This report documents the Type F mix design for Pumphrey Drive, Westworth Village, Fort Worth.
TYPE F MIX DESIGN FOR FORT WORTH

by

Fujie Zhou, Ph.D., P.E.
Assistant Research Engineer
Texas Transportation Institute

and

Tom Scullion, P.E.
Senior Research Engineer
Texas Transportation Institute

Report 5-5123-01-1
Project 5-5123-01
Project Title: Implementation of Thin Lift Type F HMAC Mix Design

Performed in cooperation with the
Texas Department of Transportation
and the
Federal Highway Administration

Published: August 2007

TEXAS TRANSPORTATION INSTITUTE
The Texas A&M University System
College Station, Texas 77843-3135
DISCLAIMER

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official view or policies of the Texas Department of Transportation (TxDOT) or the Federal Highway Administration (FHWA). This report does not constitute a standard, specification, or regulation. The engineer in charge was Dr. Fujie Zhou, P.E. (Texas, # 95969).

There is no invention or discovery conceived or first actually reduced to practice in the course of or under this contract, including any art, method, process, machine, manufacture, design or composition of matter, or any new useful improvement thereof, or any variety of plant, which is or may be patentable under the patent laws of the United States of America or any foreign country.
ACKNOWLEDGMENTS

This project was made possible by the Texas Department of Transportation in cooperation with the Federal Highway Administration. The authors thank the many personnel who contributed to the coordination and accomplishment of the work presented herein. Special thanks are extended to Richard Willammee, P.E., for serving as the implementation director.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Type F Latex Mixture Design</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Type F Crumb Rubber Mixture Design</td>
<td>5</td>
</tr>
</tbody>
</table>
CHAPTER 1
TYPE F LATEX MIXTURE DESIGN

Mixture Design Summary: Type F Mix with 3 % Latex

Date: 5/21/2007

Project: Pumphrey Drive, Westworth Village

From/To: SH183 north to
 Entrance to Naval Air Station Joint Reserve Base

CSJ: N/A

Mixture type: Type F Granite

Aggregates: Martin Marietta Materials, Mill Creek, OK
 Producer Code 0050433
 Surface Aggregate Class (SAC) – A

Stockpiles: F-Rock 55 %
 Screenings: 45 %

Asphalt: Valero PG64-22 plus 3 % UP7814 Anionic SBR Polymer
 (70 % min. Solid)

Antistripping agent: 1% Akzo Nobel, Kling-Beta 2550

Optimum asphalt content: 6.8 % based on 3.5 % design air voids, overlay tester, and
 Hamburg test results

Mixture properties at optimum asphalt content are:

 VMA: 18.8 %
 Bulk specific gravity: 2.317
 Max. specific gravity: 2.399
 Boil test, Tex-530-C: No visual stripping
 Overlay test, Tex-248F: >1200 cycles
 Hamburg test, Tex-242F: 10.5 mm @ 20,000 passes
 (meets PG76-22 requirement)

Design sheets are presented on following pages.
TEXAS DEPARTMENT OF TRANSPORTATION

HMACP MIXTURE DESIGN : COMBINED GRADATION

Aggregates Source:
- F Rock: Sranova

Sample ID:

Aggregate Number:
- Bin No. 1: Bin No. 2: Bin No. 3: Bin No. 4: Bin No. 5: Bin No. 6: Bin No. 7:

BI N FRACTIONS

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Cum % Passing</th>
<th>MSH Cum %</th>
<th>CMH Cum %</th>
<th>Cum % Passing</th>
<th>MSH Cum %</th>
<th>CMH Cum %</th>
<th>Cum % Passing</th>
<th>MSH Cum %</th>
<th>CMH Cum %</th>
<th>Cum % Passing</th>
<th>MSH Cum %</th>
<th>CMH Cum %</th>
<th>Percent</th>
<th>100.0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1"</td>
<td>100.0</td>
<td>55.0</td>
<td>100.0</td>
<td>45.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3/4"</td>
<td>100.0</td>
<td>55.0</td>
<td>100.0</td>
<td>45.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1/2"</td>
<td>100.0</td>
<td>55.0</td>
<td>100.0</td>
<td>45.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3/8"</td>
<td>98.8</td>
<td>54.3</td>
<td>100.0</td>
<td>45.0</td>
<td>0.0</td>
</tr>
<tr>
<td>No. 4</td>
<td>52.0</td>
<td>20.8</td>
<td>92.0</td>
<td>41.7</td>
<td>0.0</td>
</tr>
<tr>
<td>No. 8</td>
<td>26.6</td>
<td>11.3</td>
<td>72.9</td>
<td>32.8</td>
<td>0.0</td>
</tr>
<tr>
<td>No. 16</td>
<td>9.8</td>
<td>4.8</td>
<td>55.3</td>
<td>24.9</td>
<td>0.0</td>
</tr>
<tr>
<td>No. 30</td>
<td>4.5</td>
<td>2.2</td>
<td>40.7</td>
<td>15.3</td>
<td>0.0</td>
</tr>
<tr>
<td>No. 50</td>
<td>2.4</td>
<td>1.3</td>
<td>27.7</td>
<td>12.5</td>
<td>0.0</td>
</tr>
<tr>
<td>No. 200</td>
<td>1.1</td>
<td>0.6</td>
<td>11.5</td>
<td>5.3</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Aggregate Source & Grade:
- Valero PG 64-22 plus 3% Latex (70% Solid)

Binder Percent (%):
- 6.8

Asphalt Spec. Grav: 2.035

Antislip agent:
- Liquid Antislip

Remarks:

Test Method:
- TX207
- TX226
- TX227
- TX235
- TX342
- TX530

Reviewed By:

Authorized By:

Station:

District:

Contractor Design #:

2
Mixture Evaluation @ Optimum Asphalt Content

<table>
<thead>
<tr>
<th>Indirect Tensile Strength (psi)</th>
<th>Number of cycles</th>
<th>Rut depth (mm)</th>
</tr>
</thead>
</table>

Hamburg Mixed Tracking Test

Effective Specific Gravity

<table>
<thead>
<tr>
<th>Asphalt Content (%)</th>
<th>Specific Gravity (G0)</th>
<th>Maximum Specific Gravity (Gm)</th>
<th>Effective Gravity (Ge)</th>
<th>Theor. Max. Specific Gravity (G0)</th>
<th>Density from Gt (Percent)</th>
<th>VMA (Percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0</td>
<td>2.349</td>
<td>2.441</td>
<td>2.077</td>
<td>2.439</td>
<td>92.6</td>
<td>20.5</td>
</tr>
<tr>
<td>6.5</td>
<td>2.309</td>
<td>2.416</td>
<td>2.046</td>
<td>2.319</td>
<td>95.6</td>
<td>10.9</td>
</tr>
<tr>
<td>7.0</td>
<td>2.358</td>
<td>2.358</td>
<td>2.054</td>
<td>2.383</td>
<td>97.2</td>
<td>15.7</td>
</tr>
<tr>
<td>7.5</td>
<td>2.313</td>
<td>2.286</td>
<td>2.051</td>
<td>2.376</td>
<td>97.3</td>
<td>19.6</td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Estimated Percent of Stripping, %

<table>
<thead>
<tr>
<th>Optimum Asphalt Content</th>
<th>6.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMA @ Optimum AC</td>
<td>18.9</td>
</tr>
</tbody>
</table>

Interpolated Values

- Specific Gravity (G0): 2.317
- Max. Specific Gravity (Gm): 2.356
- Theor. Max. Specific Gravity (G0): 2.401

Comments:
CHAPTER 2

TYPE F CRUMB RUBBER MIXTURE DESIGN

Mixture Design Summary: Type F Mix with Crumb Rubber

Date: 7/9/2007

Project: Pumphrey Drive, Westworth Village

From/To: SH183 north to Entrance to Naval Air Station Joint Reserve Base

CSJ: N/A

Mixture type: Type F Granite

Aggregates: Martin Marietta Materials, Mill Creek, OK
Producer Code 0050433
Surface Aggregate Class (SAC) – A

Stockpiles: F-Rock 55 %
Screenings: 45 %

Asphalt: Valero PG64-22 plus 7 % Crumb Rubber from Bridges Pavement Solution Inc.

Antistripping agent: N/A

Optimum asphalt content: 6.8 % based on overlay tester and Hamburg test results

Mixture properties at optimum asphalt content are:

Max. specific gravity: 2.398
Overlay test, Tex-248F: >1200 cycles
Hamburg test, Tex-242F: <12.5 mm @ 20,000 passes
(meets PG76-22 requirement)

Special note: Special instruction for mix design has been provided by Bridges Pavement Solutions Inc. and this instruction should be followed during mix production in the plant. Otherwise, the performance of this mix may change.

The detailed aggregate gradation sheet is presented on the following page.
TEXAS DEPARTMENT OF TRANSPORTATION

HMACP MIXTURE DESIGN : COMBINED GRADATION

References:

- **Sample ID:** [Sample ID]
- **Sample Date:** [Sample Date]
- **Lot Number:** [Lot Number]
- **Lot Date:** [Lot Date]
- **Status:** [Status]
- **County:** [County]
- **Sampled By:** [Sampled By]
- **Sample Location:** [Sample Location]
- **Material Type:** [Material Type]
- **Producer:** [Producer]
- **Area Engineer:** [Area Engineer]
- **Project Manager:** [Project Manager]

<table>
<thead>
<tr>
<th>COURSE/LIFT</th>
<th>STATION</th>
<th>DIST. FROM CL</th>
<th>CONTRACTOR DESIGN #</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BIN FRACTIONS

<table>
<thead>
<tr>
<th>Aggregate Source</th>
<th>Aggregate Number</th>
<th>Sample ID</th>
<th>Rap, Asphalt%</th>
<th>Total Bin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bin No.1</th>
<th>Bin No.2</th>
<th>Bin No.3</th>
<th>Bin No.4</th>
<th>Bin No.5</th>
<th>Bin No.6</th>
<th>Bin No.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>57.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Combined Gradation

<table>
<thead>
<tr>
<th>Size</th>
<th>Cum % Passing</th>
<th>Min % Passing</th>
<th>Within Spec</th>
</tr>
</thead>
<tbody>
<tr>
<td>1"</td>
<td>100.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>Yes</td>
<td>100.0</td>
<td>Yes</td>
</tr>
<tr>
<td>3/4"</td>
<td>100.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>Yes</td>
<td>100.0</td>
<td>Yes</td>
</tr>
<tr>
<td>1/2"</td>
<td>100.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>Yes</td>
<td>100.0</td>
<td>Yes</td>
</tr>
<tr>
<td>3/8"</td>
<td>99.8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>99.3</td>
<td>99.3</td>
<td>100.0</td>
<td>100.0</td>
<td>Yes</td>
<td>99.3</td>
<td>Yes</td>
</tr>
<tr>
<td>No. 4</td>
<td>52.6</td>
<td>26.9</td>
<td>92.5</td>
<td>41.7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>79.6</td>
<td>70.0</td>
<td>Yes</td>
<td>79.6</td>
<td>Yes</td>
</tr>
<tr>
<td>No. 8</td>
<td>20.6</td>
<td>11.3</td>
<td>72.9</td>
<td>32.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>44.1</td>
<td>40.0</td>
<td>Yes</td>
<td>44.1</td>
<td>Yes</td>
</tr>
<tr>
<td>No. 16</td>
<td>9.8</td>
<td>5.4</td>
<td>55.3</td>
<td>24.9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>30.3</td>
<td>20.0</td>
<td>Yes</td>
<td>30.3</td>
<td>Yes</td>
</tr>
<tr>
<td>No. 30</td>
<td>4.6</td>
<td>2.5</td>
<td>40.7</td>
<td>16.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>29.9</td>
<td>10.0</td>
<td>Yes</td>
<td>29.9</td>
<td>Yes</td>
</tr>
<tr>
<td>No. 50</td>
<td>2.4</td>
<td>1.3</td>
<td>27.7</td>
<td>12.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>13.6</td>
<td>10.0</td>
<td>Yes</td>
<td>13.6</td>
<td>Yes</td>
</tr>
<tr>
<td>No. 200</td>
<td>1.1</td>
<td>0.6</td>
<td>11.8</td>
<td>6.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>5.9</td>
<td>2.0</td>
<td>Yes</td>
<td>5.9</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Remarks:

- **Test Method:** [Test Method]
- **Tested By:** [Tested By]
- **Tested Date:** [Tested Date]