TRANPLAN is a package of separate, distinct programs which perform travel demand analysis. TRANPLAN can be used to perform the traditional four-step transportation forecasting process: trip generation, trip distribution, mode choice, and traffic assignment.

This guide is intended for use by the Texas Department of Transportation offices, Metropolitan Planning Organizations (MPOs), municipalities, counties, and consultants contracted by public agencies in the state of Texas. The guide should be used in conjunction with the TRANPLAN reference manual and the Highway Network Information Systems (HNIS) reference manual.

The information in this manual can be used to train new TRANPLAN users, refresh users who have been minimally exposed to TRANPLAN, and serve as a “template” to aid experienced users. This guide, however, is not intended to provide a comprehensive description of all the capabilities of the TRANPLAN software.
TEXAS TRANPLAN APPLICATIONS GUIDE 1995

by

George B. Dresser
Research Scientist
Texas Transportation Institute

and

Tom A. Williams
Assistant Research Scientist
Texas Transportation Institute

Research Report 947-10F
Research Study Number 7-947
Research Study Title: Texas Travel Demand Package

Sponsored by the
Texas Department of Transportation

August 1995

TEXAS TRANSPORTATION INSTITUTE
The Texas A&M University System
College Station, Texas
IMPLEMENTATION STATEMENT

The contents of this guide can be used as training material for transportation planners interested in the travel demand forecasting process. The guide is intended to provide a basic understanding of the application of the TRANPLAN software to travel demand analysis for the practicing transportation planner. A more thorough understanding of travel demand modeling for travel forecasting can be learned only through various combinations of short courses, individual study, formal education, and experience. This guide is not intended to provide a complete education in travel demand modeling and analysis.
DISCLAIMER

The contents of this report reflect the views of the authors who are responsible for the opinions, findings, and conclusions presented herein. The contents do not necessarily reflect the official views or policies of the Texas Department of Transportation. This report does not constitute a standard, specification, or regulation. Additionally, this report is not intended for construction, bidding, or permit purposes. George B. Dresser, Ph.D., was the Principal Investigator for this project.
TABLE OF CONTENTS

CHAPTER ONE
INTRODUCTION ... 1
Purpose of This Guide .. 3
Do You Need TRANPLAN Capability? 3
How to Get TRANPLAN in Texas .. 5
How to Get Technical Help .. 5
The Latest Development in TRANPLAN 6

CHAPTER TWO
INSTALLING AND RUNNING TRANPLAN 7
Recommended Computer Hardware and Software 9
How to Get TRANPLAN on Your Computer 9
System Configuration for TRANPLAN for DOS 11
Handy DOS Batch Files .. 12
Creation of Windows Icons ... 12
Steps for Creating Icons .. 13
File Manager .. 15
How to move FILE MANAGER to TRANPLAN Program Group 15

CHAPTER THREE
USING TRANPLAN .. 17
Things to Remember ... 19
Function Files ... 19
TRANPLAN Data Sets ... 20
Comment Cards in a Function File 21
How to Run TRANPLAN for DOS 21
Entering "TRANPLAN" ... 22
How to Run TRANPLAN for Windows 23

CHAPTER FOUR
TRANPLAN FUNCTIONS ... 25
Networks ... 27
Trip Distribution ... 27
Matrix Utilities .. 28
Traffic Assignment ... 28
Plotting ... 29

CHAPTER FIVE
RUNNING TRANPLAN WITH THE TEXAS PACKAGE 33
TRANPLAN and the Texas Package 35
Running the Short Method .. 35
Running the Long Method ... 38
Intrazonal Travel Times .. 40
Converting Data from the Texas Package 40
Texas Package Conversion Menu ... 40
 Running DOWN.BAT from Windows 41
 Converting Link Data ... 41
 Data for the Short Method .. 42
 Data for the Long Method .. 42
Intrazonal Impedances ... 43

CHAPTER SIX
HIGHWAY NETWORK INFORMATION SYSTEM 45
Graphics Editing System .. 47
 Choosing an Editing System ... 47
 Some HNIS Tips .. 48
How to use HNIS for Windows ... 48
Displaying Information with HNIS ... 49
 Capacity 1 or
 Capacity 2? .. 49
 Coloring Links with HNIS .. 50
 The User Profile Option .. 50
 LOS Display with HNIS .. 50
 Comparing Alternatives on One Screen 51
 HNIS Turning Movements ... 51

CHAPTER SEVEN
CREATING PLOTS WITH TRANPLAN 53
TRANPLAN Plotting Method .. 55
Base Network Plot .. 55
Traffic Assignment Volume Plot .. 56
Traffic Assignment LOS Plot ... 56
Volume Band Width Plot .. 57
Plotting Paths .. 58

CHAPTER EIGHT
REPORTING TRANPLAN INFORMATION 59
Printing Network Data ... 61
 NODE COORDINATES ... 61
 TURN PROHIBITOR REPORT ... 61
 NETWORK DESCRIPTION REPORT 62
 LIST OF UNUSED NODE NUMBERS FROM 1 TO 236 62
Printing Minimum Path Trees .. 62
 NON-DESTRUCTIVE VINE TRACE 63
 DESTRUCTIVE VINE TRACE ... 63
Printing Traffic Assignment Data ... 63
Printing Traffic Volumes ... 64
Printing Link Groups and VMT ... 64
CHAPTER ELEVEN
SPECIAL ANALYSIS TOOLS .. 91
Selected Link Analysis ... 93
Selected Link Procedure 1 .. 93
Selected Link Procedure 2 .. 95
Coding Network Speed/Capacity Look-up Tables 97
Reporting Trip Length Frequency Distributions 98
Building Intrazonal Impedances .. 99

APPENDIX
FILE FORMATS .. 101
TRANPLAN Node Data:
 Large Coordinates .. 103
TRANPLAN Node Data:
 Default Coordinates .. 103
TRANPLAN Link Data: ANT File .. 104
TRANPLAN
 Production-Attraction Data: PNA File .. 105
Texas Package Links .. 106
Texas Package Nodes ... 107
Texas Package
 Production-Attraction Data .. 107
Texas Package
 Friction Factors ... 108
Texas Package Radii Values .. 108
TRANPLAN Intrazonal Values ... 108
Suggested File Name Extensions:
 Long Method .. 109
Suggested File Name Extensions:
 Short Method ... 110

INDEX TO SELECTED TOPICS ... 111
The Texas TRANPLAN Applications Guide is a summary of some of the computer programs and processes recommended for use for travel demand forecasting by technical staff of the Texas Department of Transportation, Metropolitan Planning Organizations, municipalities, and consulting professionals in the transportation planning field. The intention of the author is to develop in the transportation planner a technical skill in the application of travel demand analysis through the four-step travel demand modeling process using the TRANPLAN suite of programs.

TRANPLAN was developed by the Urban Analysis Group (UAG), 50 Oak Court, Suite #110, Danville, California 94526-4048. The software is part of an overall package of programs called "UrbanSys." The UrbanSys package comprises TRANPLAN, the Highway Network Information System (HNIS), and other programs which help the analyst perform travel demand modeling.

The Highway Network Information System is an interactive program which allows the analyst to graphically represent, edit, and display results from the travel demand modeling networks. A "map" of the transportation system is used as a basis for network analysis through full-color HNIS.

The current version of UrbanSys (8.0) as of the publication time of this guide includes the use of the Windows operating system. The older DOS version of the software can be used in precisely the same manner described in this guide. Other versions and enhancements to the software will be included in later publications of this document. This guide is an update of an earlier version and includes a more comprehensive discussion of the latest developments in the software.
This chapter describes the use of TRANPLAN in the state of Texas. The following questions are answered:

- What is the purpose of this guide?
- Do you need TRANPLAN capability?
- How do you get TRANPLAN?
- How do you get TRANPLAN technical support?
INTRODUCTION

This guide is intended for use by Texas Department of Transportation offices, Metropolitan Planning Organizations, municipalities, counties, and consultants contracted by public agencies in the state of Texas. The guide should be used in conjunction with the reference manual “Urban\Sys Version 8.0 User Manual for: TRANPLAN, Highway NIS, and Transit NIS.” Urban\Sys is a suite of programs for travel demand modeling, including the TRANPLAN set of programs.

The information contained in this manual should be used to train new TRANPLAN users, refresh users who have been minimally exposed to TRANPLAN, and serve as a “template” to aid experienced users. This guide is not intended, however, to provide a comprehensive description of all the capabilities of the TRANPLAN software. TRANPLAN cannot be learned as a set of programs that will perform travel demand modeling for the user. The user must learn travel demand modeling and then apply the TRANPLAN programs using the learned skills.

Do You Need TRANPLAN Capability?

TRANPLAN is a package of separate, distinct programs which performs travel demand analysis. TRANPLAN can be used to perform the traditional four-step transportation forecasting process: trip generation, trip distribution, mode choice, and traffic assignment. In Texas, the TRANPLAN programs are used for modeling auto-driver vehicle trips on roadway networks. They can also be used to forecast transit ridership, although models for transit forecasting have not been developed at this time by TxDOT. Currently, only trip distribution and traffic assignment are performed using TRANPLAN in most areas of Texas.

Travel demand models are developed for all urban areas in Texas over 50,000 population by the Texas Department of Transportation’s Transportation Planning and Programming Division. These models are used to forecast roadway traffic volumes, usually 20 years into the future. Although there is no way to tell which forecasting methods are more accurate, travel demand models are considered more flexible because they take land use patterns into account.

TRANPLAN can aid transportation planners in the following areas:
• Developing of long range plans by allowing local areas (TxDOT districts, MPOs, and municipalities) to test alternatives in land use scenarios and transportation systems;

• Testing local system transportation alternatives and traffic impacts from changes in land use;

• Responding to questions from local policy bodies concerning traffic.

Examples of system alternatives would be addition of capacity to an existing roadway facility and addition of a connecting arterial facility. Changes in operating characteristics, such as traffic signal timing, cannot be tested using TRANPLAN. Only changes which significantly effect capacity can be tested.

TRANPLAN can also be used to test land use scenarios. Changes in forecasted residential land use patterns, employment density, and other systemwide land use alternatives can be tested for their impact on a given transportation system.

Unless you are involved in the above areas, you probably do not need TRANPLAN capability. Although the resulting forecasted traffic volumes can be used as “starting points,” TRANPLAN cannot directly test the impacts of the following items without further analysis:

• changes in timing of traffic signals
• rehabilitation of pavement surface
• closing of curb cuts

Testing the impacts of traffic operations requires the use of more detailed traffic analysis tools.

Learning and keeping current with detailed travel demand modeling and TRANPLAN knowledge requires a substantial commitment of time; therefore, it is advised that unless you can spend a large portion of work time on travel demand modeling, or would do so if you had TRANPLAN, you could probably invest your time more wisely. The use of TRANPLAN can be divided into two levels:

• model calibration/validation and development
• model application and use

A basic knowledge of how the models are developed is required to use TRANPLAN. Application of the models does not require
extensive knowledge of calibration and validation of system wide travel demand models.

How to Get TRANPLAN in Texas

Getting TRANPLAN in Texas is easy: the Texas Department of Transportation (TxDOT), through the Texas Transportation Institute (TTI), currently has a statewide license agreement with the developers of the TRANPLAN software, the Urban Analysis Group (UAG). This license allows TxDOT to distribute TRANPLAN to all public agencies, with the following exceptions:

- All public agencies which are members of the North Central Texas Council of Governments (NCTCOG);
- All public agencies which are in the metropolitan area of Austin, Texas;
- All public agencies which are in the metropolitan area of Houston, Texas.

TxDOT offices anywhere can obtain TRANPLAN. Public agencies in the NCTCOG region can obtain TRANPLAN at a minimal cost through NCTCOG. Agencies in the Austin area have previous agreements with the Urban Analysis Group for the use of TRANPLAN.

A request must be made to the Transportation Planning and Programming Division of TxDOT in Austin to obtain TRANPLAN. Currently, TxDOT requires that an urbanized area (population of 50,000+) have a validated travel model before approval for TRANPLAN distribution is granted.

How to Get Technical Help

TxDOT has authorized the Texas Transportation Institute (TTI) to administer TRANPLAN. TTI can provide several forms of technical assistance:

- Installing TRANPLAN and providing a training session to get you "up and running" at your office;
- Visiting your site for special circumstances requiring on-site training;
- Providing a seminar on the basic usage of TRANPLAN and HNIS each May in College Station;
- Assisting users at any time when they call TTI directly at (409) 845-5200.
The TRANPLAN developers, UAG, would prefer that you call TTI first, and then TTI will contact UAG if further assistance is necessary.

TTI and TxDOT also support a Texas TRANPLAN Users Group. To receive a current list of TRANPLAN users in Texas, contact TTI. Meetings of the Texas TRANPLAN Users Group are held at least once a year at the Texas Transportation Planning Conference.

The Latest Development in TRANPLAN

TRANPLAN and HNIS are part of a suite of software for travel demand modeling called Urban/SYS developed by the Urban Analysis Group. UAG is always working on upgrading the software suite and offering new procedures. TRANPLAN is available on UNIX platforms, with conversion utilities for linkages to geographic information system software. A “Data Base Capable” system (DBC) is currently being developed so that storage of network data can be done through data base management software with integration to TRANPLAN and HNIS.

To obtain the latest information and versions available to Texas users, contact the Texas Transportation Institute at (409) 845-5200.
CHAPTER TWO
INSTALLING AND RUNNING TRANPLAN

This chapter explains the installation procedures for TRANPLAN and provides the following:

- Computer hardware and software requirements
- TRANPLAN installation
- System configuration
INSTALLING TRANPLAN ON YOUR COMPUTER

Recommended Computer Hardware and Software

The following is a list of **recommended** hardware required to run TRANPLAN. Actually, TRANPLAN will run on a lesser system than that listed below. However, you will probably want to run other applications on the system so purchase of a larger, faster system is necessary.

Computer Hardware
- i486 DX 33 MHz CPU
- 13"/14" Super VGA color monitor and card
- 250 MByte minimum hard disk
- 8 MByte minimum RAM
- Bus mouse
- 1 3.5" 1.4 MByte high density disk drive
- 1 parallel port
- 2 serial ports

Printer
- Any printer capable of 132 column print (compressed mode or wide carriage)

Plotter
- Hewlett Packard plotter or any plotter capable of HPGL emulation

Software
- MS-DOS 5.0
- Windows 3.1 or better for TRANPLAN for Windows
- Any text editor capable of reading large files (MS-DOS 5.0 EDIT is suitable in most areas)

How to Get TRANPLAN on Your Computer

TTI usually installs TRANPLAN. If you are installing an upgrade of TRANPLAN, an install program can be run from your A: (or B:) drive by typing:

```
C:> A:INSTALL
```

when the TRANPLAN installation disk is in drive A. Also, be sure to read the READ.ME files on your upgrade diskettes. These provide descriptions of the upgrade features. For more information, refer to the TRANPLAN "User Manual Supplement and Installation Instructions" guide.
The following directions explain how to install the TRANPLAN software for Windows or DOS. The seven (7) disks for this procedure are labeled as follows:

<table>
<thead>
<tr>
<th>Name of Disk</th>
<th>Version</th>
<th>Order in Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Disk</td>
<td>8.0</td>
<td>1 of 2</td>
</tr>
<tr>
<td>System Disk</td>
<td>8.0</td>
<td>2 of 2</td>
</tr>
<tr>
<td>Highway Analysis</td>
<td>8.0</td>
<td>1 of 3</td>
</tr>
<tr>
<td>Highway Analysis</td>
<td>8.0</td>
<td>2 of 3</td>
</tr>
<tr>
<td>Highway Analysis</td>
<td>8.0</td>
<td>3 of 3</td>
</tr>
<tr>
<td>Highway Plotting</td>
<td>8.0</td>
<td>1 of 1</td>
</tr>
<tr>
<td>Highway NIS</td>
<td>8.0</td>
<td>1 of 1</td>
</tr>
</tbody>
</table>

If all seven of the disks mentioned above are present, you are now ready for the installation process. Place the first disk in the Highway Analysis series into the floppy drive slot (1.44 MB). At the DOS prompt, type in the following command:

A:>INSTALL A: C: HP VGA

where “A” is the letter of your floppy disk drive. This command tells the computer to install the TRANPLAN for Windows software on the hard drive disk of the computer. It also states that an HPGL format plotter will be used to create plots. The VGA argument represents the video graphics emulation of the computer. The following screen as shown in Figure 1 will now appear after this command has been executed:

```
URBAN/SYS SOFTWARE
Installation Menu

1. Tranplan Systems Disk
2. Tranplan Highway Analysis
3. Tranplan Highway Plotting
4. Tranplan Transit Analysis
5. Tranplan Transit Analysis
6. Highway NIS
7. Transit NIS
8. Tranplan Menu
9. Exit Urban/Sys Installation Program
```

Figure 1. Installation Menu
Here are the following steps that are necessary in order to install TRANPLAN:

Step 1 Type the number 2 and press enter
Step 2 After disk 1 of 3 has been installed, the computer will prompt you to put disk 2 of 3 into the A: drive slot. Do so at this time and press enter.
Step 3 After disk 2 of 3 has been installed, put in disk 3 of 3 and press enter.
Step 4 After disk 3 of 3 has been installed, put in Tranplan System Disk 1 of 2.
Step 5 Type the number 1 and press enter.
Step 6 After disk 1 of 2 has been installed, put in disk 2 of 2 and press enter.
Step 7 After disk 2 of 2 has been installed, put in Highway Plotting disk 1 of 1.
Step 8 Type the number 3 and press enter.
Step 9 After this disk has been installed, put in Highway NIS disk 1 of 1.
Step 10 Type the number 6 and press enter.
Step 11 After this disk has been installed, type the number 9 and press enter. This action allows you to exit the installation menu.

All of the TRANPLAN software should now be on the hard drive.

In order for TRANPLAN to run, the C:\TP or C:\TRANPLAN subdirectory must be on the "path" of the computer. To see if it is, type "PATH" at the C:> prompt. The path tells the computer where to find the TRANPLAN programs and is defined when you turn on the computer in the AUTOEXEC.BAT file. Below is a sample AUTOEXEC.BAT file for use on a TRANPLAN computer:

```
@ECHO OFF
PROMPT $p$g
PATH = C:\DOS;C:\;C:\UTIL;CURBANSYS
```

Note that the system defined above does not have any "Terminate and Stay Resident" (TSR) programs being loaded by the AUTOEXEC.BAT file when the computer is turned on. These programs are loaded into the computer memory and are not cleared when they are done. These programs can, and usually do, cause conflicts with TRANPLAN. It is best to have a very simple AUTOEXEC.BAT file to run TRANPLAN, such as the one listed above.
For TRANPLAN to run correctly, be sure to keep TSRs out of the CONFIG.SYS File. Be sure to have the following included in your CONFIG.SYS file:

```
DOS = HIGH
FILES = 30
BUFFERS = 10
```

You will probably be required by other programs on your system to add device drivers, or "DEVICE=..." statements, to your CONFIG.SYS file. Try to run TRANPLAN with the device drivers loaded. If TRANPLAN does not work, delete the device drivers from the CONFIG.SYS file, or edit your CONFIG.SYS file and place a "REM " in front of the "DEVICE=..." statement (you must then re-start your computer).

Handy DOS Batch Files

Other files you may need to add to your computer are batch files or files with the extension ".BAT". These files can help when running TRANPLAN for DOS by performing repetitive, tedious tasks automatically.

A batch file will help send plot codes to your plotter (individual plotters may vary). Below is a batch file, "TPLOT.BAT", which will send the appropriate codes for a Hewlett Packard plotter and copy a TRANPLAN plot file to the communications port (COMx) that is connected to the plotter. To use the batch file, type "C:>TPLOT filename", where filename is the name of a plot file created by TRANPLAN.

```
@ECHO OFF
MODE COM1:96,N,8,1,P
COPY %1 COM1
ECHO ON
```

All batch files can be saved in a "C:\UTIL" subdirectory or the "C:\TP" subdirectory, which is in the path defined in the AUTOEXEC.BAT file. If you are running TRANPLAN for Windows, the Windows driver for the plotter will take care of the configuration.

Creation of Windows Icons

Installing TRANPLAN for Windows on the computer's hard drive is only half the process. In order to use this application, icons must be created in Windows that will provide access to the pull down menus which run the program. The next step in the setup process
is to create the program group icons for TRANPLAN as well as their program item properties.

The following steps are necessary to create the icons in TRANPLAN for Windows:

<table>
<thead>
<tr>
<th>Steps for Creating Icons</th>
<th>Step 1</th>
<th>Type WIN after the DOS prompt.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Step 2</td>
<td>Using the mouse, Click on FILE.</td>
</tr>
<tr>
<td></td>
<td>Step 3</td>
<td>Click on NEW.</td>
</tr>
<tr>
<td></td>
<td>Step 4</td>
<td>Select PROGRAM GROUP from the pop up window on the screen.</td>
</tr>
</tbody>
</table>

This will create a window that will ask you to put in a description of the new program group. Then you must fill in the name of the program group that will be used to store your TRANPLAN program icons.

Step 1 Type "TRANPLAN" for the description of the file.
Step 2 Click on the OK button to save these changes.

The next task at hand is to set up the program items that will run the TRANPLAN for Windows application. You must give a description of the icon, the command line containing the executable file that will allow TRANPLAN to operate, and the working directory path where the files are stored. This procedure should be completed three times; once for the TRANPLAN, then for the HNIS icon, and finally for the TRANPLAN Miscellaneous icon.

Step 1 Click on FILE.
Step 2 Click on NEW.
Step 3 Select the PROGRAM ITEM from the pull down menu on the screen.
Step 4 Type TRANPLAN for the description.
Step 5 Type C:\URBANSYS\TPCNTL.EXE for the command line.
Step 6 Type C:\URBANSYS for the working directory.

The TRANPLAN program item icon should now be created. The same procedure should be followed to set the HNIS program item properties. Here are the recommended steps to do so:

Step 1 Click on FILE.
Step 2 Click on NEW.
Step 3 Select the PROGRAM ITEM from the pull down menu on the screen.
Step 4 Type HNIS for the description.
Step 5 Type C:\URBANSYS\HNIS.EXE for the command line.
Step 6 Type C:\URBANSYS for the working directory.

The HNIS item icon should now be created. After all these tasks have been completed, the TRANPLAN for Windows icon should appear on your program manager's screen along with all the other application group icons on the computer.

The final step is to install the TRANPLAN miscellaneous utilities program item icon. This is accomplished in the same way as the TRANPLAN icon installation except that the command line should be "C:\URBANSYS\TPMISC.EXE." Please see Figure 1 to view how the screen should appear once the icons for TRANPLAN have been created.
The window in Figure 1 displays the three icons that will appear in the TRANPLAN for Windows application group. The TRANPLAN and HNIS icons are the two that were created after the software was installed. The middle icon, FILE MANAGER, should already exist on the computer and can be found in one of the other application group icons. FILE MANAGER is very useful for the TRANPLAN software application because it allows you to edit, list, manipulate (i.e., move a group of files from one directory to another) and view the files necessary to run TRANPLAN FOR WINDOWS successfully.

The procedure to move the FILE MANAGER icon into the TRANPLAN group application is as follows:

Step 1 Put cursor on the FILE MANAGER icon.
Step 2 Drag the icon onto the TRANPLAN application group icon.

Now you are set to begin the successful operation of TRANPLAN for Windows on your computer. The next chapter “Using TRANPLAN” will explain how to run programs for travel demand modeling. Also, a recommended Windows desktop display will be presented.
CHAPTER THREE
USING TRANPLAN

This chapter describes the elementary steps to use TRANPLAN. The following areas are summarized:

• Function files
• Using TRANPLAN
• Entering "TRANPLAN"
• Using TRANPLAN FOR WINDOWS
Things to Remember

Running TRANPLAN involves understanding three basic things:

- What exactly you are running: It's easy to simply choose a file and run it -- you must always check each function file setup carefully.
- What the input files are: TRANPLAN runs with two inputs, the function file setups and the input data sets.
- What the output files are: TRANPLAN normally produces two types of outputs, the output report file and the output data sets.

Getting the TRANPLAN programs to execute correctly is only half of the challenge of travel demand modeling. The other half involves understanding the processes that TRANPLAN is performing for you. Although it is imperative that you understand the purpose of running each program, it is too much information to present in this guide.

Function Files

TRANPLAN for DOS and Windows operates in "batch" mode, meaning that a "batch" or "group" of instructions is loaded simultaneously. The "batch" of instructions is held in what are commonly called "setup" files or "function" files, usually with the filename extensions of ".FIL" so that they can be easily identified. To run TRANPLAN you need to create a setup file containing the instructions telling TRANPLAN exactly what model you wish to run. The following general control structure applies to all TRANPLAN functions.

$Function Name
$FILES
 INPUT FILE = FileID, USER ID = $Filename$
 OUTPUT FILE = FileID, USER ID = $Filename$
$HEADERS
 (up to three lines of header records)
$OPTIONS
 (list of options)
$PARAMETERS
 (list of parameters)
$DATA
 (data records)
$END TP FUNCTION
TRANPLAN Data Sets

The $Function name line tells TRANPLAN which program executable (EXE) to run; for instance, $GRAVITY MODEL will tell TRANPLAN to run the “GMODEL.EXE” executable in the URBANSYS directory.

The $FILES section tells TRANPLAN the file names of the input data sets and output data sets to be processed. Data sets used in travel demand models are typically either network link files (ANT, NET, or VOL) or trip/travel time matrix files (PAT, SKM, OD).

For Texas TRANPLAN models, a standard set of file name extensions has been developed. A list of these file name extensions can be found in the appendix of this guide. For instance, a file with the extension “ANT” is an ASCII format network, while a file with the extension “OD” is an origin-destination trip table.

TRANPLAN also has coded words for data sets, listed in the $FILES section of the function file. The FileID is used as the coded TRANPLAN identifier. For instance, a FileID of “HWYNET” refers to a TRANPLAN binary network file.

The UserID name of the file is where the user can place the DOS file name of the input and output data sets to be processed in the TRANPLAN run. The DOS data set file names must be enclosed by dollar signs ($s). If the data set is not in the same subdirectory as the function file setup, the full path name must be specified between the dollar signs.

The $HEADERS section allows the user to enter three lines of 80 characters for descriptions of the TRANPLAN run. These three lines are placed automatically onto the output data set as the first three records, regardless of the data set type. The header records can then be read with the “HEADER.EXE” miscellaneous utility program at a later time. This is useful since many of the output data sets from a TRANPLAN run are in binary unformatted format, which cannot be read with a text editor.

The next two sections, $OPTIONS and $PARAMETERS, are used to specify key words which tell TRANPLAN what to do with the input data sets. The $DATA section is usually omitted but can be used to place data directly in the function file setup, instead of using an input data set file.

The end of each function file setup is coded with a one line statement: $END TP FUNCTION.
TRANPLAN can be run with one function file or a series of function files in a string. Each function file will execute a particular task, such as trip distribution or traffic assignment.

Comments or statements that are not to be executed by TRANPLAN can be entered on lines beginning with a tilde: "~". This is useful for entering notes to yourself about what each executable statement is doing. Also, "$SYS" statement lines can be placed after the "$END TP FUNCTION" line to execute file copying, deletion, and renaming. The statement "$END TP FUNCTION" is useful to delete intermediate files that are created during a TRANPLAN run to save disk space.

TRANPLAN programs (those ending with "EXE") are normally placed in a subdirectory set aside for TRANPLAN called "D:\URBAN\SYS", where "D" is a hard disk drive (usually C: or D:). The studies that you do with TRANPLAN are placed in separate, unique subdirectories with a name you choose to identify the study, such as "C:\BASE15" for a baseline 2015 model run or "D:\ALT\B20" for alternative B of a 2020 model run. Input setups (function files) can be stored in a lower subdirectory, for instance, "C:\BASE15\FIL". Setups usually have the extension of ".FIL" for Texas models. See Figure 3.

The control file (function file) is executed by entering "TRANPLAN" from the keyboard. The package checks to see if all specified programs and input data files are stored on disk; then it executes the programs in sequence. The output data set file specified in the setup file is written to disk under the name specified by the user, and reports are stored under the filename "filename.OUT". It is recommended that the user follow these file extension rules to avoid confusion:

1) Name all input function files with the extension ".FIL"
2) Name all output report files, listed on the "TRANPLAN" DOS command prompt or the window box in Windows as ".OUT"
3) Follow all the file name extensions for the data set files as listed in the appendix of this manual, e.g., networks have the extension ".NET."
Entering "TRANPLAN"

To run TRANPLAN for DOS:

1) Establish a working subdirectory for executing TRANPLAN.

2) Ensure that the executable TRANPLAN file "TRNPLNXT.EXE" and all required executable modules are in the DOS path.

3) Copy all input TRANPLAN data files to the working directory.

4) Create a TRANPLAN input control file with the file extension ".FIL."

5) Type "TRANPLAN function.FIL function.OUT" to execute TRANPLAN.

Figure 3. TRANPLAN Execution Process

In summary, TRANPLAN uses input setups which control the function executed, the input data set, and the output data set. Typing "TRANPLAN filename.FIL filename.OUT" will execute the model run and create output reports in a file named "filename.OUT."
How to Run TRANPLAN for Windows

The first step utilized in activating TRANPLAN for Windows is to open the TRANPLAN window. Use the mouse to click on to the following icons and pull down windows:

![Open Dialogue Box]

Figure 4. The TRANPLAN Open Dialogue Box

- **Step 1** Click on the Urban/Sys group icon to open the Urbansys window.
- **Step 2** Double click on TRANPLAN icon. The window will look like Figure 5.
- **Step 3** Click on the “Open” button. The window will look like Figure 6.
- **Step 4** First, set the directory where the function files are stored by using the “current directory” scroll box and double clicking on the directory name.
- **Step 5** Next, click in the “control file” box and enter the name of the function file you want to run.
- **Step 6** Click the “OK” button.
- **Step 7** In the main TRANPLAN window, type the name of the output report file (*filename.OUT*).
- **Step 8** Click on the “Run” button to execute TRANPLAN.

When the program is finished running, the message “End Win Function” will appear in the screen output box of the TRANPLAN window. The output reports are stored in the file *filename.OUT* if you specified a specific name; otherwise they are in the file “TRNPLN.OUT.”

One of the advantages to running TRANPLAN for Windows is the ability of opening more than one window workspace at a time on the desktop. This allows the user to operate the File Manager,
Notepad, and TRANPLAN at the same time, easily switching between applications during a run, as shown in Figure 5.

Figure 5. The TRANPLAN Window

Figure 6. A typical Windows Desktop Setup for TRANPLAN
This chapter describes the most commonly used TRANPLAN "functions" or models. Each function performs a specific task, including:

- Network building and editing
- Matrix editing and reporting
- Traffic assignment
- Plotting
TRANPLAN FUNCTIONS

Networks

$BUILD HIGHWAY NETWORK
Converts an ASCII format, 80-column network (NETDATA) to TRANPLAN binary compressed format. Can also be used to perform network editing, such as adding or deleting links or nodes, or changing attribute values on links.

$MACRO HIGHWAY NETWORK UPDATE
Performs macro, or multiple, updates to a network in TRANPLAN format. Deletes, adds, subtracts, multiplies, divides, or replaces link attributes. For example, systemwide capacity changes based on area type and number of lanes.

$HIGHWAY SELECTED SUMMATION
Builds a matrix of minimum time, distance, or travel cost by "skimming" attributes along minimum paths from zone to zone in a network. Can build minimum paths based on one network attribute and then report to the output matrix the cumulative total of another attribute; for example, link lengths along a minimum travel time path. TRANPLAN format network is input to this function.

Trip Distribution

$GRAVITY MODEL
Performs the classic formulation of the traffic forecasting gravity model. Input files include an ASCII production-attraction file with friction factors (by trip purpose) appended to the bottom of the file. Also, input is a minimum impedance matrix in TRANPLAN format. Outputs a single, total-purpose trip matrix and/or a multiple, separate-purpose trip matrix file.

$FRATAR MODEL
An iterative FRATAR expansion model based on origin-destination growth factors. Used to "grow" a trip table.

$CALIBRATE GRAVITY MODEL
Performs gravity model calibration to an input trip length frequency distribution by trip purpose. The analyst will input “GT” records in the PNA production/attraction file and a starting set of “GF” records (can be all “1000”). The function will output a new PNA file with the calibrated set of friction factors attached in the “GF” records.
Matrix Utilities

$MATRIX UPDATE
Addition, subtraction, multiplication (by a constant) and replacement operations on matrix files (trip tables and minimum impedance matrices). Optional conditional operation (EQ, LT, GT) and selected zones available.

$MATRIX MANIPULATE
Merges multiple table trip matrices (e.g., sums all trip purposes on one matrix) and performs addition, subtraction, multiplication, and division on multiple combinations of tables and matrices.

$MATRIX COMPRESS
Aggregates Traffic Analysis Zones (or other zones) into districts or larger zones. Function input usually a trip table; the output compression either printed or output to a second matrix (of fewer zones). The cell values of the output zones (or districts) are accumulations of the aggregated zones.

$MATRIX EXPAND
Opposite of $MATRIX COMPRESS. De-aggregates large districts into smaller zones. Values of the smaller zones in the resultant trip matrix, or factor matrix, are equal to the values of the districts in which they fell (or were specified in the function file).

$MATRIX TRANSPOSE
Transposes a TRANPLAN format trip matrix, usually a trip table. Each matrix cell \(A(i,j) \) becomes \(A(j,i) \). Also, will convert a production-attraction format trip table to origin-destination format.

Traffic Assignment

$LOAD HIGHWAY NETWORK
Loads a trip table onto the minimum paths through a network. Inputs a TRANPLAN format network and trip matrix and outputs either a "loaded history file" or a network with assigned traffic volumes. Capabilities include All-or-Nothing assignments, Capacity-Restrained assignments, and Turning Movements.

$EQUILIBRIUM HIGHWAY LOAD
Performs equilibrium traffic assignment. The inputs are the same as the $LOAD HIGHWAY NETWORK function, but the function will calculate a set of weighting factors for each iteration automatically to achieve the goal of minimizing the total system travel time.
$LOAD HIGHWAY SELECTED LINKS
Same as $LOAD HIGHWAY NETWORK but also generates a selected link "history" file. The output includes loadings on specific links identified in the function file. The output is then read into $BUILD SELECTED LINK TRIP TABLE to analyze the origin and destination of trips using the selected links.

$ANALYZE MULTIPLE SELECTED LINKS
Summarizes any set of selected link loadings as specified in the $LOAD HIGHWAY SELECTED LINKS function. Any combination of origin links, through links, and destination links can be printed in a matrix report format.

$BUILD SELECTED LINK TRIP TABLE
Combines a trip table and a selected link history file to produce a matrix of trips using the specified selected links. Generally followed by a $COMPRESS MATRIX function to analyze the resulting trip origin and destination patterns.

Plotting

$PLOT HIGHWAY NETWORK
Creates a plot file ready for sending to a plotter. Generally used to plot highway networks for coding base maps and debugging. Links can be selectively plotted and colored using Link Group codes or Assignment Group codes. Node numbers can also be plotted.

$PLOT HIGHWAY LOAD
Plots a loaded highway network with the same options as $PLOT HIGHWAY NETWORK. Also plots assigned volumes and band widths based on the assigned volume. Can optionally plot network colored by range of volume-to-capacity ratio.

$PLOT HIGHWAY PATHS
Plots the minimum impedance paths from selected origin zones. Good method of checking network coding. Output resembles a "tree" branching out from the origin node. TRANPLAN uses a "vine" builder to build minimum paths.

Reporting

$REPORT HIGHWAY NETWORK
Reports link descriptions, prohibited turns, node coordinates, and unused nodes. Options using "OR" and/or "AND" specifications permit the reporting of selected portions of the network.
$REPORT HIGHWAY NETWORK SUMMARY
Reports summaries of highway network characteristics stratified by link class (i.e., link group and assignment group code values). The reports may be one-, two-, or three-dimensional tables. Summaries may be reported by cost, distance, time, user impedance, vehicle cost, vehicle distance, vehicle hours, vehicle user impedance, capacity time, capacity distance, and volume/capacity. Screenline summary reporting is also available.

$REPORT HIGHWAY LOAD
Reports link loadings in A-B, B-A, and total format. Turning movements are presented in an easy-to-read matrix format with one-way and two-way link totals. Options using "OR" and/or "AND" specifications permit the reporting of selected portions of the network. Zero volume links can be suppressed from the report. Reporting of selected loadings by iteration and trip purpose is permitted.

$REPORT HIGHWAY INCREMENTAL SUMMARY
Optionally generates three types of reports which describe the time, speed, and volume changes on a highway network during iterative loading. The first report is detailed by selected links of time, speed, and volume by iteration. The second report is a frequency distribution stratified by ratios of projected volume/capacity ratio and by time/speed ratio differences. The third report is a ground count comparison which is useful in validating the travel model.

$REPORT HIGHWAY PATHS
Reports the minimum paths for the user-specified travel impedance in either a detailed (non-destructive) format or in a compressed (destructive) format. All paths are built with a vine builder which guarantees the minimum path with turn prohibitors and turn penalties.

$REPORT MATRIX
Reports trip tables and selected summation (skim) file matrices via either the body of the matrix or a trip end summary (for trip tables). Selected trip purpose and origin zone control the level of output.

$REPORT MATRIX COMPARISON
Compares two trip tables, usually survey origin-destination with model output. Reports zone-to-zone differences and ratios, frequency distributions, statistical summaries by volume groups and trip end differences, and ratios.
$REPORT TRIP LENGTH FREQUENCY
Reports standard trip length frequency statistics based upon an input trip table and selected summation separation matrices.
Reports include:

1. trips by impedance: unit, average statistics
2. histograms by impedance unit and by accumulated units.
CHAPTER FIVE
RUNNING TRANPLAN
WITH THE TEXAS PACKAGE

This chapter explains how to run the TRANPLAN model in conjunction with the Texas Package. Two methods are outlined:

- The Short Method using a trip table from the Texas Package
- The Long Method using productions and attractions from the Texas Package

Also, how to convert data from the Texas Package format to TRANPLAN format is outlined.
TRANPLAN and the Texas Package

TRANPLAN is operated in conjunction with the Texas Travel Demand Package forecasting software which is maintained by TxDOT. Essentially, validation and calibration of the models in Texas (with the exception of the NCTCOG urbanized area) are performed using the mainframe TxDOT model system. Once an urbanized area is validated to existing conditions, the networks and demographics are downloaded from the mainframe to microcomputers for use in TRANPLAN by local offices.

TxDOT has authorized local areas to use TRANPLAN to perform alternatives analysis. Final numbers for approval (documenting all assumptions) must be provided to the TxDOT Division of Transportation Planning and Programming for all on-system roads. There are two methods of using data obtained from the Texas Package with TRANPLAN:

- Download a trip table and a network, referred to as the "Short Method"
- Download a vehicle trip generation file or create one on a microcomputer with the TxDOT program TRIPCAL5, referred to as the "Long Method"

Running the Short Method

Using the Short Method, a network (link and node coordinate data) is downloaded from the Texas Package. The network is then converted to TRANPLAN ASCII format with TTI conversion programs which are executed through the DOWN menu system (which stands for Download). Next, a valid trip table is downloaded from the Texas Package and converted to TRANPLAN binary format using the DOWN menu system (when in binary, this file cannot be viewed with your text editor). Refer to Figure 7.

Once the network is converted to TRANPLAN ASCII format, the TRANPLAN function $BUILD HIGHWAY NETWORK is run. The output from the $BUILD HIGHWAY NETWORK function is a binary TRANPLAN network which can be viewed and edited using HNIS. With HNIS, you can make network additions, deletions, or modifications with interactive color graphics.
The final step in the Short Method is to load the origin-destination trip table onto the network using the $LOAD HIGHWAY NETWORK function. The standard type of loading, or traffic assignment, used for TRANPLAN in Texas is the incremental capacity restraint method. This method has two main features:

- Trips are loaded onto the network in five prespecified increments or "Load Percentages." This means that if there are 100 trips between two zones and the load percentages are 15, 15, 20, 20, 30, then 15 trips will be loaded during the first increment onto the shortest travel time path; and the network travel times will be updated.

- The network travel times are updated after each increment of trips is loaded onto the network using the shortest travel time path between two given zones. The travel times are increased by a certain percentage according to a travel time decay function which relates the volume/capacity ratio (how much the network is congested) and a percentage increase in travel time (see Figure 8).
Figure 8. TRANPLAN Travel Time Decay Function

After the trips are loaded onto the network, the link traffic volumes can be viewed with HNIS or by creating a TRANPLAN plot file using the $PLOT HIGHWAY LOAD function. The $PLOT HIGHWAY LOAD function creates a computer plot file which can be sent to your plotter (usually with a DOS "COPY" command or with the sample "TPLOT.BAT" batch file). Also, the file Manager in Windows can be used to copy the output plot file to the plotter serial port (COM1 or COM2) or the parallel port (LPT1 or LPT2).

In summary, the Short Method uses the following TRANPLAN steps:

1) Convert the Texas Package trip table, network, and x/y coordinates to TRANPLAN format.

2) Run $BUILD HIGHWAY NETWORK to check the network and convert it to binary.

3) Optionally, edit the network with HNIS.

4) Run $LOAD HIGHWAY NETWORK and check the results. As an alternative, the $EQUILIBRIUM HIGHWAY LOAD function can be used.
Running the Long Method

The TRANPLAN Long Method uses the same data conversion program (DOWN) as the Short Method to convert the network links and nodes to TRANPLAN ASCII format. Productions, attractions, and friction factors are also converted to TRANPLAN ASCII format and placed in the same file. The production-atraction file is created from the Texas Package trip generation model by TxDOT from zonal population and employment data collected by serial zone. Typically, the external trip ends on this file are not converted to TRANPLAN.

![Diagram of the Texas TRANPLAN "Long Method"

The following steps are used in the Texas TRANPLAN Long Method:

Figure 9. The Texas TRANPLAN "Long Method"
1) The ASCII network is checked and converted to binary by running \$BUILD HIGHWAY NETWORK. This function is executed several times if problems are found on the network. The network can then be optionally edited with HNIS.

2) \$HIGHWAY SELECTED SUMMATION "skims" the minimum travel time paths from each zone to all other zones and creates a matrix of cumulative travel times.

3) Radius data are converted from the Texas Package and used to update the intrazonal travel times (see the appendix of this guide for more detail).

4) The \$GRAVITY MODEL takes productions and attractions from each zone and the minimum travel time matrix and distributes them using the gravity model formula. The result is a production/attraction format trip table.

5) The \$MATRIX TRANSPOSE function converts the trip table into an origin-destination format where each zonal interchange has the same number of trip ends as the opposite zonal interchange (e.g., the trip ends from zone 2 to zone 1 must equal the trip ends from zone 1 to zone 2). The trip ends are equal only when the trip table represents a full day.

6) Trips originating outside the study area (external trips) must be "borrowed" from the Texas Package trip table. A \$MATRIX UPDATE function places a zero in all internal-to-internal trip interchanges of the Texas Package trip table, leaving only the external trips. The external trip table is then added to the internal-to-internal trip table to create a total trip table.

7) The final step in the Long Method is to load the trip matrix onto the shortest paths of the network using the \$LOAD HIGHWAY NETWORK function. The Long Method uses the same incremental assignment technique used in the Short Method. Note that the loaded network in the Long Method is different than the loaded network used in the Short Method because the trip tables differ. As an alternative, the \$EQUILIBRIUM HIGHWAY LOAD function can be used.
Intrazonal Travel Times

Sometimes it is necessary to estimate the intrazonal travel times more precisely than the TRANPLAN HIGHWAY SELECTED SUMMATION model is capable of doing. The Texas Package trip distribution model utilizes a zonal radius which is converted to data cards to represent centroid connector travel times used in the $MATRIX UPDATE function. For more information see Appendix C of TTI Research Report #1110-4F, "Subarea Analysis Using TRANPLAN/NEDS."

An alternative method to using the $MATRIX UPDATE function and radii data is to use the TRANPLAN function "$BUILD INTRAZONAL IMPEDANCES." This function will estimate the intrazonal travel times using a percentage of the average travel times to one or more of the nearest neighboring zones.

Converting Data from the Texas Package

This section explains in detail how to convert networks and trips from the Texas Package mainframe model to TRANPLAN.

TRANPLAN is run in Texas in coordination with the Texas Package of travel demand forecasting programs. The Texas Package is operated by Division of Transportation Planning and Programming of TxDOT on a mainframe computer. Data can be easily converted from the Texas Package to TRANPLAN for use in your urbanized area. The North Central Texas Council of Governments maintains a similar TRANPLAN/mainframe model process using the Dallas-Fort Worth Regional Travel Model.

Texas Package Conversion Menu

Data downloaded to microcomputer from the mainframe Texas Package system are in ASCII format. The networks, node and zone centroid coordinates, trip tables, friction factors, and production-attraction data are not in the required format for TRANPLAN. The first task is to convert these files into a format TRANPLAN can use.

A menu-driven set of conversion programs has been developed by TTI to facilitate the transfer of data between TRANPLAN and the Texas Package. This menu is a DOS batch file called "DOWN.BAT." Typing "DOWN" at the DOS prompt will produce the following menu selections:
CONVERSION PROGRAM MENU
FOR SUBAREA ANALYSIS

DOWNLOADING (FROM TEXAS PACKAGE TO TRANPLAN)
1. LINK DATA CONVERSION
2. COORDINATE DATA CONVERSION
3. TRIP TABLE CONVERSION
4. P/A DATA CONVERSION
5. FRICITION-FACTOR CONVERSION
6. ZONAL RADII CONVERSION

UPLOADING (FROM TRANPLAN TO TEXAS PACKAGE)
7. LINK DATA CONVERSION
8. P/A DATA CONVERSION

E. EXIT TO DOS

Selecting one of the first six from the menu will execute a FORTRAN program to convert data from the Texas Package to TRANPLAN. The FORTRAN programs will then prompt you for input file names and output file names. The Fortran programs are usually copied into the URBANSYS subdirectory and begin with the letters “CONV.”

Running DOWN.BAT from Windows

The DOWN program can be executed via the TPMISC icon if you are using TRANPLAN for Windows. Also, the specific programs can be executed directly from the TPMISC file list. These programs include “CONVNET1.EXE” for link conversion, “CONVPAL.EXE” for production-attraction file conversion, and “CONVTRIP.EXE” for 12I6 trip table conversion. In order to access these programs from the TPMISC window you must add their names to the MISC.LST file found in the C:\URBANSYS directory.

Converting Link Data

Selecting "LINK DATA CONVERSION" from the DOWN menu system will run a program to convert a downloaded network to TRANPLAN ASCII format (CONVNET1.EXE). Selecting "COORDINATE DATA CONVERSION" will convert node numbers and coordinates to TRANPLAN ASCII format. These two files must then be concatenated; the node data usually come first. This combined node and link data file, given the file extension “ANT”, will then be input into the $BUILD HIGHWAY NETWORK function.

TRANPLAN can store functional classification, number of lanes, and other codes in fields in the ANT file called “Link Groups.” There are three link group fields which can hold numbers ranging from 0 to 99 each. The Texas Package LargeNet format link data can store more than this number of fields. The default and alternative link group field variables are listed in Table 1. The program will prompt the user to specify default and alternate variables for the TRANPLAN network fields.
Table 1: Link Group Variables

<table>
<thead>
<tr>
<th>TRANPLAN Field</th>
<th>Default Variable</th>
<th>Alternate Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPEED1/SPEED2</td>
<td>Speed</td>
<td>Impedance</td>
</tr>
<tr>
<td>LINK GROUP 1</td>
<td>Functional Class</td>
<td>Facility Type</td>
</tr>
<tr>
<td>LINK GROUP 2</td>
<td>Area Type</td>
<td>Jurisdiction</td>
</tr>
<tr>
<td>LINK GROUP 3</td>
<td># of Lanes</td>
<td># of Lanes</td>
</tr>
</tbody>
</table>

Data for the Short Method

When running the Short Method, you can select "TRIP TABLE CONVERSION". This program will convert a Texas Package ASCII format (12I6) trip table to TRANPLAN binary format. The resulting file can be loaded onto a network using the $LOAD HIGHWAY NETWORK function.

Data for the Long Method

When running the Long Method, "P/A DATA CONVERSION" should be selected. This will convert a Texas Package production-attraction file to TRANPLAN ASCII format. The default order assumed in the production-attraction conversion is as follows:

- Non-home-based trips
- Home-based work trips
- Home-based non-work trips
- External-local/local-external trips
- Truck and taxi trips

In some cases, the External-Local/Local-External trip purpose is omitted from the PNA file. The External-Local trips are then added into the total trip table after trip distribution (derived from the Texas Package downloaded trip table).

Friction factors by trip purpose are normally supplied and must be concatenated to the end of the production-attraction file (PNA). A DOS command can be used to concatenate files as follows:

C:>COPY file1 + file2 file3

where, file1 and file2 are the two files to be combined and file3 is the resulting output for use with TRANPLAN. Alternatively, you may use a text editor to join the files together.
In some areas "ZONAL RADII CONVERSION" is performed. The output is a list of zone interchanges with intrazonal impedances for use in the $MATRIX UPDATE function to replace the TRANPLAN default intrazonal impedance values. In some urban areas, the zonal radii intrazonal distribution method is not used; and this step is not necessary. Development and integration of the microcomputer version of the Texas Package Atom2 trip distribution procedure will require zonal radii.

Most urbanized areas will need to convert data only on specific occasions. A validated model network and trip table should be converted along with the production-attraction file. In some cases, production-attraction data will need to be converted when land use changes are made through TxDOT.
Chapter Six will present instructions on how to use HNIS in the TRANPLAN for Windows environment as well as review some of the most used aspects of this graphics network editing program. The topics covered are:

- Choosing a method to edit networks
- How to run the TRANPLAN for Windows version of HNIS
- Using HNIS to edit networks
- Using HNIS to display information
- Other helpful tips
Choosing an Editing System

TRANPLAN is accompanied by the Highway Network Information System (HNIS). HNIS is a full-featured, interactive graphics, network editing program. TRANPLAN networks and loaded networks can be edited or displayed in many different forms. For a full description of HNIS menus and commands, please refer to the HNIS manual.

HNIS can be divided into two main functional areas:

- Editing network information
- Displaying network attributes

TRANPLAN networks can be edited using one of the following methods:

- Edit the TRANPLAN format ASCII file with a text editor and then run $BUILD HIGHWAY NETWORK
- Edit the network in HNIS using TRANPLAN for Windows or DOS
- Create edit cards for $BUILD HIGHWAY NETWORK or $MACRO HIGHWAY NETWORK UPDATE

Although HNIS is perhaps the most appealing of the three methods, it is not always the most efficient solution. Editing the network ASCII file can be very time consuming and tedious, but it is sometimes more efficient than HNIS. However, network ASCII files should probably be edited only when one or two changes need to be made.

When large-scale editing is needed, such as creating a baseline alternative for a long-range plan or a thoroughfare plan where several hundred network changes are required, creating a $BUILD HIGHWAY NETWORK update file is probably the best solution. To save time and effort, you should plot a base map, draw the network changes, and code the attributes on forms, keeping a permanent copy of all the changes. For information on how to add, modify, and delete update records for input to the $BUILD HIGHWAY NETWORK function, refer to the TRANPLAN User Manual.
Some HNIS Tips

A time-saving feature of HNIS is the "STOP DRAW" function. When drawing a large network, press and hold the right mouse button. This will cause HNIS to cease drawing, saving time if you already have what you want drawn on the screen.

Another important editing feature is the "SETUP TEMP" function. This allows you to create a "template," a set of default attributes on a link. The "COPY TEMP" function is used to copy the default attributes to other links by just pointing the cursor at them, saving time.

When performing large-scale changes, a combination of the above methods may be suitable. Coding nodes using HNIS and links using $BUILD HIGHWAY NETWORK versus calculating node coordinates by hand may save time. Experimentation and experience will lead to the best coding application for you.

How to use HNIS for Windows

The following instructions detail the method of using the Highway Network Information System (HNIS) for Windows.

Step 1 Click on the Urbansys icon group.
Step 2 Double click on the HNIS icon and wait a few seconds for it to load.
Step 3 Click on the FILE and then OPEN. The OPEN dialogue box should now appear on your screen.
Step 4 Scroll through the “Current Directory” list of directories, and double click on the one where your network resides.
Step 5 Type in the filename of the network file (NET) or loaded network file (VOL) and click “OK”.
Step 6 Type 1000 for the units per kilometer (5280 for the units per mile). This factor is used when coding in a new link to determine straight line distance automatically.
Step 7 Type Y for the Capacity 1 Default.

The HNIS network is now ready for editing. Please read the rest of this chapter to learn how to use the HNIS application.

HNIS is suitable for small- or large-scale network modifications, although some computer systems and networks run rather slowly. Adding a route alignment alternative or changing capacities on a thoroughfare are good examples of HNIS editing capability. The advantage to using HNIS for editing is the interactive capability; you can see the changes as you make them.
Displaying Information with HNIS

HNIS is best suited to displaying information from a loaded network. Traffic volumes, traffic counts, and speeds can be displayed after a $LOAD HIGHWAY NETWORK has been run. One way to display information on links graphically is to select "POST SETUP", then select "POST LINK" or "AUTO POST", and then "REDRAW" the network. To display a list of all the attributes of a particular link, select "EDIT ATR"; and then close the menu without editing anything.

Figure 10. HNIS network editing screen

The assignment method recommended for use in Texas is the Incremental Capacity Restraint. TRANPLAN saves all five iterations on the output network file. When reading a loaded network, HNIS will prompt you for the "iteration for loaded volumes" and "iteration for loaded speeds". These are always set to the highest number of iterations that have been executed in the $LOAD HIGHWAY NETWORK run, usually five. When set to the highest iteration, HNIS will use the final iteration speeds and volumes to display and calculate minimum paths.

Capacity 1 or Capacity 2?

HNIS also prompts you for a default capacity. Capacity 1 is always used to store the theoretical daily capacity of the link. Capacity 2 is used to store an observed traffic count. This can be useful. Specifying Capacity 2 as the default will cause HNIS to calculate V/C and other volume/capacity comparisons (band
widths, colors) using the ground count. Thus a V/C ratio would really be a volume-to-ground count comparison.

Coloring Links with HNIS

Loading a network in all one color, usually white, is not descriptive. Therefore, a network can be colored by functional class if desired. Specify LINK COLOR in HNIS and choose the field where functional class is stored (usually LG1, which is short for "link group 1"). Then pick the color desired for each functional class, and re-draw the network. To choose the colors, click the mouse once on top of the color bars (see Figure 11). Then click on top of the coded link value, which will represent the color chosen. The coded link values are arranged starting at 0 and going through 9 on the first row, then starting with 10 and going through 19 on the second row, and so on.

Figure 11. The HNIS "LINK COLOR" option

The User Profile Option

The settings do not have to be specified each time you load HNIS. Save the desired color settings by picking "SAVE UPRF" (for "save user profile") and give HNIS a filename. The next time you load HNIS, select "READ UPRF" and "LINK COLOR" (by LG1); and the default color settings will be restored.

LOS Display with HNIS

To display the network in color according to level of service (LOS), select "CLR BAND" (for "color band"). Simply select V/C and choose the colors for the V/C ranges that define each level of service.
Comparing Alternatives on One Screen

Sometimes it is necessary to show the differences between two traffic assignment runs. HNIS provides a quick method to view the changes between alternatives graphically. The method to compare two traffic assignments is as follows:

1) Read either the base network into HNIS first or the loaded network upon which the alternative was coded.

2) Select "COMP NETS" (for "compare networks") and specify the Capacity 2 field as the place for the volumes from the second network.

3) Draw a band width comparison of the two traffic assignments using the "BAND AB" function and selecting volume, Capacity 2, or other comparison variables.

Detailed turning movement diagrams can be drawn quickly on the computer screen using HNIS. Turning movement nodes must be specified in the $LOAD HIGHWAY NETWORK function. The loaded network will then have turning movements saved for each node specified. In HNIS, select "TURN MOVES", and specify a node for which the turning movements were saved during the
traffic assignment. A detailed display and band width of all turning movements at that node will be displayed.

Figure 13. The HNIS turning movement diagram
CHAPTER SEVEN
CREATING PLOTS
WITH TRANPLAN

One of the most effective tools of the TRANPLAN modeling system is its ability to create highly informative plots. This chapter explains:

- How to create network plots
- How to create traffic assignment plots
- Tips to help send plots to your plotter
CREATING PLOTS WITH TRANPLAN

TRANPLAN Plotting Method

Plotting the network and traffic assignments of a TRANPLAN model run is one of the most important tasks you can perform. Effective displays of the information for public meetings and technical meetings can help create a successful project. Fortunately, creating plots with TRANPLAN is relatively simple, if you have all of the equipment and connections set up properly.

TRANPLAN plots are created with a function file. The output from the function is a plotter file which can be copied directly to your plotter. Plotters have different graphics languages, so you must specify the plotter in the TRANPLAN installation procedure. Many plotters will emulate, or interpret, the Hewlett-Packard Graphics Language (HPGL). HPGL is a common plotter format, and TRANPLAN is well suited for its use.

Copying a plotter file to your plotter can involve setting the attributes of the communications port on your computer (COMx, where x=1, 2, or 3). A sample TPLOT.BAT file is described in Chapter Two, which should simplify the task. If you are using Windows, the Print Manager will allow you to configure the plotter.

The following are some common examples of $PLOT HIGHWAY NETWORK and $PLOT HIGHWAY LOAD function files.

Base Network Plot

In this example, all links, nodes, zones, centroid connectors, and zone/node numbers will be plotted for the entire network. If only a portion of the network is desired, add a MINIMUM and a MAXIMUM X and Y in the SPARAMETERS section. The SELECTION ATTRIBUTE in this case is ASSIGNMENT GROUP, the field in which functional classification is stored. Each COLOR statement refers to a pen position in the order in which they occur (a black pen would be loaded into pen position 1 on the plotter, etc.).

```
$PLOT HIGHWAY NETWORK
$FILES
INPUT FILE = HWYNET, USER ID = $HWYNET.DAT
OUTPUT FILE = TPLOT, USER ID = $PLOTNET.DAT
$HEADERS
$OPTION
DASHED CENTROID LINKS
$PARAMETERS
```
In the example below, the $PLOT HIGHWAY LOAD function is used to plot a network with volumes posted on each link. The links will be drawn using the pen placed in position 1 on the plotter.

$PLOT HIGHWAY LOAD
$FILES
 INPUT FILE = LODHIST, USER ID = INCASSN.DAT$
 OUTPUT FILE = TPLOT, USER ID = PLOTVOL.DAT$
$HEADERS
 PLOT HIGHWAY LOAD
 VOLUMES FROM INCREMENTAL ASSIGNMENT
$OPTION
 NO CENTROID LINKS
 ONLY CENTROID NODES
$PARAMETERS
 PLOTTER = HP7475
 PAPER = NORMALA
 PLOT SIZE = 8
 MINIMUM X = 36600
 MAXIMUM X = 41000
 MINIMUM Y = 10500
 MAXIMUM Y = 14800
 CHARACTER HEIGHT = 0.06
 LINK ANNOTATION = VOLUME CAPACITY RATIO
$DATA
$END TP FUNCTION

In this example, the network will be colored according to the level of service. A range for the V/C ratio is defined for each LOS and is used for the SELECTION ATTRIBUTE.

$PLOT HIGHWAY LOAD
$FILES
 INPUT FILE = LODHIST, USER ID = INCASSN.DAT$
 OUTPUT FILE = TPLOT, USER ID = PLOTVC.DAT$
$HEADERS
 PLOT HIGHWAY LOAD
 VOLUME/CAPACITY RATIO FROM INCREMENTAL ASSIGNMENT
$OPTION
 NO CENTROID LINKS
Volume Band Width Plot

The BAND WIDTH FACTOR in the setup below will cause TRANPLAN to plot a band width of the attribute in the LINK ANNOTATION statement. The factor 0.00002 is multiplied by the total volume which will result in a band width of 50,000 vehicles per inch. The BAND INCREMENT specifies the spacing between fill lines; 0.06 will cause a partial filling of the bands.

$PLOT$
$HIGHWAY$
$LOAD$

$FILES$
INPUT FILE = LODHIST, USER ID = $INCASSN.DAT$
OUTPUT FILE = TPLLOT, USER ID = $PLOTBAND.DAT$

$HEADERS$

PLOT HIGHWAY LOAD
BAND WIDTHS OF VOLUMES FROM INCREMENTAL ASSIGNMENT

$OPTION$
SUPPRESS NODE NUMBERS
NO CENTROID LINKS

$PARAMETERS$
PLOTTER = HP7595
PAPER = EXPANDB
PLOT SIZE = 11
MINIMUM X = 12000
MAXIMUM X = 17000
MINIMUM Y = 19000
MAXIMUM Y = 22800
LINK ANNOTATION = TOTAL VOLUME
BAND WIDTH FACTOR = 0.00002
BAND INCREMENT = 0.06

$DATA$

$END TP FUNCTION$
Plotting Paths

The $PLOT HIGHWAY PATHS function will plot a "tree" of the shortest paths from the root zone to all other zones. The root zone is specified in the SELECTED ZONES statement. This function is a good way to check the connectivity of your network.

```
$PLOT HIGHWAY PATHS
$FILES
  INPUT FILE = HWYNET, USER ID = $HWYNET.DAT$
  OUTPUT FILE = TPLLOT, USER ID = $PATH.PLTS$
$HEADERS
  PLOT HIGHWAY PATHS
  SELECTED ORIGIN ZONE = 1
$OPTION
  SUPPRESS NODE NUMBERS
$PARAMETERS
  PLOTTER = HP7475
  PAPER = NORMALA
  IMPEDANCE = TIME2
  SELECTED ZONES = 1
  PLOT SIZE = 8
  SELECTION ATTRIBUTE = ASSIGNMENT GROUP
$DATA
  COLOR = BLACK, ATTRIBUTE = 0-9
$END TP FUNCTION
```
This chapter describes some of the more important TRANPLAN reporting functions. TRANPLAN reports can be generated to print:

- Network and minimum path information
- Traffic assignment summaries
- Trip table and travel time matrices
The TRANPLAN function REPORT HIGHWAY NETWORK will produce four important reports:

1) A list of unused nodes (helpful in avoiding coding duplicate nodes when adding new network links)

2) A detailed, formatted printout of all network links or selected groupings based on area (WINDOW), ASSIGNMENT GROUP, or LINK GROUP

3) A list of nodes and coordinates

4) A list of turn prohibiter nodes

In the following, sample setup file network links are printed for $LINK GROUP 1 codes of 1, 6, and 7.

$REPORT HIGHWAY NETWORK
$FILES
 INPUT FILE = HWYNET, USER ID = $HWYNET.DAT$
$HEADERS
REPORT HIGHWAY NETWORK
$OPTION
PRINT UNUSED NODES
PRINT COORDINATES
$PARAMETERS
IMPEDANCE = TIME2
LINK GROUP 1= 1,6-7
$END

REPORT HIGHWAY NETWORK

NODE COORDINATES

<table>
<thead>
<tr>
<th>NODE</th>
<th>X-COORD</th>
<th>Y-COORD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8600</td>
<td>6000</td>
</tr>
<tr>
<td>2</td>
<td>8600</td>
<td>2900</td>
</tr>
<tr>
<td>3</td>
<td>5000</td>
<td>5000</td>
</tr>
<tr>
<td>4</td>
<td>4000</td>
<td>6500</td>
</tr>
<tr>
<td>5</td>
<td>1700</td>
<td>2500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NODE</th>
<th>X-COORD</th>
<th>Y-COORD</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4300</td>
<td>2800</td>
</tr>
<tr>
<td>7</td>
<td>4300</td>
<td>1100</td>
</tr>
<tr>
<td>8</td>
<td>7000</td>
<td>1100</td>
</tr>
<tr>
<td>9</td>
<td>1400</td>
<td>500</td>
</tr>
<tr>
<td>10</td>
<td>9200</td>
<td>500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NODE</th>
<th>X-COORD</th>
<th>Y-COORD</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>1500</td>
<td>4000</td>
</tr>
<tr>
<td>12</td>
<td>2500</td>
<td>102</td>
</tr>
<tr>
<td>13</td>
<td>2500</td>
<td>1700</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NODE</th>
<th>X-COORD</th>
<th>Y-COORD</th>
</tr>
</thead>
<tbody>
<tr>
<td>108</td>
<td>2500</td>
<td>500</td>
</tr>
<tr>
<td>109</td>
<td>3100</td>
<td>6000</td>
</tr>
<tr>
<td>110</td>
<td>4000</td>
<td>6000</td>
</tr>
<tr>
<td>111</td>
<td>5000</td>
<td>6000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NODE</th>
<th>X-COORD</th>
<th>Y-COORD</th>
</tr>
</thead>
<tbody>
<tr>
<td>112</td>
<td>4000</td>
<td>4000</td>
</tr>
<tr>
<td>113</td>
<td>6000</td>
<td>4000</td>
</tr>
<tr>
<td>114</td>
<td>4000</td>
<td>6000</td>
</tr>
<tr>
<td>115</td>
<td>5000</td>
<td>4000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NODE</th>
<th>X-COORD</th>
<th>Y-COORD</th>
</tr>
</thead>
<tbody>
<tr>
<td>116</td>
<td>6000</td>
<td>126</td>
</tr>
<tr>
<td>117</td>
<td>6000</td>
<td>1700</td>
</tr>
</tbody>
</table>

REPORT HIGHWAY NETWORK

TURN PROHIBITOR REPORT

<table>
<thead>
<tr>
<th>FROM</th>
<th>THROUGH</th>
<th>TO</th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
<td>120</td>
<td>122</td>
</tr>
<tr>
<td>235</td>
<td>140</td>
<td>138</td>
</tr>
<tr>
<td>231</td>
<td>128</td>
<td>230</td>
</tr>
</tbody>
</table>
Minimum path trees, can be reported from a network before or after traffic assignment. This report can be useful in determining the paths chosen when loading each iteration (or increment of the trip table) of the traffic assignment in $LOAD HIGHWAY NETWORK. Specify the parameter "SELECTED ITERATIONS =" to report a path from an incremental traffic assignment.

Two reports are produced by the REPORT HIGHWAY PATHS function. A "non-destructive" trace will produce a string of nodes backwards from the destination zone to the home node or zone (specified in the SELECTED ZONES statement). Also, the travel time is reported from the home node to each node in the node string. A "destructive" trace will trace all nodes backward to the home node without duplicating a path already traced.

The following setup will produce both destructive and non-destructive trace reports for Zones 1 through 4, and Zone 8.
Printing Traffic Assignment Data

Several TRANPLAN functions will produce reports of selected iterations from a traffic assignment. The functions include:

- $\text{REPORT HIGHWAY NETWORK}$
- $\text{REPORT HIGHWAY LOAD}$
- $\text{REPORT HIGHWAY NETWORK SUMMARY}$
- $\text{REPORT HIGHWAY INCREMENTAL SUMMARY}$

All of the functions produce reports which are best suited to a particular piece of information which may be desired.
Printing Traffic Volumes

$REPORT HIGHWAY LOAD will produce a report of volumes in A-B, B-A, and both directions. Also, a matrix report for each turning movement node is reported. Below is a sample function file:

```
$REPORT HIGHWAY LOAD
$FILES
  INPUT FILE = LODHIST, USER ID = $INCASSN.DAT$
$HEADERS
  REPORT HIGHWAY LOAD
$OPTIONS
  MINIMUM REPORT
  PRINT TURNS
$END TP FUNCTION
```

```
REPORT HIGHWAY LOAD
LINK VOLUME REPORT OF ALL-OR-NOTHING
ASSIGNED VOLUMES -- 100 PERCENT LOADING -- PURPOSE 1

<table>
<thead>
<tr>
<th>ANODE</th>
<th>BNODE</th>
<th>A-B</th>
<th>B-ATWOWAY</th>
<th>ANODE</th>
<th>BNODE</th>
<th>A-B</th>
<th>B-ATWOWAY</th>
<th>ANODE</th>
<th>BNODE</th>
<th>A-B</th>
<th>B-A TWOWAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>130</td>
<td>27572</td>
<td>27574</td>
<td>2</td>
<td>134</td>
<td>25750</td>
<td>24217</td>
<td>3</td>
<td>102</td>
<td>2354</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>144</td>
<td>9905</td>
<td></td>
<td>118</td>
<td>5663</td>
<td>13657</td>
<td></td>
<td>152</td>
<td>24684</td>
<td>19045</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>23074</td>
<td>23074</td>
<td>5</td>
<td>106</td>
<td>33582</td>
<td>33581</td>
<td>6</td>
<td>230</td>
<td>6450</td>
<td>4918</td>
</tr>
<tr>
<td></td>
<td></td>
<td>123</td>
<td>23074</td>
<td></td>
<td>230</td>
<td>6450</td>
<td>4918</td>
<td></td>
<td>11355</td>
<td>28252</td>
<td>35369</td>
</tr>
<tr>
<td>7</td>
<td>231</td>
<td>27429</td>
<td>31296</td>
<td>8</td>
<td>235</td>
<td>36628</td>
<td>48068</td>
<td>9</td>
<td>108</td>
<td>14905</td>
<td>13427</td>
</tr>
<tr>
<td></td>
<td></td>
<td>235</td>
<td>36628</td>
<td></td>
<td>235</td>
<td>35641</td>
<td>61352</td>
<td></td>
<td>27074</td>
<td>10480</td>
<td>35316</td>
</tr>
<tr>
<td>10</td>
<td>142</td>
<td>18874</td>
<td>18874</td>
<td>11</td>
<td>104</td>
<td>21822</td>
<td>21821</td>
<td>100</td>
<td>4</td>
<td>23074</td>
<td>23074</td>
</tr>
<tr>
<td></td>
<td></td>
<td>146</td>
<td>15043</td>
<td></td>
<td>146</td>
<td>15043</td>
<td>15044</td>
<td></td>
<td>102</td>
<td>9024</td>
<td>7625</td>
</tr>
</tbody>
</table>

REPORT HIGHWAY LOAD
LINK VOLUME REPORT OF ALL-OR-NOTHING
ASSIGNED TURN VOLUMES -- 100 PERCENT LOADING -- PURPOSE 1

<table>
<thead>
<tr>
<th>AT</th>
<th>FROM TO</th>
<th>SUM IN</th>
<th>TWOWAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>104</td>
<td>116</td>
<td>206</td>
<td>104</td>
</tr>
<tr>
<td>165</td>
<td>1764</td>
<td>0</td>
<td>1764</td>
</tr>
<tr>
<td>204</td>
<td>1126</td>
<td>0</td>
<td>1126</td>
</tr>
</tbody>
</table>

SUM OUT 1764 6507 3063

Printing Link Groups and VMT

The $REPORT HIGHWAY NETWORK SUMMARY function will produce several reports on groups of links. This function is useful in analyzing the gross effects of major system alternatives, such as changes in vehicle kilometers traveled (vehicle miles traveled) and volume of travel crossing screenlines. A report by screenline of traffic counts and estimated volumes can be produced.

Page 64 TRANPLAN Application Guide
by specifying the option "CAPACITY 2" and placing ground counts in the Capacity 2 field of the network.

The following example illustrates the $REPORT HIGHWAY NETWORK SUMMARY function:

$REPORT HIGHWAY NETWORK SUMMARY
$FILES
  INPUT FILE = LODHIST, USER ID = $INCASSN.DAT$
$HEADERS
REPORT HIGHWAY NETWORK SUMMARY
$OPTIONS
$PARAMETERS
  SCREENLINE = 1, LINK = 120-130,130-120,124-132,132-124,126-235,  
  235-126,128-236,236-128,218-220,206-208
  SCREENLINE = 2, LINK = 104-102,102-104,202-204,222-224,122-124,  
  124-122,130-132,132-130
$DATA
  ID, V/C RATIO RESULTS BY FUNCTIONAL CLASSIFICATION
  TABLE = 1, UNITS = VEHICLE-DISTANCE,
  LINK CODE = ASSIGNMENT GROUP, RANGES = 1,2,3,4,
  TABLE = 2 UNITS = VOLUME/CAPACITY
  LINK CODE = ASSIGNMENT GROUP, RANGES = 1,2,3,4
$END TP FUNCTION

REPORT HIGHWAY NETWORK SUMMARY
FOR LOADING OF ALL-OF-NOTHING
TABLE NO. 1 -- V/C RATIO RESULTS BY FUNCTIONAL CLASSIFICATION
TABLE UNITS -- VEHICLE-MILES

<table>
<thead>
<tr>
<th>ASSIGNMENT GROUP</th>
<th>VV</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>52662.6</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>155632.0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>719787.0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>452798.7</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>1360851.0</td>
<td></td>
</tr>
</tbody>
</table>

TABLE NO. 3 --
TABLE UNITS -- VOLUME/CAPACITY

<table>
<thead>
<tr>
<th>ASSIGNMENT GROUP</th>
<th>VV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.14</td>
</tr>
<tr>
<td>2</td>
<td>.45</td>
</tr>
<tr>
<td>3</td>
<td>.86</td>
</tr>
<tr>
<td>4</td>
<td>.00</td>
</tr>
<tr>
<td>TOTAL</td>
<td>.90</td>
</tr>
</tbody>
</table>

SCREEN LINE VOLUME REPORT
SCREEN LINE NO. 1

<table>
<thead>
<tr>
<th>A-NODE</th>
<th>B-NODE</th>
<th>VOLUME</th>
<th>CAPACITY</th>
<th>V/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>130</td>
<td>18912</td>
<td>20000</td>
<td>0.95</td>
</tr>
<tr>
<td>130</td>
<td>120</td>
<td>14231</td>
<td>20000</td>
<td>0.71</td>
</tr>
<tr>
<td>124</td>
<td>122</td>
<td>4371</td>
<td>20000</td>
<td>0.22</td>
</tr>
<tr>
<td>126</td>
<td>235</td>
<td>-29782</td>
<td>30000</td>
<td>-0.99</td>
</tr>
<tr>
<td>235</td>
<td>126</td>
<td>-19107</td>
<td>30000</td>
<td>-0.64</td>
</tr>
<tr>
<td>128</td>
<td>236</td>
<td>13805</td>
<td>20000</td>
<td>0.69</td>
</tr>
<tr>
<td>236</td>
<td>128</td>
<td>10615</td>
<td>20000</td>
<td>0.53</td>
</tr>
<tr>
<td>218</td>
<td>202</td>
<td>4923</td>
<td>40000</td>
<td>0.1</td>
</tr>
<tr>
<td>206</td>
<td>208</td>
<td>6875</td>
<td>40000</td>
<td>0.17</td>
</tr>
<tr>
<td>SCREEN LINE TOTAL</td>
<td>28360</td>
<td>260000</td>
<td>0.11</td>
<td></td>
</tr>
</tbody>
</table>
$REPORT HIGHWAY INCREMENTAL SUMMARY

$FILES
INPUT FILE = LODHIST, USER ID = $1NCASSN.DAT$

$HEADERS
REPORT HIGHWAY INCREMENTAL SUMMARY

$OPTIONS
PRINT LINK SUMMARY
PRINT GROUND COUNT COMPARISON

$END TP

REPORT HIGHWAY INCREMENTAL SUMMARY
INCREMENTAL SUMMARY
LOADED LINK SUMMARY REPORT

PERCENT ACCUM PCT
AVE
VOL GROUP SECTIONS CNT PRO. VOL DIFFERENCE DEVIATION AVE COUNT TOTAL AVERAGE SQUARE R.M.S. VOLUME PCT AVE CNT

1-1000 1 873 0 873 0 0 0 1 1 873 100 0 0 0
1001-2000 3 1751 2931 -1179 2573 140.2 0.4 60.1 2831 161.1 1061 60.6
2001-3000 5 2213 2990 -777 4790 200.1 1 227.7 4932 222.9 907 141
3001-5000 9 3767 2493 1274 2216 58.8 2.6 155.4 2556 67.9 673 17.9
5001-7000 8 5870 9521 -3651 6185 105.4 3.7 385.6 7182 122.4 2792 47.6
7001-10000 15 8959 13858 -4605 10083 115.7 10.5 121.3 11340 126.6 4103 45.8
10001-15000 12 12980 11004 1976 9173 70.7 12.1 857.7 9084 72.3 3103 23.9
15001-20000 25 17821 14938 2883 7864 44.1 3.4 1532 8376 47 4431 24.9
20001-25000 5 22413 2297 20116 2355 10.5 8.7 91.8 20253 90.4 596 2.7
25001-30000 12 27944 16606 11388 13540 48.5 26.1 1266.1 17680 63.2 5165 18.5

TOTAL 96 13368 10886 2482 10600 78.5 100 7854.7 10789 80.7 3245 24.3
Printing Matrix Data

There are two basic types of matrices that are used with TRANPLAN:

- Trip matrices
- Travel impedance matrices

A trip matrix is one or many tables representing trips from all origins to all destinations (zones) contained in a unique file. For instance, a trip matrix can contain a table for all trip purposes combined and tables for each of the trip purposes separately.

Another type of matrix is the travel impedance matrix. This contains the minimum path travel impedances (time or distance) from all origin zones to all destination zones. Travel impedance matrices can have several tables also. In a TRANPLAN impedance matrix, the tables on an impedance matrix are reserved according to the following:

<table>
<thead>
<tr>
<th>TABLE</th>
<th>IMPEDANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cost</td>
</tr>
<tr>
<td>2</td>
<td>Distance</td>
</tr>
<tr>
<td>3</td>
<td>Time 1</td>
</tr>
<tr>
<td>4</td>
<td>Time 2</td>
</tr>
</tbody>
</table>

Functions to Print Matrix Data

There are two basic functions which will print matrix information:

- $REPORT MATRIX
- $MATRIX COMPRESS

Printing a Large Matrix File

$REPORT MATRIX is useful for reporting selected origin zones and trips or travel times to all other zones on a large matrix. It is not efficient to print an entire matrix using $REPORT MATRIX. A 200 by 200 matrix will produce 40,000 cell entries and many pages of output. However, $REPORT MATRIX can selectively print just a few rows from the matrix.

The following example shows the typical function file for printing an impedance matrix. The "SELECTED IMPEDANCES =" statement refers to the table number on the matrix.
The example below is a useful tool for printing trips and trip ends. The trip ends are actually the column and row totals from the selected zones in the matrix.

```
REPORT MATRIX
$FILES
INPUT FILE = RTABIN, USER ID = $HWYSKIM.DAT$
$HEADERS
REPORT SEPARATION MATRICES
$OPTIONS
PRINT TABLE
$PARAMETERS
SELECTED IMPEDANCES = TIME 2
SELECTED ZONES = 2, 4, 8
$END TP FUNCTION

REPORT SEPARATION MATRICES

<table>
<thead>
<tr>
<th>ORIGIN ZONE</th>
<th>2 SKM VALUE</th>
<th>TIME 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO ZONE</td>
<td>-1-</td>
<td>-2-</td>
</tr>
<tr>
<td>11</td>
<td>20.36</td>
<td></td>
</tr>
</tbody>
</table>

The example below is a useful tool for printing trips and trip ends. The trip ends are actually the column and row totals from the selected zones in the matrix.

```

```
REPORT FOR TRIP ENDS AND TABLE

<table>
<thead>
<tr>
<th>ORIGIN ZONE</th>
<th>1 PURPOSE 1 154500 TOTAL ORIG/Pbud</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO ZONE</td>
<td>-1-</td>
</tr>
<tr>
<td>1</td>
<td>110250</td>
</tr>
<tr>
<td>11</td>
<td>2384</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ORIGIN ZONE</th>
<th>2 PURPOSE 1 135000 TOTAL ORIG/Pbud</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO ZONE</td>
<td>-1-</td>
</tr>
<tr>
<td>1</td>
<td>2581</td>
</tr>
<tr>
<td>11</td>
<td>1619</td>
</tr>
</tbody>
</table>
Producing a Summary Trip Table

$MATRIX COMPRESS will print and/or produce an output trip table that contains an aggregate of zones into districts. The $DATA section of the function file contains specifications for the aggregation of zones to districts. The zone-to-district equivalencies will need to be sketched out on a plot. $MATRIX COMPRESS is useful for printing (or creating a file) the entire trip matrix to check trip totals and travel patterns. Since the $DATA section aggregates zonal values, this function is not recommended for use with travel impedance matrices. Aggregated zone-to-zone impedances are not useful.

```
$MATRIX COMPRESS
$FILES
  INPUT FILE = COMPIN, USER ID = $ODTABLE.DAT$
$HEADERS
  REPORT COMPRESSED TABLE
$OPTIONS
  PRINT COMPRESSED MATRIX
$PARAMETERS
  NUMBER OF DISTRICTS = 4
$DATA
  DISTRICT = 1, ZONES = 1-100
  DISTRICT = 2, ZONES = 101-200
  DISTRICT = 3, ZONES = 201-300
  DISTRICT = 4, ZONES = 301-325
$END TP FUNCTION
```
TRANPLAN is operated most often using the function files. However, sometimes it is necessary to manipulate TRANPLAN input and output to suit a specific need. TRANPLAN utilities can help.
The TRANPLAN package provides several utilities to perform operations on TRANPLAN files outside the function file framework. Many of the utilities can be used to convert TRANPLAN information to a format that can be used in other programs, such as spreadsheets, database management systems, and geographic information systems.

These utilities are located under the "C:\URBANSYS" subdirectory. This subdirectory must be specified in the AUTOEXEC.BAT file in order to have the ability to execute them from any working subdirectory from the DOS prompt. All of the utilities are executed by entering the name of the utility at the DOS prompt or clicking on the name of the utility in Windows.

The miscellaneous utilities in TRANPLAN for Windows operate in a fashion similar to the operation of the TRANPLAN function user interface. The “Miscellaneous Utilities” icon is prepared by clicking on the Urbansys program group window, choosing File, New, Program Item, and entering “C:\URBANSYS\TPMISC.EXE” in the “command line” box.

After double clicking on the icon to start the TRANPLAN Miscellaneous program, the current directory has to be set in the same manner as performed for the TRANPLAN function window. Then the executable file can be run by either double clicking on the name or highlighting the name and clicking the “Run” button.

In the “C:\URBANSYS” directory the file “MISC.LST” contains names of the executable programs (EXE or BAT) which can be used via the TPMISC Windows program icon. It is possible to add to this file the names of other non-TRANPLAN, executable files. One example is the addition of the file name “DOWN.BAT” which can then be executed through the TPMISC icon.

Network conversion utilities provided with TRANPLAN include NETCARD, LODPAK, and LODUNP. NETCARD converts a TRANPLAN binary format network or a TRANPLAN loaded network into ASCII format. LODUNP converts a loaded TRANPLAN network into ASCII format.
NETCARD will prompt for an input filename and an output filename. It will also ask if you wish to report speeds or travel times. The output is a formatted ASCII file capable of being used as the input data in the $BUILD HIGHWAY NETWORK function. Therefore, NETCARD can be used to convert a TRANPLAN binary network to ASCII and to edit the ASCII file directly with a text editor.

NETCARD Formats

NETCARD stores all nodes and links on the same ASCII file. The links normally follow the nodes. There are two types of node formats:

- Large Coordinate format places one node, X-coordinate, and Y-coordinate on each line.
- Default format places several nodes and their coordinates on each line. However, the coordinate values cannot be more than 9,999.

The tables in the Appendix define the NETCARD node and link formats.

Defining Speed and Time in NETCARD

Note that the Speed/Time Flag will be an "S" for speeds and a "T" for times. If the B-A direction Speed/Time Flag is neither an "S" nor a "T", but is a "2", then the B-A direction variable fields are left blank. In this case, the B-A direction variables are identical to the A-B direction variables. If the Speed/Time Flag is a "1", then the link has only an A-B direction.

Loaded Networks and NETCARD

When converting a network prior to it being loaded, columns 39-44 and columns 68-73 will contain information coded as Capacity 2. Ground counts are normally placed in this field. Conversion of a loaded network after traffic assignment will cause NETCARD to ask whether you want the Capacity 2 field as initially coded or as loaded volumes to be placed in columns 39-44 and 68-73.

NETCARD also asks if you want a specific iteration travel time to be placed in the Time 2 field. During an incremental capacity restraint assignment, the travel times are updated according to the V/C ratio on the link at each iteration.

The NETCARD program will prompt the user to specify two-way output or "only one-way output." The "only one-way output option" will produce one record for each direction of a facility (two records for each two-way link).
Also, the user may specify if header records are to be placed as the first three records on the output ASCII file.

Converting TRANPLAN Matrix Files

The TRANPLAN utilities CARDTP will convert a matrix from "card" or ASCII format to TRANPLAN binary format. TPCARD will convert from TRANPLAN binary to ASCII format. There are a few variations of the original programs, notably TPCARD1. TPCARD1 will output an ASCII format file with the origin zone, destination zone, and number of trips on each line.

Peeking at TRANPLAN Files

A utility program used to "peek" at a description of a TRANPLAN file is called HEADER. This utility will list any information on a TRANPLAN binary format file which was coded under the "$HEADERS" section of the function by which it was created. Also, HEADER will give miscellaneous information about the contents of the file, depending on the file type.

TRANPLAN Turning Movements Utility

An executable program, TURNS.EXE, will produce a file containing a formatted list of turning movement data from a TRANPLAN loaded network. The program will prompt you on the desired sort field and produce a list of turning movements with the "from" node, "through" node, "to" node, and turn volumes on each line.

Network Distance Checking

Another TRANPLAN utility, "CHEKDIST.EXE" will compare the coded distance in any NET or VOL network file to the calculated straight-line distance from the coordinates in the file. A ratio and absolute difference tolerance can be specified for reporting to the output report file.

Comparing Two Networks

The utility program "COMPNET.EXE" will compare the variables in two networks files, NET or VOL. This is particularly useful in reporting the differences between two traffic assignment files (VOL) on a link-by-link basis. The program will accept a minimum reporting difference as a tolerance level.
CHAPTER TEN
ALTERNATIVES ANALYSIS USING TRANPLAN

This chapter provides descriptive examples of alternatives analysis using the TRANPLAN model. Specific cases are outlined for:

- Transportation system alternatives
- Travel demand alternatives
The typical procedure for developing and maintaining a travel model is the same regardless of software or hardware used. The following steps are used in travel demand forecasting:

1) Model calibration
2) Model validation
3) Baseline forecasting or first alternative
4) Alternatives analysis

First, the model is developed from travel survey information; and the main parameters, such as gravity model friction factors, are calibrated.

Second, a test run of the model is performed to simulate existing conditions (or a recent year). The ADT estimates produced by the model are compared to traffic counts, and the model is adjusted to correlate with the observed data. This process is called validation. The validation of a model can be done to ground counts from the same year as the calibrated data or from another, more recent year.

Third, a baseline forecast is done using a horizon year (20-year) network representing projects that are funded or committed. The baseline forecast is then used to compare separate alternative changes to the network or activity level.

Changes from the baseline forecast can be made in one of two ways:

1) A change in the network
2) A change in the activity level (or travel demand level)

A change in the network represents an addition (or subtraction) of supply to the system either in additional facilities or by adding capacity to existing links. A change in the demand can be a result
of a change in the amount of employees or households, such as the addition of a shopping center or residential area. Also, an increase or decrease in activity level can result from a change in travel demand (for highways) introduced by reduced travel or transit mode choice.

The steps followed when testing an alternative are:

1) Determine the scenario
2) Code the network or land use change
3) Run the appropriate TRANPLAN functions
4) Analyze and document the alternative assumptions and results

As you can see, one of the major points to be determined in the alternatives analysis scheme is the choice of year for the test. The choice of a future year will show what will happen if the alternative is to be in place in the future year -- along with all the other facilities and travel demand for that year. Similarly, the choice of a year close to the present year will result in an estimate which reflects conditions close to the present. It is imperative that all of the assumptions regarding levels of travel demand and facilities coded into the model files are taken into account.

Testing a Capacity Change

One basic question asked concerning a travel demand model is, "What will happen if the performance of the transportation system is improved?" An increase in the number of lanes could result in decreased congestion but may unexpectedly attract additional traffic.

The first step is to determine the scenario. What is the question that you are trying to answer regarding the capacity change? Is the change going to take place in the near future or is it a long-term (20-year) idea? Which network should be used? Which demographics (trips) should be used?

Once the scenario is assumed, the network should be coded to reflect the capacity change. The network speeds and capacities should be clearly defined and consistently applied within your study area. Link speeds and capacities are based on tables by functional class, area type, and number of lanes. Since areas may differ, you should obtain the look-up table specific to your area.
directly from TxDOT Division of Transportation Planning and Programming.

In the following example, a mid-range forecast year was chosen to test the capacity change by the addition of lanes on an arterial. A previous model run has created the trip table. Thus, the steps needed to test the network change are:

1) Code and check the network change

2) Run only the traffic assignment with the new network

3) Plot and compare the results of the capacity change to the base network

In this case, the network was coded using HNIS. A template was used (SET TEMP) with all of the correct speeds and capacities. The template was then copied (COPY TEMP) to each of the links to be changed. A visual inspection of the capacity changes was performed by posting the capacities on each link in HNIS. Then the following function was run using the existing trip table:

```plaintext
$LOAD HIGHWAY NETWORK
$FILES
INPUT FILE = HWYNET, USER ID = $C:\NEWNET.95$
INPUT FILE = HWYTRIP, USER ID = $BASE95.00$
OUTPUT FILE = LODHIST, USER ID = $NEW95.VOL$
$HEADER
LOAD HIGHWAY NETWORK
1995 325-ZONE NETWORK
CAPACITY CHANGE ON 25TH STREET FROM A ST. TO M ST.
$OPTIONS
BASE NETWORK
ADJUST 100
$PARAMETERS
IMPEDANCE = TIME2
LOAD PERCENTAGES = 15,15,20,20,30
$DATA
ASSIGNMENT GROUP = 0-9, XYDATA = (0.0,1.087) (0.5,1.076) (1.0,0.935)
(1.5,0.595) (2.0,0.301) (2.4,0.167)
(4.0,0.167)
$END TP FUNCTION
```

A plot was made of the two assignments: the base network and the new network with the capacity change. After inspection of the plot, HNIS was used to compare the two traffic assignments using the "COMP NETS" feature. Finally, all assumptions were documented.
Testing the impacts of a change in the travel demand caused by an increase in employment or households is more involved than network modification. Many new elements are added to the system when new development occurs. The basic four steps are followed (determine the scenario, code the change, run the model, analyze the results) but with many new questions:

- How much traffic will the development create?
- At what points will there be access to the development?
- From what direction will most of the traffic be coming from? What effect will street improvements have on this?

Many of these questions will need to be answered with assumptions prior to running the model. The model can then be used to:

- Tell which direction the demand will be coming from, and
- Tell what impact the additional traffic will have on the existing (or proposed) street system.

The number of vehicle trips can be obtained by projecting the number of employees or households and other variables such as income that are expected to be created by the land use change or change in activity level within the zone. The projected employment (basic, retail, and service) or households (by household size and income range) is then factored by trip generation rates for the urban area in question. The trip generation rates, for both productions and attractions, can be obtained from the TxDOT Division of Transportation Planning and Programming.

Vehicle trip attractions and productions are produced by multiplying the employees or households by the appropriate trip rate in the table obtained from TxDOT. These are coded using a text editor directly in the appropriate column of the ASCII production-attraction file.

An alternative method is to use the microcomputer version of TRIPCAL5, the trip generation program used by TxDOT.
Balancing Productions and Attractions

After the productions and attractions are calculated, the balance between total productions and attractions in the urban area needs to be checked. The ratio of total productions to total attractions needs to be in the range of 0.90 to 1.10. Additional productions or attractions may need to be added to the data set, or a simple re-allocation from other zones should take place to ensure an adequate balance. A special set of programs used to perform re-allocation or proportional balancing has been developed by TTI and TxDOT. The procedure for using these programs can be found in the TTI Research Report #1235-16F, “TRANPLAN Corridor Analysis: Procedures Guide.”

Special generators are activities which create an amount of trips that is not in line with the standard trip generation rates. Examples of special generators may include airports, theme parks, hospitals, universities, and regional shopping malls. Trip productions and attractions for these facilities can be estimated from ground counts.

After the production-attraction file is updated, the following TRANPLAN function files can be executed in sequence. Following each function file is a brief description of what function it performs.

$BUILD HIGHWAY NETWORK
$FILE
 INPUT FILE = NETDATA, USER ID = $J87LNKXY.ANT$
 OUTPUT FILE = HWYNET, USER ID = $J87HWY.NET$
$HEADERS
 BUILD HIGHWAY NETWORK
 681 ZONES
$OPTIONS
 LARGE COORDINATES
 NETDATA
$PARAMETERS
 NUMBER OF ZONES = 681
 MAXIMUM NODE = 9999
 ERROR LIMIT = 50
$END TP FUNCTION

The above function requires the input of an ASCII format ANT network file which describes the roadways in the urban area, including centroid connectors. The option “NETDATA” tells TRANPLAN that an input ANT file is being loaded. The option “LARGE COORDINATES” specifies the format of the node data on the input ANT file (see Appendix). The number of zones should be all of the zones inside the study area including external stations. The parameter “ERROR LIMIT=50” tells TRANPLAN that if it encounters over 50 errors to stop processing and create an output report. This ensures that, if an error exist for each of 6,000 links, only 50 of those will be reported; and the program will end so that the analyst can make corrections.
Second Function for Long Method

$HIGHWAY SELECTED SUMMATION
$FILE
 INPUT FILE = HWYNET, USER ID = $J87HWY.NET$
 OUTPUT FILE = HWYSKIM, USER ID = $J87SKIM.SEL$
$HEADERS
 SKIM THE MINIMUM IMPEDANCE PATHS
$PARAMETERS
 IMPEDANCE = TIME 2
$DATA
 TABLE = TIME 2
$END TP FUNCTION

The $HIGHWAY SELECTED SUMMATION function requires input of a TRANPLAN binary unformatted network file (NET). This function traces the minimum route from each zone to all other zones and stores the cumulative travel time (or impedance) in a matrix file. Although it is possible to code speeds in kilometers per hour (miles per hour) in HNIS or directly into an ANT file, TRANPLAN always stores travel time in the binary network files (NET or VOL). Thus, under the $PARAMETERS section, the impedance specified for the minimum path building is “TIME 2.” There are two fields for speed coding in TRANPLAN using HNIS or directly into an ANT file. Depending on which field is chosen to store coded speeds, TRANPLAN will convert the speeds to travel time in hundredths of minutes and store them in the NET file in the appropriate time field.

The $HIGHWAY SELECTED SUMMATION function in TRANPLAN can build minimum paths based on one variable and store either the same variable upon which the paths were built or another cumulated variable. For instance, the minimum paths can be built using Time 2, and the output matrix could contain the cumulated values of Time 2 on one table and the cumulated values of distance on another table. See the TRANPLAN Version 8.0 User's Manual for a listing of the tables and their order in the output skim matrix file.

Third Function for Long Method

$MATRIX UPDATE
$FILE
 INPUT FILE = UPDIN, USER ID = $J87SKIM.SEL$
 INPUT FILE = MUPDATA, USER ID = $J87.RAD$
 OUTPUT FILE = UPDOUT, USER ID = $J87INTRA.SKM$
$HEADERS
 ADD RADII VALUES TO REFLECT INTRAZONAL IMPEDANCES
$OPTIONS
 MUPDATA
$END TP FUNCTION

The $MATRIX UPDATE function is a generic matrix math function in TRANPLAN. Any type of matrix file can be factored by a constant number (add, subtract, multiply, or replacement). In this function, the minimum cumulative impedance matrix for zone-to-zone interzonal exchanges is updated. The option
“MUPDATA” tells TRANPLAN that an update file is to be input. The update file, “RAD,” contains the intrazonal travel times calculated from the radii of the zones. The RAD file also has the syntax for the replacement function to take place on the intrazonal values in the skim matrix.

Fourth Function for Long Method

```plaintext
$GRAVITY MODEL
$FILES
   INPUT FILE = GMSKIM, USER ID = $J87INTRA.SKMS$
   INPUT FILE = GRVDATA, USER ID = $J87.PNA$
   OUTPUT FILE = GMTVOL, USER ID = $J87GMT.PAT$
$HEADERS
   GRAVITY MODEL
   TO PRODUCE A P-A TRIP TABLE
$OPTIONS
   TOTAL PURPOSE FILE
   GRVDATA
   PRINT TRIP LENGTH STATISTICS
$PARAMETERS
   MAXIMUM PURPOSE = 4
   SELECTED PURPOSES = 1-4
   MAXIMUM TIME = 50
   IMPEDANCE = TIME 2
   ITERATIONS ON ATTRACTIONS = 5
   ATTRACTION CLOSURE = 5
$END TP FUNCTION
```

The fourth step in the Long Method process is trip distribution. The gravity model requires input of a minimum impedance paths matrix, including intrazonal travel times, and the production-attraction PNA file which also contains the friction factors (GF records - see Appendix). The output is a trip table showing total vehicle trips between zones and within each zone. The option “TOTAL PURPOSE FILE” specifies that a PAT file is output which has all purposes combined on one trip matrix file. Alternatively, the user may specify “MERGED PURPOSE FILE” which produces a matrix file with a separate table for each trip purpose. The option “GRVDATA” tells TRANPLAN that an ASCII PNA production-attraction file is to be input to the function.

The parameters section tells TRANPLAN which trip purposes to read (columns from the PNA file) with the “SELECTED PURPOSES” statement. In this case, there are a total of four trip purposes: Non-home based, home-based work, home-based non-work, and truck/taxi trips. The maximum time parameter must be set greater than the maximum travel time in the system. The “IMPEDANCE” statement specifies the table number to read from the input minimum impedance matrix skim file.
Fifth Function for Long Method

$MATRIX TRANSPOSE
$FILES
INPUT FILE = TRNSPIN, USER ID = $J87GMT.PAT$
OUTPUT FILE = ODVOL, USER ID = $J87.INT$
$HEADERS
O-D THE P-A TRIP TABLE
$OPTIONS
NO TRANSPOSED FILE
$PARAMETERS
PA FACTORS = .5
AP FACTORS = .5
$END TP FUNCTION

The fifth function in this example series is another generic matrix TRANPLAN function which allows the analyst the ability to transpose matrix files. The trip generation process estimates the number of productions and attractions for each zone, which are subsequently distributed and “paired up” by the synthetic process of the gravity model. There are many solutions to the distribution of the productions and attractions, one of which will provide the correct “origin to destination” pattern. Since the gravity model is synthetic (no one really travels because of an attractive force), an adjustment to the trip table is necessary to bring it to the corrected origin to destination pattern. This is accomplished in the above TRANPLAN function, which, with the parameters “PA FACTORS” and “AP FACTORS”, a balancing of the directional distribution of trips is obtained. Since this example is a total daily vehicle trip model, half of the trips will be sent in one direction, while the other half will be in the opposite direction. If this were a peak period model, for instance, the factors might be 0.8 and 0.2, meaning 80% of the flow is in the peak direction and 20 percent is in the off-peak direction.

Sixth and Seventh Functions for the Long Method

$MATRIX UPDATE
$FILE
INPUT FILE = UPDIN, USER ID = $0DTRIP87.TEX$
OUTPUT FILE = UPDOUT, USER ID = $J87.EXT$
$HEADERS
STEP 1 -- ZERO OUT THE INT-INT ON TEXAS PACKAGE TRIP TABLE
$DATA
T1, 1-661, 1-661, RO
$END TP FUNCTION

$MATRIX MANIPULATE
$FILE
INPUT FILE = TMAN1, USER ID = $J87.INT$
INPUT FILE = TMAN2, USER ID = $J87.EXT$
OUTPUT FILE = TMAN3, USER ID = $J87.ODS$
$HEADERS
STEP 2 -- ADD THE INT-INT TO THE EXT TRIP TABLE
$DATA
TMAN3, T1 = TMAN1,T1 + TMAN2,T1
$END TP FUNCTION
In this example model run, the external-to-external and the external-to-local trips are to be borrowed from a Texas Package model run for the same year. In order to add the external trips into the origin-destination trip table from a previous function, two generic matrix functions are executed. The sixth function requires the input of a Texas Package trip table (12I6) that has been previously converted to TRANPLAN format using the DOWN.BAT program. This function will replace all zone-to-zone interchanges on the Texas Package trip table which are not external trips with zero. The statement "T1, 1-661, 1-661, R0" can be read as "table 1, for origin zones 1 through 661, and destination zones 1 through 661, replace with 0." The only trips left on the output file are those which have at least one end of the trip going to or coming from an external station.

The seventh function will add the zone-to-zone internal trip table to the external-only trip table created with the sixth function. The $MATRIX MANIPULATE TRANPLAN function will perform math on any combination of matrix files (trips or travel times). The input and output files are identified with the TRANPLAN code syntax "TMAN1, TMAN2,... TMANn." The math operation is performed by the $DATA section statement "TMAN3, T1 = TMAN1,T1 + TMAN2,T1." This statement can be read as "table manipulate 3 (table 1) is equal to table manipulate 1 (table 1) plus table manipulate 2 (table 1)." Since TRANPLAN matrix files can hold more than one table, the "T1" identifier specifies which table is to be added from the matrix file.

The eighth and final step in this example model run is the traffic assignment process. This TRANPLAN function requires the input of a binary format network file (NET) and an origin-destination format trip table (OD). The output will be a loaded network file (VOL). The option "BASE NETWORK" tells TRANPLAN to
apply all impedance adjustments to the original travel times (speeds) as coded in the NET file. "ADJUST 100" specifies that the percentage loading is to be artificially factored to 100 percent before calculation of the volume-to-capacity ratio for look-up of the travel time adjustment is performed. The "LOAD PERCENTAGES" statement is equivalent in this model run to the weighting percentages in an iterative assignment process since the "ADJUST 100" option is included. Under the $DATA section, the "XYDATA" are the X and Y values for the volume delay equation, which are to be applied to the link coded with "ASSIGNMENT GROUP" values of 0 through 9.

An alternative eighth step is to use the $EQUILIBRIUM HIGHWAY LOAD function as follows:

```
$EQUILIBRIUM HIGHWAY LOAD
$FILES
  INPUT FILE = HWYNET, USER ID = $M091.NET$
  INPUT FILE = HWYTRIP, USER ID = $M091.OD$
  OUTPUT FILE = LODHIST, USER ID = $M091.VOL$
$HEADER
  EQUILIBRIUM LOAD
$OPTIONS
$PARAMETERS
  IMPEDANCE = TIME1
  EQUILIBRIUM ITERATIONS = 5
  EPS = 0.001
$DATA
  ASSIGNMENT GROUP = 1, XYDATA = (0.0,1.000) (0.25,0.757) (0.50,0.250)
                    (0.75,0.067) (1.00,0.060) (1.25,0.060) (1.50,0.060) (1.75,0.060)
                    (2.00,0.060) (2.25,0.060) (2.50,0.060)
  ASSIGNMENT GROUP = 2, XYDATA = (0.0,1.087) (0.25,1.020) (0.50,0.905)
                    (0.75,0.741) (1.00,0.556) (1.25,0.396) (1.50,0.324) (1.75,0.324)
                    (2.00,0.324) (2.25,0.324) (2.50,0.324)
$END TP FUNCTION
```

The equilibrium function is a trip assignment process which calculates an approximation of the optimum weighting percentages for each iteration. The goal of the process is to minimize total cumulative system travel time within the convergence factor "EPS=0.001," or through at least 5 iterations, whichever is reached first. Note that in this example, two separate volume delay equations are specified, one for links coded with assignment group 1 and another for those with assignment group 2.

In summary, the first step of the model, $HIGHWAY SELECTED SUMMATION, creates a minimum impedance zone-to-zone travel time matrix based on the minimum paths "skimmed" from the Time 2 field on the network. The $GRAVITY MODEL reads the minimum travel time matrix and the production-attraction file (with friction factors included) and creates a production-attraction format trip table.
The $GRAVITY MODEL does not allocate daily trips in a round-trip fashion. Instead, it "sends" productions to the best attraction points according to the gravity model equation. Therefore, it does not satisfy the round trip. The resulting production-attraction format trip table must be converted to an origin-destination format. The $MATRIX TRANSPOSE function of TRANPLAN Version 8.0 will perform this task.

The final step is to load the trip table on the network with the $LOAD HIGHWAY NETWORK function. Note that this is the same function used in the Short Method. Finally, all data should be carefully summarized and documented for future reference.
CHAPTER ELEVEN
SPECIAL ANALYSIS TOOLS

This chapter will examine TRANPLAN functions and other procedures used for special situations. These analysis tools include:

- Selected link analysis: reporting and building a selected link trip table
- Coding network speed/capacity look-up tables
- Reporting trip length frequency distributions
- Building intrazonal impedances
Selected Link Analysis

Selected link analysis is a traffic assignment summary process which can be used to report traffic that uses specific links. Two main reporting options can be used with selected link analysis:

- A report of the number of vehicles that use two or more selected links, which do not have to be contiguous
- A report of the zones or districts from which trips are originating or destined that use a selected set of two or more links

The first reporting option will allow the analyst to determine the quantity of estimated traffic that traverses an “origin” link, one or more “through” links, and also a “destination” link. The process uses two TRANPLAN functions, $LOAD HIGHWAY SELECTED LINKS and $ANALYZE MULTIPLE SELECTED LINKS. Alternatively, the analyst may choose to use $EQUILIBRIUM HIGHWAY LOAD.

Selected Link Procedure 1

Since the selected link analysis procedure is a summary of the link loadings on a specific set of links in a network, the process must begin with a traffic assignment. The analyst must specify the specific links of interest in the TRANPLAN traffic assignment function. If the urban area traffic assignment process is an iterative method, the $LOAD HIGHWAY SELECTED LINKS function should be used. Alternatively, the $EQUILIBRIUM HIGHWAY LOAD function will perform summary processing of selected links. The process chosen should match the normally executed traffic assignment method for the urban area in question.

$LOAD HIGHWAY SELECTED LINKS
$FILES
INPUT FILE = HWYNET, USER ID = $J87.NET$
INPUT FILE = HWYTRIP, USER ID = $J87.OD$
OUTPUT FILE = LODHIST, USER ID = $J87.VOL$
OUTPUT FILE = SELHIST, USER ID = $J87.SE1$
OUTPUT FILE = SELHST2, USER ID = $J87.SE2$
OUTPUT FILE = SELHST3, USER ID = $J87.SE3$
OUTPUT FILE = SELHST4, USER ID = $J87.SE4$
OUTPUT FILE = SELHST5, USER ID = $J87.SE5$
$header
LOAD HIGHWAY NETWORK
INCREMENTAL LOADING ASSIGNMENT
$OPTIONS
BASE NETWORK
adjust 100
$parameters
impedance = time2
two way selected links = 685-684, 681-1254, 1254-680, 453-476,
476-1254, 683-476
load percentages = 15, 15, 20, 20, 30
$data
assignment group = 0-9, xydata = (0.0, 1.087) (0.5, 1.076) (1.0, 0.935)
(1.5, 0.595) (2.0, 0.301) (2.4, 0.167)
(4.0, 0.167)
$end tp function

The above function is an example of the selected link loading function. The $parameter “two way selected links” specifies the links, as defined by their end nodes, which are to be analyzed. There are five output files, beginning with “SELHIST” and ending with “SELHST5.” The filename extensions are “$en,” where $n is the iteration number. At this point in the analysis process, the analyst may choose many sets of links, regardless of the order in which they are to be analyzed. Any one of the links listed can be later combined into origin, through, and destination links for reporting.

$analyze multiple selected links
$files
input file = hwytrip, user id = $j87.0d$
input file = selhist, user id = $j87.se1$
input file = selhst2, user id = $j87.se2$
input file = selhst3, user id = $j87.se3$
input file = selhst4, user id = $j87.se4$
input file = selhst5, user id = $j87.se5$
$header
analyze selected link history files
2010 325-zone b-cs
incremental loading assignment
$options
$parameters
$data
table 1, origin links = 685-684,
no through links
destination links = 681-1254, 1254-680
table 2, origin links = 685-684,
through links = 453-476
destination links = 1254-680, 1254-681
$end tp function

$analyze multiple selected links is a reporting function used to print out any combination of selected links specified in either a $load highway selected links function or an $equilibrium highway load function. The function will create a printed report in the form shown below:
In the example output above, the first table shows results of specifying one origin link and two destination links with no intermediate through links. The output is in a matrix format, much like a trip table. In the second table the report is for one origin link and the same two destination links. The difference is that the second report also has a “through” link specified (but not listed) and therefore is reporting a lower amount of traffic.

It is worthy to note that the output file “SELVOL” is different in the $ANALYZE MULTIPLE SELECTED LINKS function from the $BUILD SELECTED LINK TRIP TABLE function. In the former it is not really a “trip” table but a selected link volume file in the form of a TRANPLAN trip table, much as the output reports are in matrix format.

The second use of the selected link analysis is to develop a report showing the origin zones and destination zones for trips which traverse links of interest. This type of report could be used to show the overall length of trips which are using a particular facility. It is recommended that the $MATRIX COMPRESS function be used to aggregate the zonal selected link trip table to districts or sectors after building the selected link trip table with the $BUILD SELECTED LINK TRIP TABLE function.
The following functions will create a district-level selected link trip table:

$BUILD SELECTED LINK TRIP TABLE
$FILES
 INPUT FILE = HWYTRIP, USER ID = $J87.OD$
 INPUT FILE = SELHIST, USER ID = $J87.SE1$
 INPUT FILE = SELHST2, USER ID = $J87.SE2$
 INPUT FILE = SELHST3, USER ID = $J87.SE3$
 INPUT FILE = SELHST4, USER ID = $J87.SE4$
 INPUT FILE = SELHST5, USER ID = $J87.SE5$
 OUTPUT FILE = SELVOL, USER ID = $J87.ODS$
$HEADER
 BUILD SEL LINK TRIP TABLE
 SELECTED AND LINKS: 685-684, 1254-680
$OPTIONS
 AND LINKS
 PRINT TRIP ENDS
$PARAMETERS
 SELECTED LINKS = 685-684, 1254-680
$END TP FUNCTION

$MATRIX COMPRESS
$FILE
 INPUT FILE = COMPIN, USER ID = $J87.ODS$
$HEADERS
 MATRIX COMPRESSION TO 4 DISTRICT SYSTEM
 SELECTED AND LINKS: 685-684, 1254-680
$OPTIONS
 PRINT COMPRESSED MATRIX
$PARAMETERS
 NUMBER OF DISTRICTS = 4
$DATA
 DISTRICT = 1, ZONES=1-201,525
 DISTRICT = 2, ZONES=202-301
 DISTRICT = 3, ZONES=302-451
 DISTRICT = 4, ZONES=452-524,526-600
$END TP FUNCTION

In the options section of the $BUILD SELECTED LINK TRIP TABLE function, the user may specify the "AND LINKS" statement, which will cause the function to build a single matrix on the output trip table file containing the trips which traverse all of the selected links listed in the parameters section. The "OR LINKS" option will output a single matrix on the output file showing trips which use any one of the links listed. Omitting both of these options will cause TRANPLAN to build a separate trip matrix on the output trip table for each selected link listed.

Note that the standard file name extension for a selected link trip table is "ODS", which will distinguish it from the total purpose trip table "OD". Also, listing the selected link node numbers in the $HEADERS section will allow the use of the "HEADER.EXE" utility for later identification of the selected links for which the trip table was built.
Output from $BUILD SELECTED LINK TRIP TABLE:

```
TRIP END SUMMARY -- PURPOSE 1 SELECTED LINK ID 476: 1254, 680-681

ZONE/DIST ORIG/PROD DEST/ATTR TOTAL INTRATRIPS
1  5  2  0  2  0
2  2  2  0  0  0
3  2  50  52  0  0
4  0  2  0  0  0
5  0  5  5  0  0
680
TOTALS 7460
```

Output from $MATRIX COMPRESS function:

```
COMPRESSED DISTRIBUTION FOR ALL 1 PURPOSES

DISTRICT 1 2 3 4 TOTAL
1 500 1300 900 1520 8720
2 1300 400 150 150 2010
3 900 150 50 100 1200
4 1520 150 100 1230 3000
TOTAL 8720 2000 1200 3000 14920
```

Note that the totals in either selected link procedure should match, whether they are generated from an $ANALYZE MULTIPLE SELECTED LINKS function or from a $BUILD SELECTED LINK TRIP TABLE function.

Coding Network Speed/Capacity Look-up Tables

Building a look-up table for coding speeds and/or capacities by functional classification, area type, district, or other stratification is a common practice when coding travel demand model networks. In TRANPLAN this can be accomplished through the use of the “SPEED CAPACITIES” parameter specification in the $BUILD HIGHWAY NETWORK function. The function file listed below is an example. Note the parameter “SPEED SCALE FACTOR.” All output should be checked to determine if the speeds input have been scaled correctly.

```
$BUILD HIGHWAY NETWORK
$FILE
INPUT FILE = NETDATA, USER ID = $M091.ANT$
OUTPUT FILE = HWYNET, USER ID = $M091A.NET$
$HEADERS
BUILD HIGHWAY NETWORK
1991 MIDLAND ODESSA RTS
SPEED CAPACITY LOOK UP INCLUDED
```
$OPTIONS
NETDATA
LARGE COORDINATES
OVERRIDE SPEED CAPS
SPARMS
NUMBER OF ZONES = 597
MAXIMUM NODE = 9999
ERROR LIMIT = 50
SPEED SCALE FACTOR = 1.0
SPEED CAPACITIES,
LG1=0, LG2=1, SPD1=15, SPD2=15, END
LG1=0, LG2=2, SPD1=20, SPD2=20, END
LG1=0, LG2=3, SPD1=30, SPD2=30, END
LG1=1, LG2=1, LG3=4, SPD1=38, SPD2=38, END
LG1=1, LG2=2, LG3=4, SPD1=43, SPD2=43, END
LG1=1, LG2=3, LG3=4, SPD1=53, SPD2=53, END
LG1=3, LG2=1, LG3=2, SPD1=13, SPD2=13, END
LG1=3, LG2=2, LG3=2, SPD1=27, SPD2=27, END
LG1=3, LG2=3, LG3=2, SPD1=39, SPD2=39, END
LG1=3, LG2=1, LG3=4, SPD1=14, SPD2=14, END
LG1=3, LG2=2, LG3=4, SPD1=28, SPD2=28, END
LG1=3, LG2=3, LG3=4, SPD1=40, SPD2=40, END
LG1=3, LG2=1, LG3=6, SPD1=15, SPD2=15, END
LG1=3, LG2=2, LG3=6, SPD1=29, SPD2=29, END
LG1=3, LG2=3, LG3=6, SPD1=41, SPD2=41, END
LG1=1, LG2=1, LG3=4, CAP1=99000, END
LG1=1, LG2=2, LG3=4, CAP1=109000, END
LG1=1, LG2=3, LG3=4, CAP1=79000, END
LG1=3, LG2=1, LG3=2, CAP1=18500, END
LG1=3, LG2=2, LG3=2, CAP1=17500, END
LG1=3, LG2=3, LG3=2, CAP1=13500, END
LG1=3, LG2=1, LG3=4, CAP1=35500, END
LG1=3, LG2=2, LG3=4, CAP1=33000, END
LG1=3, LG2=3, LG3=4, CAP1=25500, END
LG1=3, LG2=1, LG3=6, CAP1=50500, END
LG1=3, LG2=2, LG3=6, CAP1=47000, END
LG1=3, LG2=3, LG3=6, CAP1=36000, END
$END TP FUNCTION

Reporting Trip Length Frequency Distributions

The TRANPLAN function $GRAVITY MODEL will produce a report of the ending trip length frequency distribution of the impedance variable used for all iterations of the model. The user must specify the option “PRINT TRIP LENGTH STATISTICS” and “PRINT ALL ITERATIONS.” The independent variable reported (x-axis) is the variable used to build the minimum paths and perform the trip distribution, in most cases, minutes. There are situations, however, where a report of the trip length frequency distribution by distance (kilometers or miles) is desired.

The reporting function $REPORT TRIP LENGTH FREQUENCY can be used to produce a report using any impedance value stored in the skim matrix output from $HIGHWAY SELECTED SUMMATION, including distance. In the example input TRANPLAN function below, note the “ZERO INTRAZONALS” option specification which will ignore the intrazonal impedances.
and trips on the input files when creating the report of trip length statistics.

```plaintext
$REPORT TRIP LENGTH FREQUENCY
$FILES
  INPUT FILE = SKIM, USER ID = $BCS94.SKM$
  INPUT FILE = VOLUME, USER ID = $BCS94.PAT$
$OPTION
  ZERO INTRAZONALS
$PARAMETERS
  IMPEDANCE = DISTANCE
  UNITS = MILES
$END TP FUNCTION
```

Building Intrazonal Impedances

The recommended procedure for building intrazonal impedances (travel times) is to create a surrogate from the radius of the zone coded into a RAD file for input to the $MATRIX UPDATE function. This requires the use of radii from the Texas Package ATOM trip distribution procedure. If radii are not available, a common method of modeling intrazonal travel time is to calculate a percentage of the travel times to nearest neighboring zones. The TRANPLAN function “$BUILD INTRAZONAL IMPEDANCES” will perform this function as shown below.

```plaintext
$BUILD INTRAZONAL IMPEDANCES
$FILES
  INPUT FILE = IZIN, USER ID = $BCS94.SEL$
  OUTPUT FILE = IZOUT, USER ID = $BCS94.SKM$
$HEADERS
  BUILD INTRAZONAL IMPEDANCES
  1990 HIGHWAY NETWORK
$PARAMETERS
  ADJACENT FACTOR = 0.75
  INTERNAL ZONES = 309
  NUMBER OF ADJACENT ZONES = 2
$END TP FUNCTION
```

In the above function, the input is a skim matrix file generated from a $HIGHWAY SELECTED SUMMATION function which contains the interzonal impedances. For each zone in the SEL file, the function will find the two nearest neighboring zones and calculate the mean of the travel times (or distances) to these zones. Then, TRANPLAN will apply a factor of 0.75 to the mean and place the resulting value in the intrazonal cell of the matrix. The function above will use only zones 1 through 309.
TRANPLAN Node Data:
Large Coordinates
ANT File

<table>
<thead>
<tr>
<th>Variable</th>
<th>Units</th>
<th>Range</th>
<th>Columns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Card Type</td>
<td>NA</td>
<td>1-9,999</td>
<td>1-6</td>
</tr>
<tr>
<td>Node Number</td>
<td>Meters</td>
<td>1-9,999,999</td>
<td>7-17</td>
</tr>
<tr>
<td>X-Coordinate</td>
<td>Feet</td>
<td>1-9,999,999</td>
<td>18-28</td>
</tr>
<tr>
<td>Y-Coordinate</td>
<td>Feet</td>
<td>1-9,999,999</td>
<td>18-28</td>
</tr>
<tr>
<td>User Identification</td>
<td>Any</td>
<td>Any</td>
<td>29-80</td>
</tr>
</tbody>
</table>

TRANPLAN Node Data:
Default Coordinates

<table>
<thead>
<tr>
<th>Variable</th>
<th>Units</th>
<th>Range</th>
<th>Columns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Card Type</td>
<td>NA</td>
<td>1-16,000</td>
<td>2-6</td>
</tr>
<tr>
<td>Node Number</td>
<td>Meters</td>
<td>1-9,999</td>
<td>9-13</td>
</tr>
<tr>
<td>X-Coordinate</td>
<td>Feet</td>
<td>1-9,999</td>
<td>14-18</td>
</tr>
<tr>
<td>Alternate Node, X, and Y</td>
<td>Feet</td>
<td>1-9,999</td>
<td>20-72</td>
</tr>
<tr>
<td>User Identification</td>
<td>Any</td>
<td>Any</td>
<td>29-80</td>
</tr>
</tbody>
</table>
TRANPLAN Link Data: ANT File

<table>
<thead>
<tr>
<th>LINK Data</th>
<th>Units</th>
<th>Range</th>
<th>Columns</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-Node Number</td>
<td>1-9,999</td>
<td>1-5</td>
<td></td>
</tr>
<tr>
<td>B-Node Number</td>
<td>1-9,999</td>
<td>6-10</td>
<td></td>
</tr>
<tr>
<td>Assignment Group Number</td>
<td>0-9</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Distance Kilometers100 (Miles100)</td>
<td>1-4,095</td>
<td>12-15</td>
<td></td>
</tr>
<tr>
<td>Speed/Time Flag Letter</td>
<td>S or T</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

A-B Direction Data

Time 1 or Speed 1 MPH or MIN * 100	0-4,095	17-20
Time 2 or Speed 2 MPH or MIN * 100	0-4,095	21-24
Direction Code Number	1-16	25-26
Link Group 1 Number	0-99	27-28
Link Group 2 Number	0-99	29-30
Link Group 3 Number	0-99	31-32
Capacity 1 Vehicles/Day	0-999,999	33-38
Capacity 2/Volume/Count Vehicles/Day	0-999,999	39-44

B-A Direction Data

Speed/Time Flag Letter or Number	S, T, 2, or 1	45
Time 1 or Speed 1 MPH or MIN * 100	0-4,095	46-49
Time 2 or Speed 2 MPH or MIN * 100	0-4,095	50-53
Direction Code Number	1-16	54-55
Link Group 1 Number	0-99	56-57
Link Group 2 Number	0-99	58-59
Link Group 3 Number	0-99	60-61
Capacity 1 Vehicles/Day	0-999,999	62-67
Capacity 2/Volume/Count Vehicles/Day	0-999,999	68-73

Note: Capacity 2 field is used for ground counts in a NET file and model volume in a VOL file.
TRANPLAN

Production-Attraction Data: PNA File

<table>
<thead>
<tr>
<th>Variable</th>
<th>Units</th>
<th>Columns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Record Type Identifier</td>
<td>GP, GA, GF, GT</td>
<td>1-2</td>
</tr>
</tbody>
</table>

Trip Production or Attraction GP or GA Record Format

<table>
<thead>
<tr>
<th>Variable</th>
<th>Units</th>
<th>Columns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone Centroid</td>
<td>Number</td>
<td>4-7</td>
</tr>
<tr>
<td>NHB Productions</td>
<td>Trip Ends/Day</td>
<td>11-17</td>
</tr>
<tr>
<td>NHB Attractions</td>
<td>Trip Ends/Day</td>
<td>11-17</td>
</tr>
<tr>
<td>HBW Productions</td>
<td>Trip Ends/Day</td>
<td>18-24</td>
</tr>
<tr>
<td>HBW Attractions</td>
<td>Trip Ends/Day</td>
<td>18-24</td>
</tr>
<tr>
<td>HBNW Productions</td>
<td>Trip Ends/Day</td>
<td>25-31</td>
</tr>
<tr>
<td>HBNW Attractions</td>
<td>Trip Ends/Day</td>
<td>25-31</td>
</tr>
<tr>
<td>LOEX Productions*</td>
<td>Trip Ends/Day</td>
<td>32-38</td>
</tr>
<tr>
<td>EXLO Attractions*</td>
<td>Trip Ends/Day</td>
<td>32-38</td>
</tr>
<tr>
<td>TRTX Productions*</td>
<td>Trip Ends/Day</td>
<td>39-45</td>
</tr>
<tr>
<td>TRTX Attractions*</td>
<td>Trip Ends/Day</td>
<td>39-45</td>
</tr>
</tbody>
</table>

Friction Factor GF Record Format

<table>
<thead>
<tr>
<th>Variable</th>
<th>Units</th>
<th>Columns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impedance</td>
<td>Minutes</td>
<td>4-7</td>
</tr>
<tr>
<td>NHB F-Factor</td>
<td>Number</td>
<td>11-17</td>
</tr>
<tr>
<td>HBW F-Factor</td>
<td>Number</td>
<td>18-24</td>
</tr>
<tr>
<td>HBNW F-Factor</td>
<td>Number</td>
<td>25-31</td>
</tr>
<tr>
<td>EXLO/LOEX F-Factors</td>
<td>Number</td>
<td>32-38</td>
</tr>
<tr>
<td>TRTX F-Factor</td>
<td>Number</td>
<td>39-45</td>
</tr>
</tbody>
</table>

Trip Length Frequency GT Record Format

<table>
<thead>
<tr>
<th>Variable</th>
<th>Units</th>
<th>Columns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impedance</td>
<td>Minutes</td>
<td>4-7</td>
</tr>
<tr>
<td>NHB Trip Length %</td>
<td>Number</td>
<td>11-17</td>
</tr>
<tr>
<td>HBW Trip Length %</td>
<td>Number</td>
<td>18-24</td>
</tr>
<tr>
<td>HBNW Trip Length %</td>
<td>Number</td>
<td>25-31</td>
</tr>
<tr>
<td>EXLO/LOEX Trip Length %</td>
<td>Number</td>
<td>32-38</td>
</tr>
<tr>
<td>TRTX Trip Length %</td>
<td>Number</td>
<td>39-45</td>
</tr>
</tbody>
</table>

*LOEX = Local-external
*EXLO = External-local
*TRTX = Truck-taxi

Note: in some cases, the LOEX and EXLO trips are replaced by TRTX trips

GP=Gravity Productions, GA=Gravity Attractions, GF=Gravity Friction, GT=Gravity Trip Length Percentage

Trip Length Percentages are used only with a SCALIBRATE GRAVITY MODEL function
Texas Package Links

<table>
<thead>
<tr>
<th>Variable</th>
<th>Units</th>
<th>Columns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility Type</td>
<td>Number</td>
<td>1-2</td>
</tr>
<tr>
<td>A-Node</td>
<td>Number</td>
<td>7-11</td>
</tr>
<tr>
<td>B-Node</td>
<td>Number</td>
<td>13-17</td>
</tr>
<tr>
<td>Direction Sign or Code</td>
<td>Number or Code</td>
<td>19-20</td>
</tr>
<tr>
<td>One-Way Flag</td>
<td>Number</td>
<td>22</td>
</tr>
<tr>
<td>Length</td>
<td>Kilometers100 (Miles100)</td>
<td>24-26</td>
</tr>
<tr>
<td>Speed</td>
<td>MPH</td>
<td>28-29</td>
</tr>
<tr>
<td>Traffic Count</td>
<td>Vehicles/Day</td>
<td>31-36</td>
</tr>
<tr>
<td>Capacity</td>
<td>Vehicles/Day</td>
<td>38-43</td>
</tr>
<tr>
<td>Functional Classification</td>
<td>Code</td>
<td>45</td>
</tr>
<tr>
<td>Administrative Jurisdiction</td>
<td>Code</td>
<td>46-47</td>
</tr>
<tr>
<td>Route Code</td>
<td>Code</td>
<td>49-50</td>
</tr>
<tr>
<td>Corridor Intercept</td>
<td>Number</td>
<td>51-53</td>
</tr>
<tr>
<td>Duplicate Mileage Eliminator</td>
<td>0 or 1</td>
<td>55</td>
</tr>
<tr>
<td>Impedance</td>
<td>Min*100</td>
<td>57-61</td>
</tr>
<tr>
<td>Number of Lanes</td>
<td>Number</td>
<td>63-64</td>
</tr>
<tr>
<td>Associated Zone</td>
<td>Number</td>
<td>66-69</td>
</tr>
<tr>
<td>Location of A-Node (Literal)</td>
<td>Description</td>
<td>71-80</td>
</tr>
</tbody>
</table>
Texas Package Nodes

<table>
<thead>
<tr>
<th>Variable</th>
<th>Units</th>
<th>Columns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>"CENTROID" or "NODE"</td>
<td>1-8</td>
</tr>
<tr>
<td>Zone or Node</td>
<td>Number</td>
<td>16-20</td>
</tr>
<tr>
<td>X-Coordinate</td>
<td>Number (F20.0)</td>
<td>21-40</td>
</tr>
<tr>
<td>Y-Coordinate</td>
<td>Number (F20.0)</td>
<td>41-60</td>
</tr>
</tbody>
</table>

Texas Package
Production-Attraction Data

<table>
<thead>
<tr>
<th>Variable</th>
<th>Units</th>
<th>Columns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literal Description</td>
<td>"GENERATION" or "FORECAST"</td>
<td>1-10</td>
</tr>
<tr>
<td>Zone Centroid</td>
<td>Number</td>
<td>11-15</td>
</tr>
<tr>
<td>NHB Productions</td>
<td>Trip Ends/Day</td>
<td>16-20</td>
</tr>
<tr>
<td>NHB Attractions</td>
<td>Trip Ends/Day</td>
<td>21-25</td>
</tr>
<tr>
<td>HBW Productions</td>
<td>Trip Ends/Day</td>
<td>26-30</td>
</tr>
<tr>
<td>HBW Attractions</td>
<td>Trip Ends/Day</td>
<td>31-35</td>
</tr>
<tr>
<td>HBNW Productions</td>
<td>Trip Ends/Day</td>
<td>36-40</td>
</tr>
<tr>
<td>HBNW Attractions</td>
<td>Trip Ends/Day</td>
<td>41-45</td>
</tr>
<tr>
<td>LOEX Productions¹</td>
<td>Trip Ends/Day</td>
<td>46-50</td>
</tr>
<tr>
<td>EXLO Attractions²</td>
<td>Trip Ends/Day</td>
<td>51-55</td>
</tr>
<tr>
<td>TRTX Productions³</td>
<td>Trip Ends/Day</td>
<td>56-60</td>
</tr>
<tr>
<td>TRTX Attractions³</td>
<td>Trip Ends/Day</td>
<td>61-65</td>
</tr>
</tbody>
</table>

¹LOEX = Local-external
²EXLO = External-local
³TRTX = Truck-taxi
Texas Package
Friction Factors

<table>
<thead>
<tr>
<th>Variable</th>
<th>Units</th>
<th>Columns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Separation</td>
<td>Minutes</td>
<td>6-10</td>
</tr>
<tr>
<td>NHB Relative Value</td>
<td>Number</td>
<td>91-102</td>
</tr>
<tr>
<td>HBW Relative Value</td>
<td>Number</td>
<td>91-102</td>
</tr>
<tr>
<td>HBNW Relative Value</td>
<td>Number</td>
<td>91-102</td>
</tr>
<tr>
<td>TRTX Relative Value</td>
<td>Number</td>
<td>91-102</td>
</tr>
</tbody>
</table>

Texas Package Radii Values*

<table>
<thead>
<tr>
<th>Variable</th>
<th>Units</th>
<th>Columns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literal</td>
<td>"R-VALUE" or "RADIUS"</td>
<td>1-7</td>
</tr>
<tr>
<td>Zone</td>
<td>Number</td>
<td>9-12</td>
</tr>
<tr>
<td>Radius of Zone</td>
<td>Minutes</td>
<td>15-20</td>
</tr>
</tbody>
</table>

TRANPLAN Intrazonal Values**

<table>
<thead>
<tr>
<th>Variable</th>
<th>Units</th>
<th>Columns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literal</td>
<td>"TIME2"</td>
<td>6-10</td>
</tr>
<tr>
<td>Zone</td>
<td>Number</td>
<td>12-19</td>
</tr>
<tr>
<td>Intrazonal Impedance</td>
<td>Minutes*100</td>
<td>23-25</td>
</tr>
</tbody>
</table>

*These data are used to replicate intrazonal impedances according to the following formula:

\[I_{aa} = \frac{2}{3}(2R_a) \]

Where:

\[I_{aa} \] = the calculated intrazonal impedance in zone a

\[R_a \] = the R-VALUE in zone a

**These data will be written out in a format for inclusion in the $DATA section of the $MATRIX UPDATE function.
Suggested File Name Extensions:
Long Method

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNK</td>
<td>ASCII Texas Package links after downloading from mainframe. Typically, this file is not used except during initial installation of a new validation.</td>
</tr>
<tr>
<td>XY</td>
<td>ASCII Texas Package node numbers and coordinates, zone centroids, and other nodes typically used only during installation.</td>
</tr>
<tr>
<td>GEN</td>
<td>ASCII Texas Package TRIPCALx results. Trip generation data for all trip purposes.</td>
</tr>
<tr>
<td>PNA</td>
<td>ASCII TRANPLAN GRVDATA. Productions and attractions for all trip purposes and friction factors for all trip purposes (at end of file).</td>
</tr>
<tr>
<td>ANT</td>
<td>ASCII TRANPLAN NETDATA network file.</td>
</tr>
<tr>
<td>NET</td>
<td>Binary TRANPLAN HWYNET network file.</td>
</tr>
<tr>
<td>SEL</td>
<td>HWYSKIM minimum impedance path matrix, before updating intrazonal travel times with zonal radii, if used.</td>
</tr>
<tr>
<td>RAD</td>
<td>TRANPLAN format update records used to change the intrazonal travel times to reflect the measured radius of the zone.</td>
</tr>
<tr>
<td>SKM</td>
<td>HWYSKIM minimum impedance path matrix after updating intrazonal travel times.</td>
</tr>
<tr>
<td>PAT</td>
<td>Production-atraction format trip table normally representing the total of all trip purposes (TRANPLAN GMTVOL).</td>
</tr>
<tr>
<td>INT</td>
<td>Internal-to-internal urban area origin-destination format trip table. Typically, external and external-through trips are not calculated using the TRANPLAN $GRAVITY MODEL. All external station rows and columns of this matrix are zero.</td>
</tr>
<tr>
<td>TEX</td>
<td>Texas Package origin-destination format trip table, after conversion to TRANPLAN binary format. Used in the long method to obtain external and external-through trips.</td>
</tr>
<tr>
<td>EXT</td>
<td>Texas Package origin-destination format external and external-through trip table. All internal-internal trips on this matrix are zero.</td>
</tr>
<tr>
<td>OD</td>
<td>Total origin-destination format trip table including Texas Package external trips added to internal trips calculated from $GRAVITY MODEL.</td>
</tr>
<tr>
<td>VOL</td>
<td>Loaded TRANPLAN network file (LODHIST) containing estimated or forecast traffic volumes from all iterations of the incremental traffic assignment.</td>
</tr>
<tr>
<td>PLT</td>
<td>TRANPLAN Hewlett-Packard Graphics Language (or other) ASCII plot instructions file, ready for sending to a compatible plotter.</td>
</tr>
</tbody>
</table>
Suggested File Name Extensions:
Short Method

<table>
<thead>
<tr>
<th>Short File Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNK</td>
<td>ASCII Texas Package links after downloading from mainframe. Typically, this file is not used except during initial installation of a new validation.</td>
</tr>
<tr>
<td>XY</td>
<td>ASCII Texas Package node numbers and coordinates, zone centroids, and other nodes typically used only during installation.</td>
</tr>
<tr>
<td>ANT</td>
<td>ASCII TRANPLAN NETDATA network file.</td>
</tr>
<tr>
<td>TOD</td>
<td>Texas Package trip table in ASCII format (1216), as downloaded from mainframe computer.</td>
</tr>
<tr>
<td>TEX</td>
<td>Texas Package trip table converted with the DOWN.BAT program</td>
</tr>
</tbody>
</table>
INDEX TO SELECTED TOPICS