRAVITY MODEL. All external station rows and columns of this matrix are zero.

TEX
Texas Package origin/destination format trip table, after conversion to TRANPLAN binary format. Used in the long method to obtain external and external-through trips.

EXT
Texas Package origin/destination format external and external-through trip table. All internal-internal trips on this matrix are zero.

OD
Total origin/destination format trip table, including Texas Package external trips added to internal trips calculated from $GRAVITY MODEL.

VOL
Loaded TRANPLAN network file (LODHIST), containing estimated or forecasted traffic volumes from all iterations of the incremental traffic assignment.

PLT
TRANPLAN Hewlett-Packard Graphics Language (or other) ASCII plot instructions file, ready for sending to a compatible plotter.
Suggested File Name Extensions: Short Method

<table>
<thead>
<tr>
<th>Extension</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNK</td>
<td>ASCII Texas Package links after downloading from mainframe. Typically, this file is not used except during initial installation of a new validation.</td>
</tr>
<tr>
<td>XY</td>
<td>ASCII Texas Package node numbers and coordinates, zone centroids, and other nodes typically used only during installation.</td>
</tr>
<tr>
<td>ANT</td>
<td>ASCII TRANPLAN NETDATA network file.</td>
</tr>
<tr>
<td>TOD</td>
<td>Texas Package trip table in ASCII format (1216), as downloaded from mainframe computer.</td>
</tr>
<tr>
<td>TEX</td>
<td>Texas Package trip table in TRANPLAN binary format, after conversion from ASCII. Ready for use in highway assignment.</td>
</tr>
<tr>
<td>NET</td>
<td>Binary TRANPLAN HWYNET network file.</td>
</tr>
<tr>
<td>TOL</td>
<td>TRANPLAN LODHIST loaded highway network, with all iterations from traffic assignment. This differs from the VOL file in that the trip table used for the traffic assignment was the TEX file directly from the Texas Package.</td>
</tr>
<tr>
<td>PLT</td>
<td>TRANPLAN Hewlett-Packard Graphics Language (or other) ASCII plot instructions file, ready for sending to a compatible plotter.</td>
</tr>
</tbody>
</table>