The research was performed in cooperation with the Texas Department of Transportation and the U.S. Department of Transportation, Federal Highway Administration. The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official view or policies of the FHWA or TxDOT. This report does not constitute a standard, specification, or regulation, nor is it intended for construction, bidding, or permit purposes. Trade names were used solely for information and not for product endorsement.

Disclaimer

This research was performed in cooperation with the Texas Department of Transportation and the U.S. Department of Transportation, Federal Highway Administration. The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official view or policies of the FHWA or TxDOT. This report does not constitute a standard, specification, or regulation, nor is it intended for construction, bidding, or permit purposes. Trade names were used solely for information and not for product endorsement.

The production of crushed portland cement concrete (CPCC) continues to grow year by year. Currently, in excess of 100 million tons of crushed concrete are generated annually in the United States. In conjunction with the increase of this waste product, recycling of CPCC has been suggested as an attractive alternative to disposal. Consequently, many researchers and engineers have investigated the reuse of crushed concrete materials.

Although CPCC contains particles of various sizes from inches to microns, most previous studies focused on the use of particles larger than the No. 4 sieve size relative to the use as coarse aggregates in new concrete. Since CPCC fines passing the No. 4 sieve tend to be highly absorptive and angular in nature, difficulties have been experienced in processing and using them in concrete mixtures. The Texas Department of Transportation (TxDOT) has successfully used the coarse particles of CPCC in new concrete for various purposes. However, increased concrete crushing has resulted in growing stockpiles of CPCC fines (Figure 1). It is imperative that effective and full use of crushed concrete materials including fines be found. Therefore, this research project explored potential ways of using CPCC fines associated with TxDOT applications.

What We Did . . .

The research approach for exploring potential TxDOT applications was divided into two areas: paving and non-paving. Under the framework of a joint research project, the Texas Transportation Institute (TTI) and the Center for Transportation Research (CTR) addressed paving and non-paving applications, respectively. Based on the literature review and discussions with TxDOT personnel, the research team identified the following potential items for use of CPCC fines:

- paving applications: flexible base, cement treated base, and HMA bond breaker; non-paving applications: portland cement concrete, flowable fill, backfill, and embankment.

Much of the research effort was devoted to a laboratory test program for material characterization. The test program focused on the identification of aggregate and mixture properties related to the current TxDOT specifications for the selected items. Properties related to constructibility, durability, and environmental issues were also addressed.

CPCC Fines

The research team characterized aggregate properties of CPCC fines including size distribution, specific gravity and absorption, unit weight and voids, plasticity index, methylene blue value, pH measurements, and chemical analysis. The methylene blue test was conducted in accordance with the modified ASTM C 857 method developed in NCHRP Project 4-19 for aggregate tests. This test is an effective way to evaluate the presence of potentially harmful materials in the fraction of an aggregate finer than the No. 200 sieve. The research team included pH measurements and chemical analysis for a comparative investigation of environmental issues. The research team collected bulk crushed concrete materials from four crushers around the state of Texas. Aggregate properties of coarse particles of crushed concrete were separately identified when they were required in conjunction with the studies of specific applications.

Use of CPCC Fines

The research team examined the feasibility of using crushed concrete materials in paving and non-paving applications. Items investigated included flexible base, cement treated
Four mixtures of concrete were evaluated based on their fresh and hardened properties. Three mixtures contained CPCC fines and one mixture contained a blend of CPCC fines and ASTM C 33 concrete sand. All mixtures were designed as S-2 sack mixtures and used the maximum manufacturer’s suggested dosage of mid-range water-reducing admixture. The standard requirements for materials used in batch and embankment test specimens were compared to the properties of CPCC fines to evaluate the possibility of using CPCC fines in these applications. Backfill and embankment are currently covered under Item 400 and Item 132, respectively.

What We Found …

CPCC Fines

The aggregate characterization program showed that, in general, CPCC fines are non-plastic, highly absorptive, and highly variable in size distribution. CPCC fines also contained a substantial amount of material finer than the No. 200 sieve. This fraction of the material contained both particles of hydrated cement and other contaminants, such as soil and clay. The mafic material was higher than that of typical concrete sands. This test result indicates that difficulties may be encountered, especially with regard to water demand, when using CPCC fines as aggregates in concrete mixtures.

The pH measurements showed high alkalinity of CPCC fines. Removal of ultra fine materials passing the No. 200 sieve helped to reduce the high alkalinity of CPCC fines. The alkalinity does not necessarily imply any negative impact on the environment. For the environmental considerations, a more specific study is needed concerning contaminative leachate problems for applied mixtures. The tests for CRCA total contents showed that the CPCC fines contain higher levels of SCRA metals than typical virgin and manufactured sands. However, when two samples were tested to assess these metals’ ability to leach, the levels detected in 15 of the 16 cases were below the detectability limits of the test. These values are substantially lower than the present Environmental Protection Agency values for Toxicity Characteristic Leaching Procedure (TCLP) values for the Synthetic Precipitation Leaching Procedure (SPLP) test were unstable to the researchers. The single case in which levels were detectable, they barely exceeded the detectability limits of the test. Thus, although measurable amounts of heavy metals were found in the fines, the leaching characteristics of these metals are more important than the presence of the metals in the sample.

Paving Applications

Flexible Base

1. The use of crushed concrete materials resulted in increased water demand to reach Optimum Moisture Content. Flexibility of materials resulted in increased water demand to reach OMC. Unlike flexible base mixtures, however, the high amount of CPCC fines showed stable dielectric values under continued soaking. Cements treatment seems to reduce capillary rise in the mixture and to subsequently eliminate moisture susceptibility.

2. However, the strength test results indicated that crushed concrete mixtures are not as susceptible to moisture as suggested by the absorbive properties.

3. The strength of crushed concrete mixtures satisfied the compressive strength requirements of Item 247. Crushed concrete mixtures always showed higher strength than conventional sand.

4. Test results support the use of crushed concrete materials including CPCC fines as a base mix.

Cement Treated Base

1. Although the compressive strength of crushed concrete mixtures was generally lower than that of conventional CTB, crushed concrete mixtures were shown to satisfy the requirements of Item 276 when the cement content is properly selected.

2. A proportional relationship was observed between compressive strength and modulus of elasticity of environmental mixtures. Therefore, the modulus of crushed concrete mixtures was also investigated to determine suitability for use in HMA binder mixtures.

Non-Paving Applications

Flowable Fill

1. Flowable fill can be produced using CPCC fines instead of conventional aggregates such as ASTM C 33 concrete sand.

2. Due to the large amount of minus No. 200 material in the CPCC fines, it was difficult to entrain air in flowable fill mixtures containing this material. Therefore, trial mixing is recommended when air entrainment is required. Trial mixing will identify any potential problems with air-entrainment for a specific source of CPCC fines.

3. The high level of minus No. 200 material in the CPCC fines increased the water demand of flowable fill using CPCC fines.

4. For the same mixture proportions, flowable fill with CPCC fines was stronger than flowable fill using conventional aggregates.

5. Increasing the cement content of the crushed concrete mixtures compensated for the strength decrease due to the increased water demand.

Portland Cement Concrete

1. The use of CPCC fines in portland cement concrete caused increased water demand and severely diminished workability.

2. Even with large doses of water-reducing admixtures, concrete using CPCC fines was extremely stiff and unworkable.

3. As a result of the increased water demand and low workability, CPCC fines should not be considered as potential aggregates for portland cement concrete.

HMA Bond Breaker

1. According to the mix design requirements of Item 3116 Type B, the maximum substitutions of crushed concrete materials were determined at 40 percent of total aggregates for both manufactured sand and CPCC fines.

2. The use of CPCC fines required a significant increase in the expansive agent. This increase resulted in a slight increase of the optimum asphalt content but higher stability. In addition, the design properties of the mixtures satisfied the requirements of Item 345.

3. Crushed concrete mixtures were also shown to be more susceptible to moisture than conventional mixtures with regard to strength. When moisture sensitivity is a primary design criteria for a bond breaker, the CPCC fines demonstrated the ability to leach from various mixtures and their ability to leach from various samples may need to be developed.

4. Flexible base mixtures consisting of crushed concrete materials showed so-called bulking behavior when the amount of CPCC fines increased. It is recommended that field studies address workability aspects of tests such as compaction and finishing of the layer.

5. Material behavior under repeated loading and environmental cycling should be identified in the field as well as the laboratory. Specific interest is given to resilient modus and permanent deformation for flexible base and fatigue behavior for CTB applications.

6. Flowable fill mixture proportion for mixtures incorporating CPCC fines should be investigated with the objective of reducing the amount of fly ash used in flowable fill using CPCC fines due to the high amount of minus No. 200 material in CPCC fines. This reduction in fly ash content is critical to avoid concerns of long-term strength gain and expan
cation.
base (CTB), and HMA bond breaker for paving applications, conventional aggregate, Portland cement concrete, backfill, and embankment for non-paving applications. Flexibility is commonly covered under TxDOT Item 247. Properties of crushed concrete mixtures were compared to those of conventional aggregate base mixtures. Two different mixture gradations were determined so as to produce test mixtures containing all 3-sack cement and a cement content of 100 percent crushed concrete materials as well as conventional limestone base materials were characterized and compared. The test program relevant to CTB applications, covered under Item 276, focused on the properties related to shrinkage cracking behavior and moisture susceptibility of mixtures. The test program included standard test methods (ASTM C 39; C 1633), modulus of elasticity (ASTM C 469), free shrinkage measurements (ASTM C 1575), stress relaxation test, restrained shrinkage ring test, and tube suction test. The research team determined eight test parameters for each aggregate source by two-level, three-variable experimental design with the variables of course and fine aggregate proportions and cement content. All test mixtures were also compacted at optimal moisture content (OMC). HMA bond breaker mixtures containing CPCC fines were evaluated for hot mix design properties (Tex-204-F) and moisture susceptibility (Tex-531-C), and compared to the conventional mixture. The research team determined three mix designs, Design A, B, and C, with three different aggregate sources, conventional aggregates, CPCC fines, and manufactured sand (washed and ungraded CPCC fines). Design A was a control mixture consisting of conventional materials. Designs B and C included the two types of CPCC fines at 40 percent substituting the fine aggregates in the control mix. The inclusion of CPCC fines were determined in accordance with Item 3116 Type B, which is covered under Item 345. Nine mixtures of flowable fill, as covered under Item 4438, were mixed and evaluated based on their fresh and hardened properties. Mixtures containing concrete sand, CPCC fines, and a blend of the two were evaluated. In addition, both air entrained and fly ash substituted mixtures were cast and evaluated. Researchers investigated the feasibility for using CPCC fines as fine aggregates in TxDOT Class C concrete.

Four mixtures of concrete were evaluated based on their fresh and hardened properties. Three mixtures contained CPCC fines and one mixture contained a blend of CPCC fines and ASTM C 33 concrete. All mixtures were designed as 5-sack mixtures and used the maximum manufacturer’s suggested dosage of mid-range water-reducing admixture. The standard requirements for materials used in batched and embankment were compared to the properties of CPCC fines to evaluate the possibility of using CPCC fines in these applications. Backfill and embankment are currently covered under Item 400 and Item 132, respectively.

What We Found …

CPCC Fines

The aggregate characterization program showed that, in general, CPCC fines are non-plastic, highly absorptive, and highly variable in size distribution. CPCC fines also contained a substantial amount of materials finer than the No. 200 sieve. This fraction of the material contained both particles of hydrated cement and other contaminants, such as soil and clay. The methylene blue value was significantly higher than that of typical concrete sands. This test result indicates that difficulties may be encountered, especially with regard to water demand, when using CPCC fines as aggregates in concrete mixtures. The pH measurements showed high alkalinity of CPCC fines. Removal of ultra fine materials passing the No. 200 sieve helped to reduce the high alkalinity of CPCC fines. The alkalinity does not necessarily imply any negative impact on the environment. For the CPCC fines considerations, a more specific study is needed concerning contaminative leachate problems for applied mixtures. The tests for RCRA total contents showed that the CPCC fines contain higher levels of 100 percent crushed concrete materials than typical virgin and manufactured sands. However, when two samples were tested to assess these materials’ ability to leach, the levels detected in 15 of the 16 cases were below the detectability limits of the test. These values are substantially lower than the present Environmental Protection Agency values for Toxicity Characteristic Leaching Procedure (TCLP) values for the Supplemental Precipitation Leaching Procedure (SLPL) test were unavailable to the researchers. The single case in which levels were detectable, they barely exceeded the detectability limits of the test. Thus, although measurable amounts of heavy metals were found in the fines, the leaching characteristics of these materials are more important than the presence of the metals in the sample. Paving Applications

Flexible Base

1. The use of crushed concrete materials resulted in increased water demand to reach Optimum Moisture Content. Furthermore, an excessive capillary rise was observed for crushed concrete mixtures under a continued soaking condition, indicating moisture susceptibility of the mixture.

2. However, the strength test results indicated that crushed concrete mixtures are not so susceptible to moisture as suggested by the absorptive properties.

3. The strength of crushed concrete mixtures satisfied the minimum requirements of Item 247. Crushed concrete mixtures always showed higher strength than conventional mixtures.

4. Test results support the use of crushed concrete materials including CPCC fines as materials with a certain degree of moisture resistance.

Cement Treated Base

1. Although the compressive strength of crushed concrete mixtures was generally lower than that of conventional CTB, crushed concrete mixtures were shown to satisfy the requirements of Item 276 when the cement content is properly selected.

2. A proportional relationship was observed between compressive strength and modulus of elasticity of the mixtures. Therefore, the modulus of crushed concrete mixtures was also investigated in an attempt to provide some insight into potential uses for HMA bond breaker mixtures.

Non-Paving Applications

Flowable Fill

1. Flowable fill can be produced using CPCC fines instead of conventional aggregates such as ASTM C 33 concrete sand.

2. Due to the large amount of minus No. 200 material in the CPCC fines, it was difficult to entrain air in the flowable fill mixtures containing this material. Therefore, trial mixing is recommended when air entrainment is desired. Trial mixing will identify any potential problems with air-entrainment for a specific source of CPCC fines.

3. The high level of minus No. 200 material decreased the water demand of flowable fill using CPCC fines.

4. For the same mixture proportions, flowable fill with CPCC fines was weaker than flowable fill using conventional aggregates.

5. Increasing the cement content of the mixtures compensated for the strength decrease due to the increased water demand.

Portland Cement Concrete

1. The use of CPCC fines in Portland cement concrete caused increased water demand and severely diminished workability.

2. Even with large doses of water-reducing admixtures, concrete using CPCC fines was extremely stiff and unworkable.

3. As a result of the increased water demand and low workability, CPCC fines should not be considered as potential aggregates for Portland cement concrete.

4. An abundance of TxDOT applications capable of using unwashed and ungraded CPCC appear to exist. Therefore, the future production of the washed CPCC fines should be reevaluated to ensure the most efficient use of the entire crushed product.

Backfill and Embankment

1. Aggregate properties of both unwashed and washed CPCC fines meet current TxDOT standards for Items 400.5, Backfill and 400.6, Cement Stabilized Backfill.

2. The properties of both unwashed and washed CPCC fines are also suitable for use in HMA bond breaker mixtures.

Non-Paving Applications

The Researchers Recommend …

The research team proposed revisions of TxDOT specifications, which included the use of CPCC fines in the selected applications, except Portland cement concrete application. The following considerations are suggested regarding field implementation as well as other areas of future study.

1. Efforts should be immediately undertaken to implement the use of CPCC fines in HMA bond breaker, flowable fill, flowable fill, and backfill applications.

2. A better method to determine the specific gravity and absorption of high fines materials, such as CPCC fines, should be developed.

3. Continued efforts should be made to reduce the amount of CPCC fines produced and/or find additional uses for the material.

4. Although not a major concern, the presence of heavy metals and their ability to leach from CPCC fines should perhaps be further investigated. If significant levels of heavy metals are found in CPCC fines, an investigation to determine both the source of these contaminants and their ability to leach from the sample should be performed. An assessment of acceptable SLP limits and procedures may include assessing the levels of heavy metals and their ability to leach from various sample uses may be needed. Five flexible base mixtures consisting of crushed concrete materials showed significantly lower long-term strength gain and more vulnerable to shrinkage cracking than conventional concrete. However, the strength test results indicated that crushed concrete mixtures are not so susceptible to moisture as suggested by the absorptive properties. The strength of crushed concrete mixtures satisfied the minimum requirements of Item 247. Crushed concrete mixtures always showed higher strength than conventional mixtures. The cement content of crushed concrete mixtures was also investigated in an attempt to provide some insight into potential uses for HMA bond breaker mixtures.
For More Details...

The research is documented in Report 4954-1, Characterization of Crushed Concrete Materials for Paving and Non-Paving Applications.

Research Supervisor: Dan G. Zollinger, Ph.D., P.E., TTI, (979) 845-9918, d-zollinger@tamu.edu
Professor of Civil Engineering: David W. Fowler, CTR, (512) 471-4498, dwf@mail.utexas.edu
TxDOT Project Director: Moon Won, (512) 465-7502, m1won@dot.state.tx.us

To obtain copies of reports, contact Nancy Pippin, Texas Transportation Institute, TTI Communications, (979) 458-0481, or e-mail n-pippin@tti-mail.tamu.edu. See our online catalog at http://tti.tamu.edu.

Disclaimer

This research was performed in cooperation with the Texas Department of Transportation and the U.S. Department of Transportation, Federal Highway Administration. The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official view or policies of the FHWA or TxDOT. This report does not constitute a standard, specification, or regulation, nor is it intended for construction, bidding, or permit purposes. Trade names were used solely for information and not for product endorsement.