Texas Flexible Pavement Database

Rebecca Yette, Trevor Pereira, Victor Wong

Texas Transportation Institute
The Texas A&M University System
College Station, Texas 77843-3135

Texas State Department of Highways and Public Transportation; Transportation Planning Division
P.O. Box 5051
Austin, Texas 78763

Research performed in cooperation with FHWA. Research Study Title: Texas Flexible Pavement Database.

This volume of the final report is the programmers manual for the Texas Flexible Pavement Database System. It describes the system from the programmer's point of view and includes a system overview, general program narratives, flow diagrams, program specifications, file layouts, report layouts, sample reports, sample screens and program listings.

Microcomputer; Flexible Pavement; Database; Pavement Performance

No restriction. This document is available to the public through the National Technical Information Service 5285 Port Royal Road Springfield, Virginia 22161

Unclassified

Unclassified

683

Form DOT F 1700.7 (8-69)
APPROXIMATE CONVERSIONS TO SI UNITS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>When You Know</th>
<th>Multiply By</th>
<th>To Find</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>in</td>
<td>inches</td>
<td>2.54</td>
<td>centimetres</td>
<td>cm</td>
</tr>
<tr>
<td>ft</td>
<td>feet</td>
<td>0.3048</td>
<td>metres</td>
<td>m</td>
</tr>
<tr>
<td>yd</td>
<td>yards</td>
<td>0.914</td>
<td>metres</td>
<td>m</td>
</tr>
<tr>
<td>mi</td>
<td>miles</td>
<td>1.61</td>
<td>kilometres</td>
<td>km</td>
</tr>
<tr>
<td>in²</td>
<td>square inches</td>
<td>645.2</td>
<td>centimetres squared</td>
<td>cm²</td>
</tr>
<tr>
<td>ft²</td>
<td>square feet</td>
<td>0.0929</td>
<td>metres squared</td>
<td>m²</td>
</tr>
<tr>
<td>yd²</td>
<td>square yards</td>
<td>0.836</td>
<td>metres squared</td>
<td>m²</td>
</tr>
<tr>
<td>mi²</td>
<td>square miles</td>
<td>2.59</td>
<td>kilometres squared</td>
<td>km²</td>
</tr>
<tr>
<td>ac</td>
<td>acres</td>
<td>0.395</td>
<td>hectares</td>
<td>ha</td>
</tr>
</tbody>
</table>

APPROXIMATE CONVERSIONS TO SI UNITS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>When You Know</th>
<th>Multiply By</th>
<th>To Find</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>millimetres</td>
<td>0.039</td>
<td>inches</td>
<td>in</td>
</tr>
<tr>
<td>m</td>
<td>metres</td>
<td>3.28</td>
<td>feet</td>
<td>ft</td>
</tr>
<tr>
<td>m</td>
<td>metres</td>
<td>1.09</td>
<td>yards</td>
<td>yd</td>
</tr>
<tr>
<td>km</td>
<td>kilometres</td>
<td>0.621</td>
<td>miles</td>
<td>mi</td>
</tr>
<tr>
<td>mm²</td>
<td>millimetres squared</td>
<td>0.0016</td>
<td>square inches</td>
<td>in²</td>
</tr>
<tr>
<td>m²</td>
<td>metres squared</td>
<td>10.764</td>
<td>square feet</td>
<td>ft²</td>
</tr>
<tr>
<td>km²</td>
<td>kilometres squared</td>
<td>0.39</td>
<td>square miles</td>
<td>mi²</td>
</tr>
<tr>
<td>ha</td>
<td>hectares (10 000 m²)</td>
<td>2.53</td>
<td>acres</td>
<td>ac</td>
</tr>
<tr>
<td>g</td>
<td>grams</td>
<td>0.0353</td>
<td>ounces</td>
<td>oz</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram</td>
<td>2.205</td>
<td>pounds</td>
<td>lb</td>
</tr>
<tr>
<td>Mg</td>
<td>megagrams (1000 kg)</td>
<td>1.103</td>
<td>short tons</td>
<td>T</td>
</tr>
<tr>
<td>mL</td>
<td>millilitres</td>
<td>0.034</td>
<td>fluid ounces</td>
<td>fl oz</td>
</tr>
<tr>
<td>L</td>
<td>litres</td>
<td>0.264</td>
<td>gallons</td>
<td>gal</td>
</tr>
<tr>
<td>m³</td>
<td>metres cubed</td>
<td>35.315</td>
<td>cubic feet</td>
<td>ft³</td>
</tr>
<tr>
<td>m³</td>
<td>metres cubed</td>
<td>1.308</td>
<td>cubic yards</td>
<td>yd³</td>
</tr>
</tbody>
</table>

TEMPERATURE (exact)

<table>
<thead>
<tr>
<th>°F</th>
<th>Fahrenheit temperature</th>
<th>5/9 (after subtracting 32)</th>
<th>°C</th>
<th>Celsius temperature</th>
<th>9/5 (then add 32)</th>
<th>Fahrenheit temperature</th>
</tr>
</thead>
</table>

These factors conform to the requirement of FHWA Order 5190.1A.

* SI is the symbol for the International System of Measurements
DISCLAIMER

The statements and claims expressed in this document are statements and claims of the authors, and do not necessarily represent the official position of The State of Texas, The State Department of Highways and Public Transportation, or any political subdivision of the State or Federal Government regarding the subject matter.
This volume of the final report is the programmers manual for the Texas Flexible Pavement Database System. It describes the system from the programmer's point of view and includes a system overview, general program narratives, flow diagrams, program specifications, file layouts, report layouts, sample reports, sample screens and program listings.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td></td>
<td>.1</td>
</tr>
<tr>
<td>CHAPTER 1: MAIN MENU DRIVER PROGRAM</td>
<td></td>
<td>.9</td>
</tr>
<tr>
<td>* Program D:MAIN.PRG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Narrative</td>
<td>.11</td>
<td></td>
</tr>
<tr>
<td>Program Flow Diagram</td>
<td>.12</td>
<td></td>
</tr>
<tr>
<td>Program Specification</td>
<td>.13</td>
<td></td>
</tr>
<tr>
<td>Menu Screens</td>
<td>.14</td>
<td></td>
</tr>
<tr>
<td>Program Listing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D:MAIN.PRG</td>
<td>.15</td>
<td></td>
</tr>
<tr>
<td>ERROR.PRB</td>
<td>.20</td>
<td></td>
</tr>
<tr>
<td>CHAPTER 2: INQUIRY SUBSYSTEM</td>
<td></td>
<td>.21</td>
</tr>
<tr>
<td>* General Narrative</td>
<td></td>
<td>.23</td>
</tr>
<tr>
<td>* Program INQUIRY.PRG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Program Flow Diagram</td>
<td>.24</td>
<td></td>
</tr>
<tr>
<td>Program Specification</td>
<td>.25</td>
<td></td>
</tr>
<tr>
<td>Inquiry Screens</td>
<td>.27</td>
<td></td>
</tr>
<tr>
<td>Screen Format Programs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>.41</td>
<td></td>
</tr>
<tr>
<td>Layer Identification</td>
<td>.43</td>
<td></td>
</tr>
<tr>
<td>Layer Thickness Across The Road</td>
<td>.44</td>
<td></td>
</tr>
<tr>
<td>Geometric & Shoulder Information</td>
<td>.45</td>
<td></td>
</tr>
<tr>
<td>Surface</td>
<td>.46</td>
<td></td>
</tr>
<tr>
<td>Subgrade</td>
<td>.47</td>
<td></td>
</tr>
<tr>
<td>Visual Rating</td>
<td>.48</td>
<td></td>
</tr>
<tr>
<td>Serviceability Index</td>
<td>.50</td>
<td></td>
</tr>
<tr>
<td>Falling Weight SSI</td>
<td>.51</td>
<td></td>
</tr>
<tr>
<td>Dynaflect Measurement</td>
<td>.53</td>
<td></td>
</tr>
<tr>
<td>Skid</td>
<td>.54</td>
<td></td>
</tr>
<tr>
<td>Traffic</td>
<td>.55</td>
<td></td>
</tr>
<tr>
<td>Weather</td>
<td>.56</td>
<td></td>
</tr>
<tr>
<td>Environment</td>
<td>.57</td>
<td></td>
</tr>
<tr>
<td>County Name</td>
<td>.58</td>
<td></td>
</tr>
<tr>
<td>Material Type Classification</td>
<td>.59</td>
<td></td>
</tr>
<tr>
<td>Type of Pavement</td>
<td>.60</td>
<td></td>
</tr>
<tr>
<td>District Temperature Constant</td>
<td>.61</td>
<td></td>
</tr>
<tr>
<td>Widening Flag</td>
<td>.62</td>
<td></td>
</tr>
<tr>
<td>Layer Description</td>
<td>.63</td>
<td></td>
</tr>
<tr>
<td>Functional Classification</td>
<td>.64</td>
<td></td>
</tr>
<tr>
<td>Program Listings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INQUIRY.PRG</td>
<td>.65</td>
<td></td>
</tr>
<tr>
<td>INQ_COLL.PRG (Procedure)</td>
<td>.71</td>
<td></td>
</tr>
<tr>
<td>vi</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Add Inventory Screens

Program Listing

- ENIRLAYR.PRG .. 296
- ADDIAYR.PRG .. 300
- INV_BKUP.PRG .. 304
- INV_UPDT.PRG .. 316
- LOCNCHK.PRG .. 324
- LAYRCHK.PRG .. 332
- LAYTCHK.PRG .. 337
- GEOSCHK.PRG .. 345
- SURFCCHK.PRG .. 351
- SUBGCCHK.PRG .. 355

* Program CHNGLAYR.PRG

Narrative on Changing Inventory Data 363
Diagram of General Program Flow 364
Flowchart of Program Logic 365
Program Specification ... 368
Change Inventory Screens 370

Screen Format Listings

- Geometric and Shoulder Information 374
- Layer Identification .. 375
- Layer Thickness Across the Road 376
- Location .. 377
- Subgrade .. 379
- Surface .. 380

Program Listing

- CHNGLAYR.PRG .. 381
- CHNGKUP.PRG .. 385
- CHEKGBOS.PRG .. 393
- CHEKLAYR.PRG .. 398
- CHEKLAYT.PRG .. 404
- CHEKLOCN.PRG .. 409
- CHEKSUBG.PRG .. 414
- CHEKSURF.PRG .. 418

Section 4: Traffic Data Update

* Program READTRAF.BAT

Narrative on Traffic Tape to Disk 425
Program Specification ... 426

Program Listing

- READTRAF.BAT .. 427
- READTRAF.COM .. 428

* Program TRAFUPD.PRG

Narrative on Traffic Update 429
Program Flow Diagram .. 434
Program Specification ... 434
File Record Layout ... 432

Program Listing

- TRAFUPD.PRG .. 434
- Program Flow Diagram .. 435
Section 3: Building Model File

* General Narrative.

* Program MODEL.PRG
 - Diagram of General Program Flow
 - Program Specification
 - Model Menu Screen
 - File Layouts
 - Program Listing
 - MODEL.PRG

* Program MODELING.PRG
 - Program Specification
 - Model Menu Screen
 - Program Listing
 - MODELING.PRG

* Program MODL_LOC.PRG
 - Program Specification
 - Diagram of General Program Flow
 - Program Listing
 - MODL_LOC.PRG

* Program MODL_DIS.PRG
 - Program Specification
 - Diagram of General Program Flow
 - Program Listing
 - MODL_DIS.PRG
 - MODL_R_B.PAS

* Program MODL_LAY.PRG
 - Program Specification
 - Diagram of General Program Flow
 - Program Listing
 - MODL_LAY.PRG
 - BASETHICK.PAS

* Program MODL_WEAPR.G
 - Program Specification
 - Diagram of General Program Flow
 - Program Listing
 - MODL_WEAPR.G

* Program MODL_ENV.PRG
 - Program Specification
 - Diagram of General Program Flow
 - Program Listing
 - MODL_ENV.PRG

FTICURVE.PAS .. 500
PLOTGRPH.PAS ... 505

* General Narrative. 511

* Program MODEL.PRG
 - Diagram of General Program Flow 512
 - Program Specification 514
 - Model Menu Screen 516
 - File Layouts ... 517
 - Program Listing
 - MODEL.PRG ... 522

* Program MODELING.PRG
 - Program Specification 524
 - Model Menu Screen 525
 - Program Listing
 - MODELING.PRG 526

* Program MODL_LOC.PRG
 - Program Specification 528
 - Diagram of General Program Flow 529
 - Program Listing
 - MODL_LOC.PRG 530

* Program MODL_DIS.PRG
 - Program Specification 532
 - Diagram of General Program Flow 533
 - Program Listing
 - MODL_DIS.PRG 534
 - MODL_R_B.PAS 536

* Program MODL_LAY.PRG
 - Program Specification 547
 - Diagram of General Program Flow 549
 - Program Listing
 - MODL_LAY.PRG 550
 - BASETHICK.PAS 552

* Program MODL_WEAPR.G
 - Program Specification 555
 - Diagram of General Program Flow 556
 - Program Listing
 - MODL_WEAPR.G 557

* Program MODL_ENV.PRG
 - Program Specification 558
 - Diagram of General Program Flow 559
 - Program Listing
 - MODL_ENV.PRG 560
<table>
<thead>
<tr>
<th>Subprogram 1: STILOG.PAS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Program Specification</td>
<td>.436</td>
</tr>
<tr>
<td>File Record Layout</td>
<td>.437</td>
</tr>
<tr>
<td>Program Listing:</td>
<td>.438</td>
</tr>
<tr>
<td>Program Flow Diagram</td>
<td>.441</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subprogram 2: SIDITLOG.PRG</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Program Specification</td>
<td>.442</td>
</tr>
<tr>
<td>File Record Layout</td>
<td>.443</td>
</tr>
<tr>
<td>Program Listing: SIDITLOG.PRG</td>
<td>.445</td>
</tr>
<tr>
<td>Program Flow Diagram</td>
<td>.447</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subprogram 3: LOGITRAF.PRG</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Program Specification</td>
<td>.448</td>
</tr>
<tr>
<td>File Record Layout</td>
<td>.449</td>
</tr>
<tr>
<td>Program Listing: LOGITRAF.PRG</td>
<td>.450</td>
</tr>
<tr>
<td>Program Flow Diagram</td>
<td>.452</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subprogram 4: NEWIRAF.PRG</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Program Specification</td>
<td>.453</td>
</tr>
<tr>
<td>Program Listing: NEWIRAF.PRG</td>
<td>.454</td>
</tr>
</tbody>
</table>

CHAPTER 5: APPLICATIONS SUBSYSTEM

* General Narrative. .. .457

Section 1: Application Driver. .. .459

* Program APPLICAT.PRG
 - Sybsystem Driver Program Flow Diagram461
 - Narrative on Application Driver462
 - Program Specification463
 - Menu Screens for Applications464
 - Program Listing
 APPLICAT.PRG465

Section 2: Accumulated 18KIP vs Alligator Cracking/Rutting/PSI .. .467

* Program GRAPH18K.PRG
 - General Narrative469
 - Diagram of General Program Flow470
 - Program Specification471
 - Graph Menu Screen472
 - File Layout .. .473
 - Program Listing
 GRAPH18K.PRG .. .476

* Program GRAPH18.K.PAS
 - Program Specification478
 - Program Listing
 GRAPH18.PAS481
 DECLARE.PAS494
 MYGRAPH.PAS495
 RHOBETA.PAS496
* Program MODL_TRF.PRG
 Program Specification 561
 Diagram of General Program Flow 562
 Program Listing
 MODL_TRF.PRG .. 563

* Program MODL_SUB.PRG
 Program Specification 564
 Diagram of General Program Flow 565
 Program Listing
 MODL_SUB.PRG .. 566

* Program MODL_SHO.PRG
 Program Specification 567
 Diagram of General Program Flow 568
 Program Listing
 MODL_SHO.PRG .. 569

* Program MODL_SUF.PRG
 Program Specification 570
 Diagram of General Program Flow 571
 Program Listing
 MODL_SUF.PRG .. 572

* Program MODL_TMP.PRG
 Program Specification 574
 Diagram of General Program Flow 575
 Program Listing
 MODL_TMP.PRG .. 576

* Program MODL_DYN.PRG
 Program Specification 577
 Diagram of General Program Flow 578
 Program Listing
 MODL_DYN.PRG .. 579

* Program MODL_FAL.PRG
 Program Specification 581
 Diagram of General Program Flow 582
 Program Listing
 MODL_FAL.PRG .. 583

Section 4: Create the Distress File. 585

* Program DISTRESS.PRG
 Narrative for Distress. 587
 General Program Flow Diagram 588
 Program Specification 589
 File Layout ... 590
 Program Listing
 DISTRESS.PRG ... 592
 DISTVISL.PRG ... 596
CHAPTER 6: DATABASE MAINTENANCE SUBSYSTEM

* General Narrative. ... 601

* Reindex Files Program - REINDEX.PRG
 Program Specification .. 602
 Program Listing
 REINDEX.PRG

* Installation Program - INSTDENL.PRG
 Program Specification .. 606
 Program Listing
 INSTDENL.PRG .. 607

* Backup Files Program - BACKUP.PRG. 608
 Program Specification .. 608
 Program Listing
 BACKUP.PRG .. 609
LIST OF APPENDICES

APPENDIX A: File Layouts

<table>
<thead>
<tr>
<th>File Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNTRYTBL.DBF</td>
<td>623</td>
</tr>
<tr>
<td>DISTRESS.DBF</td>
<td>624</td>
</tr>
<tr>
<td>DISTTEMP.DBF</td>
<td>625</td>
</tr>
<tr>
<td>DYNAPLID.DBF</td>
<td>626</td>
</tr>
<tr>
<td>ENV.DBF</td>
<td>627</td>
</tr>
<tr>
<td>FALLWGT.DBF</td>
<td>628</td>
</tr>
<tr>
<td>FUNCITBL.DBF</td>
<td>630</td>
</tr>
<tr>
<td>GEOSHO.DBF</td>
<td>631</td>
</tr>
<tr>
<td>LAYER.DBF</td>
<td>632</td>
</tr>
<tr>
<td>LAYERBL.DBF</td>
<td>633</td>
</tr>
<tr>
<td>LAYTHICK.DBF</td>
<td>634</td>
</tr>
<tr>
<td>LOCATION.DBF</td>
<td>635</td>
</tr>
<tr>
<td>MATLITBL.DBF</td>
<td>636</td>
</tr>
<tr>
<td>MODEL.DBF</td>
<td>637</td>
</tr>
<tr>
<td>PAVETYPE.DBF</td>
<td>638</td>
</tr>
<tr>
<td>SI.DBF</td>
<td>639</td>
</tr>
<tr>
<td>SKID.DBF</td>
<td>640</td>
</tr>
<tr>
<td>SUBGRADE.DBF</td>
<td>641</td>
</tr>
<tr>
<td>SURFACE.DBF</td>
<td>642</td>
</tr>
<tr>
<td>TRAFFIC.DBF</td>
<td>643</td>
</tr>
<tr>
<td>VISUAL.DBF</td>
<td>644</td>
</tr>
<tr>
<td>WEATHER.DBF</td>
<td>645</td>
</tr>
<tr>
<td>WIDENFIG.DBF</td>
<td>646</td>
</tr>
</tbody>
</table>

APPENDIX B: Variable Descriptions For All Master Files

<table>
<thead>
<tr>
<th>File Name</th>
<th>Page</th>
</tr>
</thead>
</table>

APPENDIX C: Minimum System Configuration

<table>
<thead>
<tr>
<th>File Name</th>
<th>Page</th>
</tr>
</thead>
</table>

APPENDIX D: Initial Installation

<table>
<thead>
<tr>
<th>File Name</th>
<th>Page</th>
</tr>
</thead>
</table>
LIST OF EXHIBITS

<table>
<thead>
<tr>
<th>Exhibit</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Location File Report</td>
<td>93</td>
</tr>
<tr>
<td>2</td>
<td>Test Section Location File Report</td>
<td>94</td>
</tr>
<tr>
<td>3</td>
<td>Layer Identification File Report</td>
<td>95</td>
</tr>
<tr>
<td>4</td>
<td>SID Numbers with Two Course Surface (DST) Report</td>
<td>96</td>
</tr>
<tr>
<td>5</td>
<td>Layer Thickness Across The Road File Report</td>
<td>97</td>
</tr>
<tr>
<td>6</td>
<td>Geometric & Shoulder Information File Report</td>
<td>98</td>
</tr>
<tr>
<td>7</td>
<td>Surface File Report</td>
<td>99</td>
</tr>
<tr>
<td>8</td>
<td>Subgrade File Report</td>
<td>100</td>
</tr>
<tr>
<td>9</td>
<td>Visual Rating File Report</td>
<td>101</td>
</tr>
<tr>
<td>10</td>
<td>Serviceability Index File Report</td>
<td>102</td>
</tr>
<tr>
<td>11</td>
<td>Falling Weight SSI File Report - Sections 1 & 2</td>
<td>103</td>
</tr>
<tr>
<td>12</td>
<td>Dynaflect Measurement File Report</td>
<td>105</td>
</tr>
<tr>
<td>13</td>
<td>Skid Measurement File Report</td>
<td>106</td>
</tr>
<tr>
<td>14</td>
<td>Traffic File Report</td>
<td>107</td>
</tr>
<tr>
<td>15</td>
<td>Weather File Report</td>
<td>108</td>
</tr>
<tr>
<td>16</td>
<td>Environment File Report</td>
<td>109</td>
</tr>
<tr>
<td>17</td>
<td>Summary Report</td>
<td>110</td>
</tr>
<tr>
<td>18</td>
<td>Inventory Update Report</td>
<td>111</td>
</tr>
<tr>
<td>19</td>
<td>County Name Table Report</td>
<td>113</td>
</tr>
<tr>
<td>20</td>
<td>Material Type Classification Table Report</td>
<td>114</td>
</tr>
<tr>
<td>21</td>
<td>Type of Pavement Table Report</td>
<td>115</td>
</tr>
<tr>
<td>22</td>
<td>District Temperature Constant Table Report</td>
<td>116</td>
</tr>
<tr>
<td>23</td>
<td>Layer Description Table Report</td>
<td>117</td>
</tr>
<tr>
<td>24</td>
<td>Widening Table Report</td>
<td>118</td>
</tr>
<tr>
<td>25</td>
<td>Functional Classification Table Report</td>
<td>119</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>System Overview Diagram</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Relational Database Index Structure</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Program Flow Diagram Symbols</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>Subdirectory Structure</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>Main Menu Driver - Program Flow Diagram</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>Inquiry Subsystem - Program Flow Diagram</td>
<td>24</td>
</tr>
<tr>
<td>7</td>
<td>Report Subsystem - Program Flow Diagram</td>
<td>80</td>
</tr>
<tr>
<td>8</td>
<td>Report Subsystem - Program Flow Diagram</td>
<td>81</td>
</tr>
<tr>
<td>9</td>
<td>Report Subsystem - Program Flow Diagram</td>
<td>82</td>
</tr>
<tr>
<td>10</td>
<td>Edit and Update - Program Flow Diagram</td>
<td>189</td>
</tr>
<tr>
<td>11</td>
<td>PES Modification - Program Flow Diagram</td>
<td>208</td>
</tr>
<tr>
<td>12</td>
<td>PES Update - Program Flow Diagram</td>
<td>246</td>
</tr>
<tr>
<td>13</td>
<td>Inventory Data - Add Process</td>
<td>286</td>
</tr>
<tr>
<td>14</td>
<td>Inventory Data - Add Process Program Flow Chart</td>
<td>287</td>
</tr>
<tr>
<td>15</td>
<td>Inventory Data - Add Process Program Flow Diagram</td>
<td>288</td>
</tr>
<tr>
<td>16</td>
<td>Inventory Data - Change Process</td>
<td>364</td>
</tr>
<tr>
<td>17</td>
<td>Inventory Data - Change Process Program Flow Chart</td>
<td>365</td>
</tr>
<tr>
<td>18</td>
<td>Inventory Data - Change Process Program Flow Diagram</td>
<td>366</td>
</tr>
<tr>
<td>19</td>
<td>Traffic Update - Program Flow Diagram</td>
<td>430</td>
</tr>
<tr>
<td>20</td>
<td>Subprogram SILOG.PAS - Program Flow Diagram</td>
<td>435</td>
</tr>
<tr>
<td>21</td>
<td>Subprogram SIDILOG.PRG - Program Flow Diagram</td>
<td>441</td>
</tr>
<tr>
<td>22</td>
<td>Subprogram LOGTRAP.PRG - Program Flow Diagram</td>
<td>447</td>
</tr>
<tr>
<td>23</td>
<td>Subprogram NEWTRAP.PRG - Program Flow Diagram</td>
<td>452</td>
</tr>
<tr>
<td>24</td>
<td>Application Subsystem Driver Program Flow</td>
<td>461</td>
</tr>
<tr>
<td>25</td>
<td>Program Flow for Graphing 18KTP vs Area Distress or PSI</td>
<td>470</td>
</tr>
<tr>
<td>26</td>
<td>Program Flow for Building Model File Automatically by</td>
<td>512</td>
</tr>
<tr>
<td></td>
<td>Choosing Option 1 of Mode.Prg Menu</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Program Flow for Building Model File by Individual Data</td>
<td>513</td>
</tr>
<tr>
<td></td>
<td>Files by Choosing Option 2 of Model.Prg Menu</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Program Flow for Mod1_Loc.Prg</td>
<td>529</td>
</tr>
<tr>
<td>29</td>
<td>Program Flow for Mod1_Dis.Prg</td>
<td>533</td>
</tr>
<tr>
<td>30</td>
<td>Program Flow for Mod1_Lay.Prg</td>
<td>549</td>
</tr>
<tr>
<td>31</td>
<td>Program Flow for Mod1_Wea.Prg</td>
<td>556</td>
</tr>
<tr>
<td>32</td>
<td>Program Flow for Mod1_Env.Prg</td>
<td>559</td>
</tr>
<tr>
<td>33</td>
<td>Program Flow for Mod1_Trf.Prg</td>
<td>562</td>
</tr>
<tr>
<td>34</td>
<td>Program Flow for Mod1_Sub.Prg</td>
<td>565</td>
</tr>
<tr>
<td>35</td>
<td>Program Flow for Mod1_Sho.Prg</td>
<td>568</td>
</tr>
<tr>
<td>36</td>
<td>Program Flow for Mod1_Suf.Prg</td>
<td>571</td>
</tr>
<tr>
<td>37</td>
<td>Program Flow for Mod1_Tmp.Prg</td>
<td>575</td>
</tr>
<tr>
<td>38</td>
<td>Program Flow for Mod1_Dyn.Prg</td>
<td>578</td>
</tr>
<tr>
<td>39</td>
<td>Program Flow for Mod1_Fal.Prg</td>
<td>582</td>
</tr>
<tr>
<td>40</td>
<td>Program Flow for Mod1_Distress.Prg</td>
<td>588</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>List of Master, Table, and Primary Auxiliary Files</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Standard File Extensions</td>
<td>4</td>
</tr>
</tbody>
</table>
INTRODUCTION

The development of the Texas Flexible Pavement Database System was sponsored by the Texas Department of Highways and Public Transportation and conducted by Texas Transportation Institute. Whereas Volume 1 of this report explains the purpose of the system and provides a User's Manual, Volume 2 is a detailed explanation of the system from the programmer's point of view. Volume 2 assumes the reader is familiar with Volume 1 of this report, and with dBASE III PLUS and Borland TURBO Pascal.

The Texas Flexible Pavement Database System is a microcomputer relational database system written for an IBM XT in dBASE III PLUS and Pascal. The dBASE database contains location, inventory, environmental, pavement condition (monitoring), and traffic information for randomly selected sections of pavement in Texas. Sections average two (2) miles in length. The system is used to edit and update, report, display on the monitor, and analyze the data. A system overview diagram is shown in Figure 1. The following are primary inputs to the system:

a) Pavement Evaluation System (PES) data - used to update the Skid, Serviceability Index, Falling Weight, Visual Rating, and Location Files.
b) Roadway Information (RIFILE) data - used to update the Traffic File.
c) Roadlife maps and District Maintenance records - used to update the Location, Geometric and Shoulder, Layer Identification, Surface, Subgrade, and Layer Thickness Across the Road Files. Unlike the PES and RIFILE data, this information must be input through data entry screens.

The following are primary outputs of the system:

a) Data Inquiry Screens - any information stored in the database can be viewed on the monitor.
b) Performance versus Accumulated 18 KIP Equivalent Axle Loads Graph - alligator cracking, rutting, or PSI versus 18 KEAL points are plotted on a graph which is displayed on the monitor. A curve is then fit through these points and also displayed on the monitor.
c) Model Development File - this file contains rho and beta constants which describe the shape of the degradation curve mentioned in (b) and independent variables (layer thickness, environmental factors, traffic levels, etc.) which are needed to develop performance models. This file can be used directly by the SAS programming language.
d) Various Reports including the following:
 1) 'Raw' data listings - listings of all information contained in any of the master files and table files
 2) Summary listings - information about a section printed on a single page
 3) Inventory Update Forms - a two-part report in which the first page contains inventory information about
TEXAS FLEXIBLE PAVEMENT DATABASE SYSTEM

FUTURE EXPERIMENTAL PROJECTS

DATA INQUIRY

PERFORMANCE VS 18 KIP

MODEL DEVELOPMENT

RAW DATA

EDIT & UPDATE SUMMARY

INVENTORY UPDATE FORMS

FIGURE 1
a section on one or two sheets, and the second page is a blank form which can be used by the District Offices to record maintenance activities to update inventory data in the database.

4) Edit and Update Reports - reports which list errors or inconsistencies in data to be added to or changed in the database.

Table 1 lists the relational database master files, the table files, and two primary auxiliary files.

TABLE 1
List of Master Files

<table>
<thead>
<tr>
<th>dBASE III Name</th>
<th>Type of Information</th>
<th>Data Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>DYNASTFLD</td>
<td>Dynaflect</td>
<td>Monitoring</td>
</tr>
<tr>
<td>ENV</td>
<td>Environment</td>
<td>Environmental</td>
</tr>
<tr>
<td>FALLWEIGHT</td>
<td>Falling Weight</td>
<td>Monitoring</td>
</tr>
<tr>
<td>GEOGRAPH</td>
<td>Geometric and Shoulder</td>
<td>Inventory</td>
</tr>
<tr>
<td>LAYER</td>
<td>Layer Identification</td>
<td>Inventory</td>
</tr>
<tr>
<td>LAYTHICK</td>
<td>Layer Thickness Across the Road</td>
<td>Inventory</td>
</tr>
<tr>
<td>LOCATION</td>
<td>Location</td>
<td>Inventory</td>
</tr>
<tr>
<td>SI</td>
<td>Serviceability Index</td>
<td>Monitoring</td>
</tr>
<tr>
<td>SKID</td>
<td>Skid Measurements</td>
<td>Monitoring</td>
</tr>
<tr>
<td>SUBGRADE</td>
<td>Subgrade Layer</td>
<td>Inventory</td>
</tr>
<tr>
<td>SURFACE</td>
<td>Surface Layer</td>
<td>Inventory</td>
</tr>
<tr>
<td>TRAFFIC</td>
<td>Traffic</td>
<td>Traffic</td>
</tr>
<tr>
<td>VISUAL</td>
<td>Visual Rating</td>
<td>Monitoring</td>
</tr>
<tr>
<td>WEATHER</td>
<td>Weather</td>
<td>Environmental</td>
</tr>
</tbody>
</table>

List of Table Files

<table>
<thead>
<tr>
<th>TABLE</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNTY_TBL</td>
<td>County Name</td>
</tr>
<tr>
<td>DISTTEMP</td>
<td>District Temperature Constant</td>
</tr>
<tr>
<td>FUNC_TBL</td>
<td>Functional Classification Table</td>
</tr>
<tr>
<td>LAYER_TBL</td>
<td>Layer Description Table</td>
</tr>
<tr>
<td>MATL_TBL</td>
<td>Material Type Table</td>
</tr>
<tr>
<td>PAVETBL</td>
<td>Pavement Type Table</td>
</tr>
<tr>
<td>WIDENFLG</td>
<td>Widening Flag Table</td>
</tr>
</tbody>
</table>

List of Primary Auxiliary Files

<table>
<thead>
<tr>
<th>TABLE</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISTRESS</td>
<td>Distress and 18 KIP</td>
</tr>
<tr>
<td>MODEL</td>
<td>Model (used to develop performance equations)</td>
</tr>
</tbody>
</table>

Record layouts for the files listed in Table 1 are provided in Appendix A. These files are stored in the subdirectory \PAVEDB\FILES. All dBASE...
master files are indexed by the key fields which are indicated on the file layouts. The index files are stored in the subdirectory `PAVEDB\INDEXES`. Figure 2 shows the master index structure for the database master files. Appendix B lists in alphabetical order all fields contained in the master files and in which files the fields are found.

The system is composed of a main menu program and five subsystems which are as follows:

a) **Inquiry** - displays on the monitor master file and table file data
b) **Report** - produces hard copies of data contained in the files
c) **Edit and Update** - modifies the data in the database
d) **Applications** - produces graphs and a model file both of which can be used in the development of performance models
e) **Database Maintenance** - reindexes the master files, sets up the defaults for the printer and path, and copies the master files onto floppy diskettes for backup purposes

The main menu initiates each subsystem.

This manual is organized in the same order as the subsystems are listed above. Each subsystem is contained in a separate chapter. The following is provided for each subsystem:

- General Narratives
- Program Flow Diagrams
- Program Specifications
- Screen Layouts
- File Layouts
- Program Listings

Sample reports are provided in Chapter 3. File layouts for files listed in Table 1 are not listed in the chapters since they can be found in Appendix A. Table 2 explains the standard file extensions used in the Texas Flexible Pavement System to identify the various types of files.

<table>
<thead>
<tr>
<th>Extension</th>
<th>File Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>.BAT</td>
<td>Batch File</td>
</tr>
<tr>
<td>.DAT</td>
<td>Data File NOT Identified by Other Extensions</td>
</tr>
<tr>
<td>.DBF</td>
<td>dBASE III PLUS File</td>
</tr>
<tr>
<td>.DLM</td>
<td>Comma Delimited File</td>
</tr>
<tr>
<td>.FMT</td>
<td>dBASE III PLUS Screen Format File</td>
</tr>
<tr>
<td>.FRM</td>
<td>dBASE III PLUS Report Form File</td>
</tr>
<tr>
<td>.MEM</td>
<td>dBASE III PLUS Memory Variable File</td>
</tr>
<tr>
<td>.NDX</td>
<td>dBASE III PLUS Index File</td>
</tr>
<tr>
<td>.PAS</td>
<td>TURBO Pascal Program File</td>
</tr>
<tr>
<td>.PRG</td>
<td>dBASE III PLUS Program File</td>
</tr>
<tr>
<td>.VUE</td>
<td>dBASE III PLUS View File</td>
</tr>
</tbody>
</table>
TEXAS FLEXIBLE PAVEMENT SYSTEM
RELATIONAL DATABASE INDEX STRUCTURE

FIGURE 2
Figure 3 illustrates and explains the symbols used in the manual to diagram program flow. Figure 4 shows the subdirectory structure of the system. The minimum system configuration is listed in Appendix C. The initial Texas Flexible Pavement System installation programs are documented in Appendix D.
PROGRAM FLOW DIAGRAM SYMBOLS

FIGURE 3
SUBDIRECTORY STRUCTURE

PAVEDB

APPLICAT

DISTRESS

GRAPH 18K

MODEL

BACKUP

EDITUPDT

DISTRESS

PES

TRAFFIC

FILES

BACKUP

INDEXES

INQUIRY

REPORTS

FIGURE 4
CHAPTER 1

MAIN MENU DRIVER PROGRAM
Main Menu Driver Program Narrative

The program DEMAIN.PRG is the first program called by dBASE. The Flexible Pavement System is activated by FLEXPAVE.BAT which consists of the following command: DBASE DEMAIN. This command starts up dBASE and calls the main driver program DEMAIN.PRG.

DEMAIN.PRG checks to see if all the master files are present. It also verifies that the memory variable file INSTALL.MEM with the installation defaults is present. If it is not, the installation menu is run automatically before the main menu is brought up. If the file is present, DEMAIN.PRG displays the main menu on the screen and calls the appropriate program for the choice selected.

DEMAIN.PRG also activates the program ERROR.PRG which is called when an error occurs in the system. These programs and INSTALL.MEM can be found in subdirectory \PAVE_DB.
Main Menu Driver - Program Flow Diagram

FIGURE 5

12
Program Specification

Program Name: DIMAIN.PRG

Purpose: To check for the existence of the Master dBASE files, to check for the Installation default file and to call the appropriate programs from the main menu.

Input/Output Files:

INSTALL.MEM

dBASE Programs Called (See Program Flow Diagram):

The following programs called are subsystems by themselves. For more information on each program, refer to the appropriate chapter of this manual.

INQUIRY.PRG
REPORTS.PRG
EDITUPD.PRG
BACKUP.PRG
APPLICAT.PRG
INSDEFL.PRG
REINDEX.PRG
ERROR.PRG - This program is called only when an error occurs
The following screen is produced by DEMAIN.PRG.

TEXAS FLEXIBLE PAVEMENT DATABASE
MAIN MENU

1 - Inquiry
2 - Reports
3 - Edit & Update
4 - Applications
5 - Backup
6 - Installation
7 - Reindex Master Files
Q - QUIT

OPTION →
* "MAIN PROGRAM DRIVER"
* "PROGRAM NAME:"
 DBMAIN.PRG 06/01/88
* "MODIFIED ON:"
 09/19/88
* "PROJECT 2456 - TEXAS FLEXIBLE PAVEMENT DATABASE CONVERSION"
* "TAMU/TTI"
* "AUTHOR:"
 TREVOR X. PEREIRA
* "PURPOSE:"
 TO SET UP THE MAIN MENU FOR THE DATABASE MAINTENANCE SYSTEM.
*

SET TALK OFF
SET ECHO OFF
SET STAT OFF
SET BELL OFF
SET HELP OFF
SET CONFIRM ON
SET ESCAPE OFF
SET SAFETY ON
SET TYPE TO 20
ON ERROR DO \PAVEDB\ERROR.PRG
CLOSE ALL
PUBLIC MDRIVE, MDRIVE2, MPORT1, MPORT2
SET FORMAT TO
STORE " " TO MPTION
STORE .T. TO NOTFINI
CLEAR
* Get drive that is being used
IF FILE(\PAVEDB\INSTALL.MEM')
 RESTORE FROM \PAVEDB\INSTALL ADDI
 MDRIVE = IDRI\V
 MDRIVE2 = IDRI\V2
 MPORT1 = IPOR?1
 MPORT2 = IPOR?2
 REJE ALL LIKE I*
 SET DEFAULT TO &MDRIVE
ELSE
 CLEAR
 @ 10, 5 SAY "INSTALL.MEM File not found. Please go through the "
 @ 11, 5 SAY " Installation Menu and choose the defaults."
 WAIT
 IDRI\V = " "
 IDRI\V2 = " "
 IPOR?1 = " "
 IPOR?2 = " "
 DO \PAVEDB\INSIDEFL
ENDIF
?
"Checking to see if Master files are present. Please Wait . . ."
IF .NOT. FILE(\PAVEDB\FILES\LOCATION.DBF')
 ? "LOCATION file is not found. Please Check . . ."
WAIT
RETURN
ENDIF
IF .NOT. FILE('"PAVED\FILES\LAYER.DBF"
 ? "LAYER file is not found. Please Check . . ."
 WAIT
 RETURN
ENDIF
IF .NOT. FILE('"PAVED\FILES\LAYTHICK.DBF"
 ? "LAYTHICK file is not found. Please Check . . ."
 WAIT
 RETURN
ENDIF
IF .NOT. FILE('"PAVED\FILES\GEOSHO.DBF"
 ? "GEOSHO file is not found. Please Check . . ."
 WAIT
 RETURN
ENDIF
IF .NOT. FILE('"PAVED\FILES\SURFACE.DBF"
 ? "SURFACE file is not found. Please Check . . ."
 WAIT
 RETURN
ENDIF
IF .NOT. FILE('"PAVED\FILES\SUBGRADE.DBF"
 ? "SUBGRADE file is not found. Please Check . . ."
 WAIT
 RETURN
ENDIF
IF .NOT. FILE('"PAVED\FILES\VISUAL.DBF"
 ? "VISUAL file is not found. Please Check . . ."
 WAIT
 RETURN
ENDIF
IF .NOT. FILE('"PAVED\FILES\DYNAFILD.DBF"
 ? "DYNAFILD file is not found. Please Check . . ."
 WAIT
 RETURN
ENDIF
IF .NOT. FILE('"PAVED\FILES\SI.DBF"
 ? "SI file is not found. Please Check . . ."
 WAIT
 RETURN
ENDIF
IF .NOT. FILE('"PAVED\FILES\TRAFFIC.DBF"
 ? "TRAFFIC file is not found. Please Check . . ."
 WAIT
 RETURN
ENDIF
IF .NOT. FILE('"PAVED\FILES\WEATHER.DBF"
 ? "WEATHER file is not found. Please Check . . ."
 WAIT
 RETURN
ENDIF
IF .NOT. FILE('"PAVED\FILES\FAILWGT.DBF"
 ? "FAILWGT file is not found. Please Check . . ."
 WAIT
 RETURN
ENDIF
IF .NOT. FILE('"PAVED\FILES\FAILWGT.DBF"
 ? 'FAILWGT file is not found. Please Check . . ."
 WAIT
 RETURN
ENDIF
IF .NOT. FILE('"PAVED\FILES\FAILWGT.DBF"
 ? 'FAILWGT file is not found. Please Check . . ."
 WAIT
 RETURN
ENDIF
IF .NOT. FILE('"PAVED\FILES\FAILWGT.DBF"
 ? 'FAILWGT file is not found. Please Check . . ."
 WAIT
 RETURN
ENDIF
IF .NOT. FILE('"PAVED\FILES\FAILWGT.DBF"
 ? 'FAILWGT file is not found. Please Check . . ."
 WAIT
 RETURN
ENDIF
IF .NOT. FILE('"PAVED\FILES\FAILWGT.DBF"
 ? 'FAILWGT file is not found. Please Check . . ."
 WAIT
 RETURN
ENDIF
IF .NOT. FILE('"PAVED\FILES\FAILWGT.DBF"
 ? 'FAILWGT file is not found. Please Check . . ."
 WAIT
 RETURN
ENDIF
IF .NOT. FILE('"PAVED\FILES\FAILWGT.DBF"
 ? 'FAILWGT file is not found. Please Check . . ."
 WAIT
 RETURN
ENDIF
IF .NOT. FILE('"PAVED\FILES\FAILWGT.DBF"
 ? 'FAILWGT file is not found. Please Check . . ."
 WAIT
 RETURN
ENDIF
IF .NOT. FILE('"PAVED\FILES\FAILWGT.DBF"
 ? 'FAILWGT file is not found. Please Check . . ."
 WAIT
 RETURN
ENDIF
IF .NOT. FILE('"PAVED\FILES\FAILWGT.DBF"
 ? 'FAILWGT file is not found. Please Check . . ."
 WAIT
 RETURN
ENDIF
IF .NOT. FILE('"PAVED\FILES\FAILWGT.DBF"
 ? 'FAILWGT file is not found. Please Check . . ."
 WAIT
 RETURN
ENDIF
IF .NOT. FILE('"PAVED\FILES\FAILWGT.DBF"
 ? 'FAILWGT file is not found. Please Check . . ."
 WAIT
 RETURN
ENDIF
IF .NOT. FILE('"PAVED\FILES\FAILWGT.DBF"
 ? 'FAILWGT file is not found. Please Check . . ."
 WAIT
 RETURN
ENDIF
IF .NOT. FILE('"PAVED\FILES\FAILWGT.DBF"
 ? 'FAILWGT file is not found. Please Check . . ."
 WAIT
 RET
? "FILE file is not found. Please Check . . ."
WAIT
RETURN
ENDIF
IF .NOT. FILE('PAVEDB\FILES\ENV.DBF')
 ? "ENV file is not found. Please Check . . ."
WAIT
RETURN
ENDIF
IF .NOT. FILE('PAVEDB\FILES\SKID.DBF')
 ? "SKID file is not found. Please Check . . ."
WAIT
RETURN
ENDIF
IF .NOT. FILE('PAVEDB\INDEXES\LOCSID.NDX')
 ? "LOCATION INDEX is not found. Please Check . . ."
WAIT
RETURN
ENDIF
IF .NOT. FILE('PAVEDB\INDEXES\LAYNDX.NDX')
 ? "LAYER INDEX is not found. Please Check . . ."
WAIT
RETURN
ENDIF
IF .NOT. FILE('PAVEDB\INDEXES\LAYTHICK.NDX')
 ? "LAYTHICK INDEX is not found. Please Check . . ."
WAIT
RETURN
ENDIF
IF .NOT. FILE('PAVEDB\INDEXES\GEONDX.NDX')
 ? "GEOSHOP INDEX is not found. Please Check . . ."
WAIT
RETURN
ENDIF
IF .NOT. FILE('PAVEDB\INDEXES\SURFNDX.NDX')
 ? "SURFACE INDEX is not found. Please Check . . ."
WAIT
RETURN
ENDIF
IF .NOT. FILE('PAVEDB\INDEXES\SUBGNDX.NDX')
 ? "SUBGRADE INDEX is not found. Please Check . . ."
WAIT
RETURN
ENDIF
IF .NOT. FILE('PAVEDB\INDEXES\VISUAL.NDX')
 ? "VISUAL INDEX is not found. Please Check . . ."
WAIT
RETURN
ENDIF
IF .NOT. FILE('PAVEDB\INDEXES\DYNAPLID.NDX')
 ? "DYNAPLID INDEX is not found. Please Check . . ."
WAIT
RETURN
ENDIF
IF .NOT. FILE('"PAVEDB\INDEXES\SI.NDX')
? "SI INDEX is not found. Please Check . . ."
WAIT
RETURN
ENDIF
IF .NOT. FILE('"PAVEDB\INDEXES\TRAFFIC.NDX')
? "TRAFFIC INDEX is not found. Please Check . . ."
WAIT
RETURN
ENDIF
IF .NOT. FILE('"PAVEDB\INDEXES\WEATHER.NDX')
? "WEATHER INDEX is not found. Please Check . . ."
WAIT
RETURN
ENDIF
IF .NOT. FILE('"PAVEDB\INDEXES\FALIGHT.NDX')
? "FALIGHT INDEX is not found. Please Check . . ."
WAIT
RETURN
ENDIF
IF .NOT. FILE('"PAVEDB\INDEXES\ENV.NDX')
? "ENV INDEX is not found. Please Check . . ."
WAIT
RETURN
ENDIF
IF .NOT. FILE('"PAVEDB\INDEXES\SKID.NDX')
? "SKID INDEX is not found. Please Check . . ."
WAIT
RETURN
ENDIF
DO WHILE NOTFNF
STORE " " TO MOPTION
CLOSE ALL
* set up the database maintenance main menu screen and do the
* loop until MOPTION is 1-7 or Q
DO WHILE .NOT. (MOPTION $ '1234567Q')
 @ 0, 0 CLEAR
 @ 3, 15 SAY " TEXAS FLEXIBLE PAVEMENT DATABASE"
 @ 4, 32 SAY "MAIN MENU"
 @ 7, 19 SAY "1 - Inquiry"
 @ 8, 19 SAY "2 - Reports"
 @ 9, 19 SAY "3 - Edit & Update"
 @ 10, 19 SAY "4 - Applications"
 @ 11, 19 SAY "5 - Backup"
 @ 12, 19 SAY "6 - Installation"
 @ 13, 19 SAY "7 - Reindex Master Files"
 @ 15, 19 SAY "Q - QUIT"
 @ 17, 44 SAY "OPTION ———> " GET MOPTION PICTURE ":!
 @ 2, 9 TO 19, 67 DOUBLE
READ
* check for MOPTION equal to 1 - 7 or Q
CLEAR TYPE
IF .NOT. (MOPTION $ '1234567Q')
@ 20, 10 SAY "Please enter 1, 2, 3, 4, 5, 6, 7 or Q"
WAIT
ENDIF
ENDDO
DO CASE
 CASE MOPTION = "1"
 DO \PAVEDB\INQUIRY\INQUIRY
 CASE MOPTION = "2"
 DO \PAVEDB\REPORTS\REPORTS
 CASE MOPTION = "3"
 DO \PAVEDB\EDITUPDT\EDITUPDT
 CASE MOPTION = "4"
 DO \PAVEDB\APPLICAT\APPLICAT
 CASE MOPTION = "5"
 DO \PAVEDB\BACKUP\BACKUP
 CASE MOPTION = "6"
 DO \PAVEDB\INSTDEFL
 CASE MOPTION = "7"
 MRESPONSE = " "
 @ 10,10 SAY "You are about to REINDEX all the files - takes about 2 hours."
 @ 11,11 SAY "Want to continue (Y/N)? " GET MRESPONSE
 READ
 IF MRESPONSE = "Y"
 DO \PAVEDB\REINDEX
 ENDF
 CASE MOPTION = "Q"
 QUIT
 ENDCASE
ENDDO
PROGRAM LISTING

* PROGRAM NAME: ERROR.PRG 07/03/88
* PROJECT 2456 - TEXAS FLEXIBLE PAVEMENT DATABASE CONVERSION
* TAMU/TTI
* AUTHOR: TREVOR X. PEREIRA
* PURPOSE: TO GIVE A MESSAGE IF AN ERROR OCCURS ANY WHERE IN
 THE SYSTEM

CLEAR TYPE
SET TYPE TO 0
CLEAR
CLOSE ALL
@ 10, 10 SAY "An error has occurred in the system."
@ 12, 10 SAY "Please contact The Texas Transportation Institute."
@ 14, 10 SAY "at (409) 845-8408"
@ 15, 10 SAY "Ask for: Rebecca Yette or"
@ 16, 10 SAY "Trevor Pereira"
CANCEL
CHAPTER 2

INQUIRY SUBSYSTEM
The Inquiry Menu System which is written in dBase III Plus allows the user to view the data in any of the 14 master files and the 7 tables. Changes to the data cannot be made using this part of the system. The Inquiry main menu has the choices Inventory, Monitoring, Traffic, Environment and Tables available. Depending on the file chosen, a dBase form is displayed on the screen with the required information for a particular SID Number. The user can scan through subsequent records or exit the screen.

The program INQUIRY.PRG displays the appropriate menus on the screen and the user chooses the file and SID number he wants to view. The program then uses the appropriate dBase screen format file (form) to display the data. dBase screen format files use the .FMT extension as a naming convention. INQUIRY.PRG and all .FMT files are stored in the subdirectory PAVEDB\INQUIRY.

This chapter contains the following information about the Inquiry Subsystem:

- Program Flow Diagram
- Program Specification
- Inquiry Screens
- Screen Format Program Listings
- Program Listings.
Program Specification

Program Name: INQUIRY.PRG

Purpose: To display the data to the screen for the appropriate files and tables on user's request.

Input Files: The following files are used along with their indices:

<table>
<thead>
<tr>
<th>Data File</th>
<th>Index File</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCATION.DBF</td>
<td>LOCSID.NDX</td>
</tr>
<tr>
<td>LAYER.DBF</td>
<td>LAYNDX.NDX</td>
</tr>
<tr>
<td>GEOSH.0.DBF</td>
<td>GEO.NDX</td>
</tr>
<tr>
<td>SURFACE.DBF</td>
<td>SURF.NDX</td>
</tr>
<tr>
<td>SUBGRADE.DBF</td>
<td>SUBGD.NDX</td>
</tr>
<tr>
<td>LAYTHICK.DBF</td>
<td>LATN.DX</td>
</tr>
<tr>
<td>VISUAL.DBF</td>
<td>VISU.NDX</td>
</tr>
<tr>
<td>SI.DBF</td>
<td>SI.NDX</td>
</tr>
<tr>
<td>FALLWGT.DBF</td>
<td>FALLW.GT.NDX</td>
</tr>
<tr>
<td>DYNAFLD.DBF</td>
<td>DYNATL.DX</td>
</tr>
<tr>
<td>SKID.DBF</td>
<td>SKID.NDX</td>
</tr>
<tr>
<td>ENV.DBF</td>
<td>ENV.NDX</td>
</tr>
<tr>
<td>WEATHER.DBF</td>
<td>WEATHER.NDX</td>
</tr>
<tr>
<td>TRAFFIC.DBF</td>
<td>TRAFFIC.NDX</td>
</tr>
<tr>
<td>CTYTBNO.DBF</td>
<td></td>
</tr>
<tr>
<td>MATL.TBL.DBF</td>
<td></td>
</tr>
<tr>
<td>PAVETYPE.DBF</td>
<td></td>
</tr>
<tr>
<td>DISTTIMEP.DBF</td>
<td></td>
</tr>
<tr>
<td>WIDENFLG.DBF</td>
<td></td>
</tr>
<tr>
<td>LAVERTABL.DBF</td>
<td></td>
</tr>
<tr>
<td>FUNCLTBL.DBF</td>
<td></td>
</tr>
</tbody>
</table>

dBase Procedure File Called:

INQ COLL.PRG - This procedure displays on the screen data for individual files.
Output (Using dBASE III Format Files):

The following format files (forms) are used to display data to the screen:

<table>
<thead>
<tr>
<th>Category</th>
<th>Data Elements</th>
<th>Format File</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inventory Data</td>
<td>Location, Layer Identification, Layer Thickness, Geometric & Shoulder, Surface, Subgrade</td>
<td>INQ_LOCN.FMT, INQ_LAYR.FMT, INQ_LAYT.FMT, INQ_GEO.FMT, INQ_SURF.FMT, INQ_SUBG.FMT</td>
</tr>
<tr>
<td>Monitoring Data</td>
<td>Visual, Serviceability Index, Falling Weight, Dynaflect, Skid</td>
<td>INQ_VISL.FMT, INQ_SI.FMT, INQ_FALL.FMT, INQ_DYNA.FMT, INQ_SKID.FMT</td>
</tr>
<tr>
<td>Environmental Data</td>
<td>Environment, Weather</td>
<td>INQ_ENV.FMT, INQ_WEAT.FMT</td>
</tr>
<tr>
<td>Traffic Data</td>
<td>Traffic</td>
<td>INQ_TRAF.FMT</td>
</tr>
<tr>
<td>Tables</td>
<td>County Name, Material Type Class, Type of Pavement, District Temperature, Widening Flag, Layer Description, Functional Class</td>
<td>INQ_CNTY.FMT, INQ_MATL.FMT, INQ_PVMT.FMT, INQ_DIST.FMT, INQ_WIDN.FMT, INQ_LTBL.FMT, INQ_FUNC.FMT</td>
</tr>
</tbody>
</table>
TXAS FLEXIBLE PAVEMENT DATABASE 1.0
Inquiry

1 - Inventory Data
2 - Monitoring Data
3 - Traffic Data
4 - Environmental Data
5 - Tables

OPTION

Main Menu of the Inquiry Subsystem
TEXAS FLEXIBLE PAVEMENT DATABASE
INQUIRY
Inventory Data

1 - Location
2 - Layer ID
3 - Geometric & Shoulder
4 - Surface
5 - Subgrade
6 - Layer Thickness Across the Road

OPTION ——>

Inventory Menu Screen

TEXAS FLEXIBLE PAVEMENT DATABASE
INQUIRY - INVENTORY
Location File

SID Number 13 District 1 County 92
Highway Ident. US 82 Control/Section 45/4
Mile Post 22 + 0 TO 24 + 0 Lane Identification R
Mile Point 22.000 TO 24.000 Mile Point Date 6/75
HPMS Sample Number HPMS Section Subdivision 0
Functional Classification 0 Number of Lanes 1
Active ? T Inactive Date 0/0 Previous SID 0 Next SID 0
Comment

Inventory - Location File Data Screen Display
INQUIRY SCREENS (continued)

TEXAS FLEXIBLE PAVEMENT DATABASE INQUIRY
Inventory Data - Layer Identification

SID Number	13
Structure Number	1
Layer Number	1

Layer Description	7
Center Thickness (Inches)	44
Layer Material Classification	6/31
Job Completed Date (MM/YY)	0/0
Widening Date (MM/YY)	

INVENTORY - LAYER FILE DATA SCREEN DISPLAY

TEXAS FLEXIBLE PAVEMENT DATABASE INQUIRY
Inventory Data - Geometric And Shoulder

| SID Number | 13 |
| Structure Number | 1 |

Pavement Type	34
Lane Width one way - (ft)	12.0
Outside Shoulder Width (ft)	0.0
Shoulder Surface Type	1
Shoulder Base Type	0
Shoulder Surface Thick (in.)	0.00
Shoulder Base Thick (in.)	0.00
Widening Flag	1

INVENTORY - GEOMETRIC & SHOULDER FILE DATA SCREEN DISPLAY
TEXAS FLEXIBLE PAVEMENT DATABASE INQUIRY

Inventory Data - Surface

SID Number	13
Structure Number	1
Layer Number	3
Aggregate Application Rate (S.Y./C.Y.)	0
Admixture Type	AC
Admixture Percent (%)	5.70
Asphalt Application Rate (Gal/S.Y.)	0.00

Inventory - Surface File Data Screen Display

TEXAS FLEXIBLE PAVEMENT DATABASE INQUIRY

Inventory Data - Subgrade

SID Number	13
Structure Number	1
Layer Number	1
Percent Passing No. 200 Sieve (%)	88.8
Plasticity Index	40.4
Liquid Limit	64.5
Texas Triaxial Class	5.3
Permeability Index	0.23

Inventory - Subgrade File Data Screen Display
<table>
<thead>
<tr>
<th>SID Number</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure Number</td>
<td>1</td>
</tr>
<tr>
<td>Layer Number</td>
<td>2</td>
</tr>
</tbody>
</table>

Thickness - 3rd Pos From Center (in.)	10.00
Thickness - 2nd Pos From Center (in.)	10.00
Thickness - 1st Pos From Center (in.)	6.00
Thickness - Center (in.)	6.00
Distance From Center - 3rd Position (ft.)	12.00
Distance From Center - 2nd Position (ft.)	9.0
Distance From Center - 1st Position (ft.)	5.0

Inventory - Layer Thickness Across The Road File Data Screen Display
INQUIRY SCREENS (continued)

TEXAS FLEXIBLE PAVEMENT DATABASE 1.2
INQUIRY
Monitoring Data

1 - Visual
2 - Serviceability Index
3 - Falling Weight
4 - Dynaflect
5 - Skid

OPTION

Enter SID Number 0

Monitoring Menu Screen

TEXAS FLEXIBLE PAVEMENT DATABASE
INQUIRY
Monitoring Data - Visual Rating File

Actual Date of Measurement 9/80 SID Number 13
Structure Number 2
Layer Number 5

<table>
<thead>
<tr>
<th>Rutting Code</th>
<th>Block Cr</th>
<th>Alligtr Cr</th>
<th>Longitud Cr</th>
<th>Transv Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1S 0M 0SV</td>
<td>OS 0M 0SV</td>
<td>OS 0M 0SV</td>
<td>1S 0M 0SV</td>
<td>0S 1M 0SV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Seal Code</th>
<th>Patching</th>
<th>Failures/Mi</th>
<th>Pavement Rat Scr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0G 0F OP</td>
<td>0</td>
<td>78</td>
</tr>
</tbody>
</table>

PES Pavement Rat Scr 0.00
Unwght Vis. Rat Scr 0.00

Monitoring - Visual File Data Screen Display
TEXAS FLEXIBLE PAVEMENT DATABASE

INQUIRY

Monitoring Data - Serviceability Index

<table>
<thead>
<tr>
<th>SID Number</th>
<th>Structure Number</th>
<th>Layer Number</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>2</td>
<td>5</td>
<td>9/16/80</td>
</tr>
</tbody>
</table>

- Count of Observation: 8
- Mean: 3.17500
- Standard Deviation: 0.38079
- Low Value: 2.5
- High Value: 3.6

TEXAS FLEXIBLE PAVEMENT DATABASE

INQUIRY

Monitoring Data - Falling Weight SSI

<table>
<thead>
<tr>
<th>Date (MM/DD/YY)</th>
<th>SID Number</th>
<th>Average SSI</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/0/0</td>
<td>26</td>
<td>0.0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Geophone</th>
<th>Reading 1</th>
<th>Reading 2</th>
<th>Reading 3</th>
<th>Reading 4</th>
<th>Reading 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geophone 1</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Geophone 2</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Geophone 3</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Geophone 4</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Geophone 5</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Geophone 6</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Geophone 7</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

TEXAS FLEXIBLE PAVEMENT DATABASE INQUIRY
Monitoring Data - Dynaflect Measurement

<table>
<thead>
<tr>
<th>SID Number</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure Number</td>
<td>1</td>
</tr>
<tr>
<td>Layer Number</td>
<td>4</td>
</tr>
<tr>
<td>Date</td>
<td>8/10/76</td>
</tr>
</tbody>
</table>

STATION	1
Reading for Sensor 1	0.570
Reading for Sensor 2	0.540
Reading for Sensor 3	0.470
Reading for Sensor 4	0.380
Reading for Sensor 5	0.320

Monitoring - Dynaflect Measurement File Data Screen Display

TEXAS FLEXIBLE PAVEMENT DATABASE INQUIRY
Monitoring Data - Skid Measurement

<table>
<thead>
<tr>
<th>SID Number</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure Number</td>
<td>1</td>
</tr>
<tr>
<td>Layer Number</td>
<td>4</td>
</tr>
<tr>
<td>Date</td>
<td>4/71</td>
</tr>
</tbody>
</table>

Mean	38
High	42
Low	32

Monitoring - Skid Measurement File Data Screen Display
TEXAS FLEXIBLE PAVEMENT DATABASE
INQUIRY
Traffic Data

Please Enter SID Number: 0

Traffic - Traffic File Screen to Enter the SID number

SID Number 13
Year 1933

Annual Average Daily Traffic 386
Annual Cumulative 18 Keal - one way 54259
Percent trucks 17.7

Traffic - Traffic File Data Screen Display
TEXAS FLEXIBLE PAVEMENT DATABASE 1.4
INQUIRY
Environmental Data

1 - Environment
2 - Weather

OPTION

Enter county Number 0

Environment Menu Screen
Texas Flexible Pavement Database Inquiry
Weather Measurement

<table>
<thead>
<tr>
<th></th>
<th>No. of Yrs Avg</th>
<th>Mean</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitation</td>
<td>19</td>
<td>3.179</td>
<td>2.053</td>
</tr>
<tr>
<td>Total Freeze Thaw Cycle</td>
<td>18</td>
<td>9.111</td>
<td>3.160</td>
</tr>
<tr>
<td>Wet Freeze Thaw Cycle</td>
<td>18</td>
<td>1.889</td>
<td>1.183</td>
</tr>
<tr>
<td>Maximum Temperature</td>
<td>18</td>
<td>55.611</td>
<td>3.791</td>
</tr>
<tr>
<td>Averaged Temperature</td>
<td>18</td>
<td>45.056</td>
<td>3.369</td>
</tr>
</tbody>
</table>

Environment - Weather Measurement File Data Screen Display

Texas Flexible Pavement Database Inquiry
Environment Measurement

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>County Number</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Thornthwaite Index</td>
<td>12.510</td>
<td></td>
</tr>
<tr>
<td>Thornthwaite Index</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- No. of Years Averaged</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Thornthwaite Index</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Standard Deviation</td>
<td>26.102</td>
<td></td>
</tr>
</tbody>
</table>

Environment - Environment Measurement File Data Screen Display
TEXAS FLEXIBLE PAVEMENT DATABASE

1.5

INQUIRY

Tables

1 - County Name
2 - Material Type
3 - Type of Pavement
4 - District Temperature Constant
5 - Widening Flag

OPTION ➔

Table **Menu** Screen
Texas Flexible Pavement Database Inquiry
County Table

<table>
<thead>
<tr>
<th>County Number</th>
<th>County Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ANDERSON</td>
</tr>
</tbody>
</table>

Material Type Classification Table

<table>
<thead>
<tr>
<th>Material Code</th>
<th>Material Description</th>
<th>Material Short Form</th>
<th>Layer Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HOT MIX - HOT I AID</td>
<td>HMAC</td>
<td>S</td>
</tr>
</tbody>
</table>

Type of Pavement Table

<table>
<thead>
<tr>
<th>Pavement Code</th>
<th>Type of Base</th>
<th>Surface Thickness</th>
<th>Surface Seal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GRANULAR BASE</td>
<td>SURFACE TREATED</td>
<td></td>
</tr>
</tbody>
</table>
TEXAS FLEXIBLE PAVEMENT DATABASE INQUIRY District Temperature Table

District Number 1
Temperature Constant 21

Tables - District Temperature File Data Screen Display

TEXAS FLEXIBLE PAVEMENT DATABASE INQUIRY Widening Table

Code 0
Description No Widening
Comments:
Center Thickness CAN be used

Tables - Widening Flag File Data Screen Display

TEXAS FLEXIBLE PAVEMENT DATABASE INQUIRY Layer Description Table

Layer Code 1
Code Description OVLY
Four Letter Code Overlay

Tables - Layer Description File Data Screen Display
Format Programs For Screens

Location

@ 2, 23 SAY "TEXAS FLEXIBLE PAVEMENT DATABASE"
@ 3, 23 SAY "INQUIRY"
@ 4, 23 SAY "Inventory Data - Location File"
@ 6, 6 SAY "SID Number"
@ 6, 18 SAY LOCATION->SID_NO PICTURE "9999"
@ 6, 44 SAY "District"
@ 6, 53 SAY LOCATION->HWYDIST PICTURE "99"
@ 6, 59 SAY "County"
@ 6, 66 SAY LOCATION->CNTRYNUM PICTURE "99"
@ 8, 6 SAY "Highway Ident."
@ 8, 21 SAY LOCATION->HWYPREFIX
@ 8, 24 SAY LOCATION->HWYNUM PICTURE "9999"
@ 8, 29 SAY LOCATION->HWYSUFFIX
@ 8, 44 SAY "Control/Section"
@ 8, 60 SAY LOCATION->CONTROL PICTURE "9999"
@ 8, 64 SAY "/"
@ 8, 65 SAY LOCATION->SECTION PICTURE "99"
@ 10, 6 SAY "Mile Post"
@ 10, 17 SAY LOCATION->BEGINPST PICTURE "9999"
@ 10, 20 SAY LOCATION->DASSIGN
@ 10, 21 SAY IF(LEN(LTRIM(SR(EMPSTDIS,2))) = 1,"0" + LTRIM(SR(EMPSTDIS,2))) + "0"
@ 10, 24 SAY "TO"
@ 10, 27 SAY LOCATION->ENDPST PICTURE "9999"
@ 10, 30 SAY LOCATION->EDASSIGN
@ 10, 31 SAY IF(LEN(LTRIM(SR(EMPSTDIS,2))) = 1,"0" + LTRIM(SR(EMPSTDIS,2))) + "0"
@ 10, 44 SAY "Lane Identification"
@ 10, 64 SAY LOCATION->LANEID
@ 12, 6 SAY "Mile Point"
@ 12, 17 SAY LOCATION->BEGINPNT PICTURE "99.999"
@ 12, 24 SAY "TO"
@ 12, 27 SAY LOCATION->ENDPNT PICTURE "99.999"
@ 12, 44 SAY "Mile Point Date"
@ 12, 61 SAY LOCATION->MPNIMO PICTURE "99"
@ 12, 63 SAY "/"
@ 12, 64 SAY LOCATION->MPNIMYR PICTURE "99"
@ 14, 6 SAY "HPMS Sample Number"
@ 14, 25 SAY LOCATION->HPMSSAM
@ 14, 44 SAY "HPMS Section Subdivision"
@ 14, 69 SAY LOCATION->HPMSSEC PICTURE "9"
@ 16, 6 SAY "Functional Classification"
@ 16, 31 SAY LOCATION->FUNCAS PICTURE "99"
@ 16, 44 SAY "Number of Lanes"
@ 16, 61 SAY LOCATION->NUMLANES PICTURE "99"
@ 18, 6 SAY "Active?"
@ 18, 15 SAY LOCATION->ACTIVFALG PICTURE "L"
@ 18, 19 SAY "Inactive Date"
@ 18, 33 SAY LOCATION->INACIMG PICTURE "99"
@ 18, 35 SAY "/"
@ 18, 36 SAY LOCATION->INACTYR PICTURE "99"
@ 18, 41 SAY "Previous SID"
@ 18, 54 SAY LOCATION->PREVSID PICTURE "9999"
@ 18, 61 SAY "Next SID"
@ 18, 70 SAY LOCATION->NEXTSID PICTURE "9999"
@ 20, 6 SAY "Comment"
@ 20, 15 SAY LOCATION->COMMENT PICTURE
"XX"
@ 1, 2 TO 21, 77 DOUBLE
Format Programs For Screens
Layer Identification

@ 3, 25 SAY "TEXAS FLEXIBLE PAVEMENT DATABASE"
@ 4, 37 SAY "INQUIRY"
@ 5, 22 SAY "Inventory Data - Layer Identification"
@ 8, 37 SAY "SID Number"
@ 8, 55 SAY LAYER->SID NO
@ 9, 37 SAY "Structure Number"
@ 9, 57 SAY LAYER->STRUCNUM
@ 10, 37 SAY "Layer Number"
@ 10, 57 SAY LAYER->LAYNUM
@ 12, 23 SAY "Layer Description"
@ 12, 57 SAY LAYER->LAYDESC FUNCTION "Z"
@ 13, 23 SAY "Center Thickness (inches)"
@ 13, 54 SAY LAYER->CENTTHK FUNCTION "Z"
@ 14, 23 SAY "Layer Material Classification"
@ 14, 57 SAY LAYER->LAYMATCL FUNCTION "Z"
@ 15, 23 SAY "Job Completed Date (MM/YY)"
@ 15, 54 SAY LAYER->JOBCMPMO FUNCTION "Z"
@ 15, 56 SAY "/"
@ 15, 57 SAY LAYER->JOBCMPYR FUNCTION "B"
@ 16, 23 SAY "Widening Date (MM/YY)"
@ 16, 54 SAY LAYER->WIDENIM
@ 16, 56 SAY "/"
@ 16, 57 SAY LAYER->WIDENLYR FUNCTION "B"
@ 2, 15 TO 18, 65 DOUBLE

43
Format Programs For Screens
Layer Thickness Across The Road

@ 3, 24 SAY "TEXAS FLEXIBLE PAVEMENT DATABASE"
@ 4, 35 SAY "INQUIRY"
@ 5, 15 SAY "Inventory Data - Layer Thickness Across The Road"
@ 8, 36 SAY "SID Number"
@ 8, 58 SAY LAYTHICK->SID NO
@ 9, 36 SAY "Structure Number"
@ 9, 60 SAY LAYTHICK->STRUCNUM
@ 10, 36 SAY "Layer Number"
@ 10, 60 SAY LAYTHICK->LAYNUM
@ 12, 14 SAY "Thickness - 3rd Pos. From Center (in.)"
@ 12, 57 SAY LAYTHICK->FC3THK
@ 13, 14 SAY "Thickness - 2nd Pos. From Center (in.)"
@ 13, 57 SAY LAYTHICK->FC2THK
@ 14, 14 SAY "Thickness - 1st Pos. From Center (in.)"
@ 14, 57 SAY LAYTHICK->FC1THK
@ 15, 14 SAY "Thickness - Center (in.)"
@ 15, 57 SAY LAYTHICK->CENTIHK
@ 16, 14 SAY "Distance From Center - 3rd Position (ft)"
@ 16, 58 SAY LAYTHICK->FC3DIS
@ 17, 14 SAY "Distance From Center - 2nd Position (ft)"
@ 17, 58 SAY LAYTHICK->FC2DIS
@ 18, 14 SAY "Distance From Center - 1st Position (ft)"
@ 18, 58 SAY LAYTHICK->FC1DIS
@ 2, 9 TO 20, 68 DOUBLE
Format Programs For Screens
Geometric & Shoulder Information

@ 3, 24 SAY "TEXAS FLEXIBLE PAVEMENT DATABASE"
@ 4, 35 SAY "INQUIRY"
@ 5, 20 SAY "Inventory Data - Geometric And Shoulder"
@ 8, 36 SAY "SID Number"
@ 8, 54 SAY GEOSHO->SID_NO
@ 9, 36 SAY "Structure Number"
@ 9, 56 SAY GEOSHO->STRUCNUM
@ 11, 20 SAY "Pavement Type"
@ 11, 52 SAY GEOSHO->PAVETYP
@ 12, 20 SAY "Lane Width - one way (ft)"
@ 12, 50 SAY GEOSHO->LANEWID
@ 13, 20 SAY "Outside Shoulder Width (ft)"
@ 13, 50 SAY GEOSHO->OUTSHOWD
@ 14, 20 SAY "Shoulder Surface Type"
@ 14, 53 SAY GEOSHO->SHOSFTYP
@ 15, 20 SAY "Shoulder Base Type"
@ 15, 52 SAY GEOSHO->SHOBSTYP
@ 16, 20 SAY "Shoulder Surface Thick (in.)"
@ 16, 49 SAY GEOSHO->SHOSFTHK
@ 17, 20 SAY "Shoulder Base Thick (in.)"
@ 17, 49 SAY GEOSHO->SHOBSTHK
@ 18, 20 SAY "Widening Flag"
@ 18, 53 SAY GEOSHO->WIDENFIG
@ 2, 14 TO 20, 64 DOUBLE
FORMAT Programs For Screens

Surface

@ 4, 23 SAY "TEXAS FLEXIBLE PAVEMENT DATABASE"
@ 5, 35 SAY "INQUIRY"
@ 6, 26 SAY "Inventory Data - Surface"
@ 9, 36 SAY "SID Number"
@ 9, 54 SAY SURFACE->SID NO
@ 10, 36 SAY "Structure Number"
@ 10, 56 SAY SURFACE->STRUCNUM
@ 11, 36 SAY "Layer Number"
@ 11, 56 SAY SURFACE->LAYNUM
@ 13, 20 SAY "Aggregate Appl. Rate (S.Y./C.Y.)"
@ 13, 55 SAY SURFACE->AGAPPLRT PICTURE "999"
@ 14, 20 SAY "Admixture Type"
@ 14, 46 SAY SURFACE->ADMXTYP
@ 15, 20 SAY "Admixture Percent (%)"
@ 15, 53 SAY SURFACE->ADMXPER
@ 16, 20 SAY "Asphalt Appl. Rate (Gal/S.Y.)"
@ 16, 54 SAY SURFACE->ASAPPLRT
@ 3, 14 TO 18, 64 DOUBLE
@ 4, 24 SAY "TEXAS FLEXIBLE PAVEMENT DATABASE"
@ 5, 35 SAY "INQUIRY"
@ 6, 27 SAY "Inventory Data - Subgrade"
@ 9, 36 SAY "SID Number"
@ 9, 54 SAY SUBGRADE->SID_NO
@ 10, 36 SAY "Structure Number"
@ 10, 56 SAY SUBGRADE->STRUCNUM
@ 11, 36 SAY "Layer Number"
@ 11, 56 SAY SUBGRADE->LAYNUM
@ 13, 20 SAY "Percent Passing No. 200 Sieve (%)"
@ 13, 54 SAY SUBGRADE->PPSV200
@ 14, 20 SAY "Plasticity Index"
@ 14, 54 SAY SUBGRADE->PLASTIX
@ 15, 20 SAY "Liquid Limit"
@ 15, 54 SAY SUBGRADE->LIQLIM
@ 16, 20 SAY "Texas Triaxial Class"
@ 16, 55 SAY SUBGRADE->TXTRIAXL
@ 17, 20 SAY "Permeability Index"
@ 17, 53 SAY SUBGRADE->PERMIX
@ 3, 14 TO 19, 64 DOUBLE
Format Programs For Screens
Visual Rating

@ 2, 24 SAY "TEXAS FLEXIBLE PAVEMENT DATABASE"
@ 3, 35 SAY "INQUIRY"
@ 4, 22 SAY "Monitoring Data - Visual Rating File"
@ 7, 7 SAY "Actual Date of Measurement"
@ 7, 34 SAY VISUAL->ACIMONTH PICTURE "99"
@ 7, 36 SAY "/"
@ 7, 37 SAY VISUAL->ACTYEAR
@ 7, 45 SAY "SID Number"
@ 7, 63 SAY VISUAL->SID NO
@ 8, 45 SAY "Structure Number"
@ 8, 65 SAY VISUAL->STRUCNUM
@ 9, 45 SAY "Layer Number"
@ 9, 65 SAY VISUAL->LAYNUM
@ 12, 7 SAY "Rutting , Block Cr , Alligtr Cr , Longitud Cr , Transv Cr"
@ 13, 7 SAY VISUAL->RUTTSL
@ 13, 8 SAY "S"
@ 13, 10 SAY VISUAL->RUTTMD
@ 13, 11 SAY "M"
@ 13, 13 SAY VISUAL->RUTTSV
@ 13, 14 SAY "S"
@ 13, 20 SAY VISUAL->BLKCRKSL
@ 13, 21 SAY "S"
@ 13, 23 SAY VISUAL->BLKCRKMD
@ 13, 24 SAY "M"
@ 13, 26 SAY VISUAL->BLKCRKSV
@ 13, 27 SAY "S"
@ 13, 33 SAY VISUAL->ALLGCRSL
@ 13, 34 SAY "S"
@ 13, 37 SAY VISUAL->ALLGCRMD
@ 13, 38 SAY "M"
@ 13, 41 SAY VISUAL->ALLGCRSV
@ 13, 42 SAY "S"
@ 13, 47 SAY VISUAL->LONGCRSL
@ 13, 48 SAY "S"
@ 13, 51 SAY VISUAL->LONGCRMD
@ 13, 52 SAY "M"
@ 13, 55 SAY VISUAL->LONGCRSV
@ 13, 56 SAY "S"
@ 13, 61 SAY VISUAL->TRANCRSL
@ 13, 62 SAY "S"
@ 13, 64 SAY VISUAL->TRANCRMD
@ 13, 65 SAY "M"
@ 13, 67 SAY VISUAL->TRANCRSV
@ 13, 68 SAY "S"
@ 16, 7 SAY "Seal Code Patching Failures/Mi Pavement Rat Scr"
FORMAT PROGRAMS FOR SCREENS
SERVICEABILITY INDEX

@ 3, 24 SAY "TEXAS FLEXIBLE PAVEMENT DATABASE"
@ 4, 35 SAY "INQUIRY"
@ 5, 21 SAY "Monitoring Data - Serviceability Index"
@ 7, 36 SAY "SID Number"
@ 7, 54 SAY SI->SID_NO
@ 8, 36 SAY "Structure Number"
@ 8, 56 SAY SI->STRUCNUM
@ 9, 36 SAY "Layer Number"
@ 9, 56 SAY SI->LAYNUM
@ 10, 36 SAY "Date"
@ 10, 50 SAY SI->ACTMONTH FUNCTION "Z"
@ 10, 52 SAY "/"
@ 10, 53 SAY SI->ACTDAY FUNCTION "Z"
@ 10, 55 SAY "/"
@ 10, 56 SAY SI->ACTYEAR FUNCTION "Z"
@ 12, 22 SAY "Count of Observation"
@ 12, 55 SAY SI->SOCOUNT
@ 13, 22 SAY "Mean"
@ 13, 51 SAY SI->SIMEAN
@ 14, 22 SAY "Standard Deviation"
@ 14, 51 SAY SI->SISD
@ 15, 22 SAY "Low Value"
@ 15, 55 SAY SI->SILOWVAL
@ 16, 22 SAY "High Value"
@ 16, 55 SAY SI->SIHIVAL
@ 2, 14 TO 18, 64 DOUBLE
Format Programs For Screens
Falling Weight SSI

@ 2, 24 SAY "TEXAS FLEXIBLE PAVEMENT DATABASE"
@ 3, 35 SAY "INQUIRY"
@ 4, 21 SAY "Monitoring Data - Falling Weight SSI"
@ 7, 6 SAY "Date"
@ 7, 12 SAY FALLIGHT->MONTH
@ 7, 14 SAY "/"
@ 7, 15 SAY FALLIGHT->DAY
@ 7, 17 SAY "/"
@ 7, 18 SAY FALLIGHT->YEAR
@ 7, 25 SAY "SID Number"
@ 7, 43 SAY FALLIGHT->SID_NO
@ 7, 57 SAY "Average SSI"
@ 7, 70 SAY FALLIGHT->RWSSI AVG
@ 8, 11 SAY "(MM/DD/YY) Structure Number"
@ 8, 45 SAY FALLIGHT->STRUCTNUM
@ 8, 57 SAY "Temperature"
@ 8, 71 SAY FALLIGHT->SSITEMP
@ 9, 25 SAY "Layer Number"
@ 9, 45 SAY FALLIGHT->LAYNUM
@ 11, 18 SAY "Reading 1 Reading 2 Reading 3 Reading 4 Reading 5"
@ 12, 5 SAY "Geophone 1"
@ 12, 20 SAY FALLIGHT->SSIGP11
@ 12, 32 SAY FALLIGHT->SSIGP21 PICTURE "99.99"
@ 12, 44 SAY FALLIGHT->SSIGP31
@ 12, 56 SAY FALLIGHT->SSIGP41
@ 12, 68 SAY FALLIGHT->SSIGP51
@ 13, 5 SAY "Geophone 2"
@ 13, 20 SAY FALLIGHT->SSIGP12
@ 13, 32 SAY FALLIGHT->SSIGP22
@ 13, 44 SAY FALLIGHT->SSIGP32
@ 13, 56 SAY FALLIGHT->SSIGP42
@ 13, 68 SAY FALLIGHT->SSIGP52
@ 14, 5 SAY "Geophone 3"
@ 14, 20 SAY FALLIGHT->SSIGP13
@ 14, 32 SAY FALLIGHT->SSIGP23 PICTURE "99.99"
@ 14, 44 SAY FALLIGHT->SSIGP33
@ 14, 56 SAY FALLIGHT->SSIGP43
@ 14, 68 SAY FALLIGHT->SSIGP53
@ 15, 5 SAY "Geophone 4"
@ 15, 20 SAY FALLIGHT->SSIGP14
@ 15, 32 SAY FALLIGHT->SSIGP24
@ 15, 44 SAY FALLIGHT->SSIGP34
@ 15, 56 SAY FALLIGHT->SSIGP44
@ 15, 68 SAY FALLIGHT->SSIGP54
@ 16, 5 SAY "Geophone 5"
@ 16, 20 SAY FALLIGHT->SSIGP15
@ 16, 32 SAY FALLIGHT->SSIGP25
@ 16, 44 SAY FALLIGHT->SSIGP35
@ 16, 56 SAY FALLIGHT->SSIGP45
@ 16, 68 SAY FALLWGT->SIGP55
@ 17, 5 SAY "Geophone 6"
@ 17, 20 SAY FALLWGT->SIGP16
@ 17, 32 SAY FALLWGT->SIGP26
@ 17, 44 SAY FALLWGT->SIGP36
@ 17, 56 SAY FALLWGT->SIGP46
@ 17, 68 SAY FALLWGT->SIGP56
@ 18, 5 SAY "Geophone 7"
@ 18, 20 SAY FALLWGT->SIGP17
@ 18, 32 SAY FALLWGT->SIGP27
@ 18, 44 SAY FALLWGT->SIGP37
@ 18, 56 SAY FALLWGT->SIGP47
@ 18, 68 SAY FALLWGT->SIGP57
@ 1, 2 TO 20, 77 DOUBLE
@ 3, 24 SAY "TEXAS FLEXIBLE PAVEMENT DATABASE"
@ 4, 35 SAY "INQUIRY"
@ 5, 20 SAY "Monitoring Data - Dynaflect Measurement"
@ 7, 38 SAY "SID Number"
@ 7, 55 SAY DYNAPLID->STD NO
@ 8, 38 SAY "Structure Number"
@ 8, 57 SAY DYNAPLID->STRUCNUM
@ 9, 38 SAY "Layer Number"
@ 9, 57 SAY DYNAPLID->LAYNUM
@ 10, 38 SAY "Date"
@ 10, 51 SAY DYNAPLID->MONTH
@ 10, 53 SAY "/"
@ 10, 54 SAY DYNAPLID->DAY
@ 10, 56 SAY "/"
@ 10, 57 SAY DYNAPLID->YEAR
@ 12, 21 SAY "STATION"
@ 12, 53 SAY DYNAPLID->STATION
@ 13, 21 SAY "Reading for Sensor 1"
@ 13, 50 SAY DYNAPLID->SENS1RD
@ 14, 21 SAY "Reading for Sensor 2"
@ 14, 50 SAY DYNAPLID->SENS2RD
@ 15, 21 SAY "Reading for Sensor 3"
@ 15, 50 SAY DYNAPLID->SENS3RD
@ 16, 21 SAY "Reading for Sensor 4"
@ 16, 50 SAY DYNAPLID->SENS4RD
@ 17, 21 SAY "Reading for Sensor 5"
@ 17, 50 SAY DYNAPLID->SENS5RD
@ 2, 14 TO 19, 64 DOUBLE
Format Programs For Screens

Skid

\begin{verbatim}
@ 3, 24 SAY "TEXAS FLEXIBLE PAVEMENT DATABASE"
@ 4, 35 SAY "INQUIRY"
@ 5, 23 SAY "Monitoring Data - Skid Measurement"
@ 8, 34 SAY "SID Number"
@ 8, 52 SAY SKID->SID_NO
@ 9, 34 SAY "Structure Number"
@ 9, 54 SAY SKID->STRUCTNUM
@ 10, 34 SAY "Layer Number"
@ 10, 54 SAY SKID->LAYNUM
@ 11, 34 SAY "Date"
@ 11, 51 SAY SKID->MONTH
@ 11, 53 SAY "/
@ 11, 54 SAY SKID->YEAR
@ 13, 29 SAY "Mean"
@ 13, 41 SAY SKID->SKIDNUM
@ 14, 29 SAY "High"
@ 14, 41 SAY SKID->SKIDNUMH
@ 15, 29 SAY "Low"
@ 15, 41 SAY SKID->SKIDNUML
@ 2, 16 TO 17, 63 DOUBLE
\end{verbatim}
Format Programs For Screens
Traffic

@ 3, 24 SAY "TEXAS FLEXIBLE PAVEMENT DATABASE"
@ 4, 35 SAY "INQUIRY"
@ 5, 32 SAY "Traffic Data"
@ 7, 39 SAY "SID Number"
@ 7, 50 SAY TRAFFIC->SID_NO
@ 8, 39 SAY "Year"
@ 8, 50 SAY TRAFFIC->YEAR
@ 10, 21 SAY "Annual Average Daily Traffic"
@ 10, 53 SAY TRAFFIC->AADT1WAY
@ 11, 21 SAY "Annual Cumulative 18 Keal"
@ 12, 28 SAY "- one way"
@ 12, 50 SAY TRAFFIC->A18KEAL
@ 13, 21 SAY "Percent trucks"
@ 13, 55 SAY TRAFFIC->PCITRK
@ 2, 14 TO 15, 65 DOUBLE
Format Programs For Screens
Weather

@ 4, 24 SAY "TEXAS FLEXIBLE PAVEMENT DATABASE"
@ 5, 35 SAY "INQUIRY"
@ 6, 29 SAY "Weather Measurement"
@ 8, 9 SAY "County Number"
@ 8, 26 SAY WEATHER->CNTYNUM
@ 9, 9 SAY "Month"
@ 9, 27 SAY WEATHER->MONTH
@ 11, 32 SAY "No. of Yrs Avg Mean Std. Dev."
@ 12, 9 SAY "Precipitation"
@ 12, 38 SAY WEATHER->PRECYRS
@ 12, 49 SAY WEATHER->PRECMN
@ 12, 60 SAY WEATHER->PRECSD
@ 13, 9 SAY "Total Freeze Thaw Cycle"
@ 13, 38 SAY WEATHER->FTFCYRS
@ 13, 49 SAY WEATHER->FTFCMN
@ 13, 60 SAY WEATHER->FTFCSD
@ 14, 9 SAY "Wet Freeze Thaw Cycle"
@ 14, 38 SAY WEATHER->WFTFCYRS
@ 14, 49 SAY WEATHER->WFTFCMN
@ 14, 60 SAY WEATHER->WFTFCSD
@ 15, 9 SAY "Maximum Temperature"
@ 15, 38 SAY WEATHER->MIMPYRS
@ 15, 49 SAY WEATHER->MIMPAN
@ 15, 60 SAY WEATHER->MIMPSD
@ 16, 9 SAY "Averaged Temperature"
@ 16, 38 SAY WEATHER->ATMPYRS
@ 16, 49 SAY WEATHER->ATMPAN
@ 16, 60 SAY WEATHER->ATMPSD
@ 3, 4 TO 18, 72 DOUBLE
FORMAT PROGRAMS FOR SCREENS

ENVIRONMENT

@ 5, 24 SAY "TEXAS FLEXIBLE PAVEMENT DATABASE"
@ 6, 35 SAY "INQUIRY"
@ 7, 27 SAY "Environmental Measurement"
@ 10, 23 SAY "County Number"
@ 10, 53 SAY ENV->CNYNUM
@ 11, 23 SAY "Thornthwaite Index Mean"
@ 11, 50 SAY ENV->THORNMIN PICTURE "9999999.999"
@ 12, 23 SAY "Thornthwaite Index"
@ 13, 28 SAY "- No. of Years Averaged"
@ 13, 55 SAY ENV->THORNYRS
@ 14, 23 SAY "Thornthwaite Index"
@ 15, 28 SAY "- Standard Deviation"
@ 15, 51 SAY ENV->THORNSD
@ 4, 14 TO 17, 64 DOUBLE
Format Programs For Screens
County Name

@ 7, 23 SAY "TEXAS FLEXIBLE PAVEMENT DATABASE"
@ 8, 34 SAY "INQUIRY"
@ 9, 32 SAY "County Table"
@ 12, 24 SAY "County Number"
@ 12, 40 SAY CNTYTBLL->CNTYNUM
@ 13, 24 SAY "County Name"
@ 13, 40 SAY CNTYTBLL->CNTYNAME
@ 6, 15 TO 15, 61 DOUBLE
@ 15, 36 TO 15, 36
Format Programs For Screens
Material Type Classification

@ 4, 24 SAY "TEXAS FLEXIBLE PAVEMENT DATABASE"
@ 5, 35 SAY "INQUIRY"
@ 6, 23 SAY "Material Type Classification Table"
@ 9, 21 SAY "Material Code"
@ 9, 42 SAY MATLlbl->MATCODE
@ 10, 21 SAY "Material Description"
@ 10, 42 SAY MATLlbl->MATDESC
@ 11, 21 SAY "Material Short Form"
@ 11, 42 SAY MATLlbl->MATSHRT
@ 12, 21 SAY "Layer Description"
@ 12, 42 SAY MATLlbl->LAYRDES
@ 3, 14 TO 14, 64 DOUBLE
Format Programs For Screens
Type of Pavement

@ 4, 24 SAY "TEXAS FLEXIBLE PAVEMENT DATABASE"
@ 5, 35 SAY "INQUIRY"
@ 6, 27 SAY "Type of Pavement Table"
@ 10, 20 SAY "Pavement Code"
@ 10, 36 SAY PAVETYPE->PAVECODE
@ 11, 20 SAY "Type of Base"
@ 11, 36 SAY PAVETYPE->BASETYPE
@ 12, 20 SAY "Surface Thickness"
@ 12, 36 SAY PAVETYPE->BASETHK
@ 13, 20 SAY "Base Seal"
@ 13, 36 SAY PAVETYPE->BASESEAL
@ 3, 14 TO 15, 64 DOUBLE
Format Programs For Screens
District Temperature Constant

@ 6, 24 SAY "TEXAS FLEXIBLE PAVEMENT DATABASE"
@ 7, 36 SAY "INQUIRY"
@ 8, 27 SAY "District Temperature Table"
@ 11, 27 SAY "District Number"
@ 11, 51 SAY DISTTEMP->DISTRICT
@ 12, 27 SAY "Temperature Constant"
@ 12, 51 SAY DISTTEMP->TEMPONS
@ 5, 17 TO 14, 62 DOUBLE
```
FORMAT PROGRAMS FOR SCREENS
Wideining Flag

@ 5, 24 SAY "TEXAS FLEXIBLE PAVEMENT DATABASE"
@ 6, 35 SAY "INQUIRY"
@ 7, 31 SAY "Widening Table"
@ 10, 8 SAY "Code"
@ 10, 21 SAY WIDENFLAG->WIDNODE
@ 11, 8 SAY "Description"
@ 11, 21 SAY WIDENFLAG->WIDNDESC
@ 12, 8 SAY "Comments:
@ 13, 10 SAY WIDENFLAG->COMMENTS
@ 4, 4 TO 15, 73  DOUBLE
```
Format Programs For Screens
Layer Description

@ 4, 21 SAY "TEXAS FLEXIBLE PAVEMENT DATABASE"
@ 5, 33 SAY "INQUIRY"
@ 6, 26 SAY "Layer Description Table"
@ 9, 16 SAY "Code"
@ 9, 33 SAY LAYERBL->CODE
@ 10, 16 SAY "Short Description"
@ 10, 33 SAY LAYERBL->CODE DESC
@ 11, 16 SAY "Description"
@ 11, 33 SAY LAYERBL->CODE LAYR
@ 3, 12 TO 13, 61 DOUBLE
Format Programs For Screens
Functional Classification

@ 6, 25 SAY "TEXAS FLEXIBLE PAVEMENT DATABASE"
@ 7, 37 SAY "INQUIRY"
@ 8, 25 SAY "Functional Classification Table"
@ 11, 13 SAY "Code"
@ 11, 27 SAY \$FUNCTIONLBL->CODE PICTURE "9"
@ 12, 13 SAY "Description"
@ 12, 27 SAY \$FUNCTIONLBL->DESCRIPTION
@ 5, 10 TO 14, 69 DOUBLE
Program Listing

* SUBSYSTEM: INQUIRY MAIN MENU
* PROGRAM NAME: INQUIRY.PRG 05/31/88
* MODIFIED ON: 09/26/88
* PROJECT 2456 - TEXAS FLEXIBLE PAVEMENT DATABASE CONVERSION
* TAMU/TTI
* AUTHOR: TREVOR X. PEREIRA
* PURPOSE: TO RETRIEVE DATA TO THE SCREEN FOR THE FOLLOWING:
 * - Monitoring data
 * - Environment data
 * - Inventory data
 * - Traffic data
 * - Tables

* set parameters and initialize variables
STORE 13 TO MSID NO
CLOSE DATABASES
SET FORMAT TO
SET PROCEDURE TO \PAVEDB\INQUIRY\INQ_COLL
MREPEAT2 = .T.

DO WHILE MREPEAT2
 STORE " " TO Inqpick
 * set up the INQUIRY menu screen and do the loop until INQ PICK is 1-5
 DO WHILE .NOT. (INQ PICK $ '12345')
 @ 0, 0 CLEAR
 @ 4, 19 SAY "TEXAS FLEXIBLE PAVEMENT DATABASE 1.0"
 @ 5, 32 SAY "Inquiry"
 @ 9, 17 SAY "1 - Inventory Data"
 @ 10, 17 SAY "2 - Monitoring Data"
 @ 11, 17 SAY "3 - Traffic Data"
 @ 12, 17 SAY "4 - Environmental Data"
 @ 13, 17 SAY "5 - Tables"
 @ 16, 37 SAY "OPTION = " GET INQ PICK
 READ
 IF READKEY() = 12
 RETURN TO MASTER
 ENDF
ENDDO

IF MREPEAT2
* according to the response received from the INQUIRY menu, the appropriate
* commands are executed
DO CASE
* Display the Inventory data to the screen
CASE INQ PICK = "1"
 MREPEAT = .T.
 DO WHILE MREPEAT
CLEAR
INQCOLL = " "
MSID_NO = 13
DO WHILE .NOT. (INQCOLL $ '123456')
 @ 3, 21 SAY "TEXAS FLEXIBLE PAVEMENT DATABASE 1.1"
 @ 4, 33 SAY "INQUIRY"
 @ 5, 30 SAY "Inventory Data"
 @ 7, 16 SAY "1 - Location"
 @ 8, 16 SAY "2 - Layer ID"
 @ 9, 16 SAY "3 - Geometric & Shoulder"
 @ 10, 16 SAY "4 - Surface"
 @ 11, 16 SAY "5 - Subgrade"
 @ 12, 16 SAY "6 - Layer Thickness Across the Road"
 @ 15, 37 SAY "OPTION ——«" GET INQCOLL
 @ 17, 27 SAY "Enter SID Number ——«" GET MSID_NO PICTURE "9999"
 @ 2, 9 TO 19, 65 DOUBLE
READ
IF READKEY() = 12
 MREPEAT = .F.
 EXIT
ENDIF
ENDDO
IF MREPEAT
 DO COLLECT1
 CLEA TYPE
 ENDDO
ENDIF
SET FORMAT TO
ENDDO

* Display the Monitoring data to the screen if the choice is 2 on the
* Inquiry main menu
CASE INQPICK = "2"
 MREPEAT = .T.
 DO WHILE MREPEAT
 CLEAR
 INQCOLL = " "
 MSID_NO = 13
 DO WHILE .NOT. (INQCOLL $ '123456')
 @ 3, 22 SAY "TEXAS FLEXIBLE PAVEMENT DATABASE 1.2"
 @ 4, 34 SAY "INQUIRY"
 @ 5, 30 SAY "Monitoring Data"
 @ 8, 15 SAY "1 - Visual"
 @ 9, 15 SAY "2 - Serviceability Index"
 @ 10, 15 SAY "3 - Falling Weight"
 @ 11, 15 SAY "4 - Dynaflect"
 @ 12, 15 SAY "5 - Skid"
 @ 14, 40 SAY "OPTION ——«" GET INQCOLL
 @ 16, 30 SAY "Enter SID Number ——«" GET MSID_NO PICTURE "9999"
 @ 2, 9 TO 18, 65 DOUBLE
READ
IF READKEY() = 12
 MREPEAT = .F.
 EXIT
ENDIF
* If choice 3 is chosen, display data for the traffic file
CASE INQPICK = "3"
CLEAR
* Display TRAFFIC data for a SID number to the screen
MREPEAT = .T.
STORE "Traffic Data" TO MENUHEAD
MENUHEAD = TRIM(MENUHEAD)
MCENTER = 37 - (LEN(MENUHEAD)/2)
MSID NO = 13
DO SID_INQ
IF MREPEAT
USE \PAVEDB\FILES\TRAFFIC INDE \PAVEDB\INDEXES\TRAFFIC
SEEK STR(MSID NO,4)
IF FOUND()
 SET FORMAT TO \PAVEDB\INQUIRY\INQ_TRAF
 CHANGE
ELSE
 20, 15 SAY "SID number not found"
 WAIT
ENDIF
ENDIF
USE
SET FORMAT TO
* if choice 4 is chosen, display one of the 5 INQUIRY table screens
CASE INQPICK = "4"
MREPEAT = .T.
DO WHILE MREPEAT
CLEAR
INQCOLL = " "
MCNTRYNUM = 1
DO WHILE .NOT. (INQCOLL $ '12')
 4, 21 SAY "TExAS FLEXIBLE PAVEMENT DATABASE 1.4"
 5, 33 SAY "INQUIRY"
 6, 28 SAY "Environmental Data"
 9, 15 SAY "1 - Environment"
 10, 15 SAY "2 - Weather"
 14, 40 SAY "OPTION = " GET INQCOLL
 16, 27 SAY "Enter county Number = " GET MCNTRYNUM PICTURE "999"
 2, 9 TO 18, 65 DOUBLE
READ
 IF READKEY() = 12
 MREPEAT = .F.
 EXIT
ENDIF
ENDDO
IF MREPEAT
 DO CASE
 CASE INQCOLL = "1"
 * Display ENVIRONMENT data for a SID number to the screen
 USE \PAVEDB\FILES\ENV INDE \PAVEDB\INDEXES\ENV
 SEEK MCNTYNUM
 IF FOUND()
 MFOUND = .T.
 ENDIF
 IF MCNTYNUM = 0
 MFOUND = .T.
 GOTO TOP
 ENDIF
 IF MFOUND
 SET FORMAT TO \PAVEDB\INQUIRY\INQ_ENV
 CHANGE
 ELSE
 @ 20, 15 SAY "COUNTY number not found"
 WAIT
 ENDIF
 USE
 ENDIF

 CASE INQCOLL = "2"
 * Display WEATHER data for a SID number to the screen
 USE \PAVEDB\FILES\WEATHER INDE \PAVEDB\INDEXES\WEATHER
 SEEK SIR(MCNTYNUM, 3)
 IF FOUND()
 MFOUND = .T.
 ENDIF
 IF MCNTYNUM = 0
 MFOUND = .T.
 GOTO TOP
 ENDIF
 IF MFOUND
 SET FORMAT TO \PAVEDB\INQUIRY\INQ_WEAT
 CHANGE
 ELSE
 @ 20, 15 SAY "COUNTY number not found"
 WAIT
 ENDIF
 END_CASE
 ENDCASE
 ENDF
 SET FORMAT TO
 USE
ENDDO

* if choice 5 is chosen, display one of the 5 INQUIRY table screens
CASE INQPICK = "5"
 DO \PAVEDB\EDITUPDT\TABLFILE
 MREPEAT = .T.
 DO WHILE MREPEAT
 CLEAR
 INQCOLL = " "
 MCNTYNUM = 1
DO WHILE .NOT. (INQCOLL $ '1234567')
 @ 3, 21 SAY "TEXAS FLEXIBLE PAVEMENT DATABASE"
 @ 4, 33 SAY "INQUIRY"
 @ 5, 33 SAY "Tables"
 @ 8, 16 SAY "1 - County Name"
 @ 9, 16 SAY "2 - Material Type"
 @ 10, 16 SAY "3 - Type of Pavement"
 @ 11, 16 SAY "4 - District Temperature Constant"
 @ 12, 16 SAY "5 - Widening Flag"
 @ 13, 16 SAY "6 - Layer Description"
 @ 14, 16 SAY "7 - Functional Classification"
 @ 17, 42 SAY "OPTION --------> " GET INQCOLL
 @ 2, 9 TO 18, 65 DOUBLE
 READ
 IF READKEY() = 12
 MREPEAT = .F.
 EXIT
 ENDDO
ENDDO
IF MREPEAT
DO CASE
CASE INQCOLL = "1"
 @ 19, 15 SAY "Please enter the COUNTY number: "
 @ 19, 49 GET MONTYNUM PICTURE "999"
 READ
 CLEAR
 USE \PAVEDB\FILES\CNYTBL INDEX \PAVEDB\INDEXES\CYTBLNO
 LOCATE FOR CNTYNUM = MONTYNUM
 IF MONTYNUM = 0
 GO TO TOP
 ENDIF
 SET FORMAT TO \PAVEDB\INQUIRY\INQ_CNTY
 CHANGE
 USE
CASE INQCOLL = "2"
 CLEAR
 USE \PAVEDB\FILES\MATLTBL
 SET FORMAT TO \PAVEDB\INQUIRY\INQ_MATL
 CHANGE
 USE
CASE INQCOLL = "3"
 CLEAR
 USE \PAVEDB\FILES\PAVETYPE
 SET FORMAT TO \PAVEDB\INQUIRY\INQ_PVMT
 CHANGE
 USE
CASE INQCOLL = "4"
 MDIST = 1
 @ 19, 15 SAY "Please enter the DISTRICT number: "
 @ 19, 49 GET MDIST PICTURE "99"
 READ
 CLEAR
 USE \PAVEDB\FILES\DISTTEMP
 LOCATE FOR DISTRICT = MDIST

69
IF MDIST = 0
 GOTO TOP
ENDIF
SET FORMAT TO \PAVEDB\INQUIRY\INQ_DIST
CHANGE
USE
CASE INQCOLL = "5"
 CLEAR
 USE \PAVEDB\FILES\WIDENFLG
 SET FORMAT TO \PAVEDB\INQUIRY\INQ_WIDN
 CHANGE
 USE
CASE INQCOLL = "6"
 CLEAR
 USE \PAVEDB\FILES\LAYERTBL
 SET FORMAT TO \PAVEDB\INQUIRY\INQ_LITBL
 CHANGE
 USE
CASE INQCOLL = "7"
 CLEAR
 USE \PAVEDB\FILES\FUNCTIONLBL
 SET FORMAT TO \PAVEDB\INQUIRY\INQ_FUNC
 CHANGE
 USE
ENDCASE
ENDIF
SET FORMAT TO
ENDDO
ENDCASE
MREPEAT2 = .F.
ENDIF
MREPEAT2 = .T.
ENDDO
SET FORMAT TO
SET PROCEDURE TO
CLOSE DATABASES
CLEAR
RETURN TO MASTER
Program Listing

* SUBSYSTEM: INQUIRY OF INVENTORY AND MONITORING DATA
* PROGRAM NAME: INQ_COLL.PRG 05/31/88
* MODIFIED ON: 09/26/88
* CALLED FROM: INQUIRY.PRG
* PROJECT 2456 - TEXAS FLEXIBLE PAVEMENT DATABASE CONVERSION
* TAMU/TII
* AUTHOR: TREVOR X. PEREIRA
* PURPOSE: THIS IS A PROCEDURE FILE FOR THE MAIN INQUIRY PROGRAM. RESPECTIVE PROCEDURES ARE CALLED TO DISPLAY DATA ON THE SCREEN FOR INDIVIDUAL FILES.

* PROCEDURE GET SID NUMBER FOR INQUIRY

PROCEDURE SID_INQ
STORE 0 TO MSID_NO, VAR1, VAR2, VAR3, COMPARE
STORE .F. TO VALID

* display Sid number entry screen
DO WHILE .NOT. VALID
 @ 0, 0 CLEAR
 @ 6, 22 SAY "TEXAS FLEXIBLE PAVEMENT DATABASE"
 @ 7, 34 SAY "INQUIRY"
 @ 8, MCENTER SAY MENUHEAD
 @ 11, 24 SAY "Please Enter SID Number:"
 @ 11, 49 GET MSID_NO PICTURE "9999"
 @ 5, 15 TO 13, 60 = DOUBLE

* get Sid Number
READ

* calculates the correct Sid Number
VAR1 = INT(MSID_NO/1000)
VAR2 = MOD(INT(MSID_NO/100),10)
VAR2 = VAR2 * 2
VAR3 = MOD(INT(MSID_NO/10),10)
VAR3 = VAR3 * 3
VAR4 = MOD(VAR1,10)+VAR2+VAR3
COMPARE = MOD(VAR4,10)

* sets up the escape key if want to abort
IF READKEY() = 12
 MREPEAT = .F.
 RETURN
ENDIF

* compares calculated Sid number with Sid number entered
IF COMPARE = MOD(MSID_NO,10)
STORE .T. TO VALID
ELSE
 @ 20, 10 SAY "Invalid SID Number"
 WAIT
ENDIF

* verifies that Sid number has been entered
IF MSID NO = 0
 STORE .F. TO VALID
 @ 20, 10 SAY "Invalid SID Number"
 WAIT
ENDIF
ENDDO

* returns to the calling program
RETURN

**
* PROCEDURE COLLECT 1
**
PROCEDURE COLLECT1
MFOUND = .F.
DO CASE
CASE INQCOLL = "1"
 * Display location data for a SID number to the screen
 USE \PAVEDB\FILES\LOCATION INDE \PAVEDB\INDEXES\LOCSID
 SEEK MSID NO
 IF FOUND()
 MFOUND = .T.
 ENDIF
 IF MSID NO = 0
 MFOUND = .T.
 GOTO TOP
 ENDIF
 IF MFOUND
 SET FORMAT TO \PAVEDB\INQUIRY\INQ_LOCN
 CHANGE
 ELSE
 @ 20, 15 SAY "SID number not found"
 wait
 ENDIF
CASE INQCOLL = "2"
 * Display LayeR IDENTIFICATION data for a SID number to the screen
 USE \PAVEDB\FILES\LAYER INDE \PAVEDB\INDEXES\LAYNDX
 SEEK STR(MSID NO,4)
 IF FOUND()
 MFOUND = .T.
 ENDIF
 IF MSID NO = 0
 MFOUND = .T.
 GOTO TOP
 ENDIF
 IF MFOUND .AND. (.NOT. EOF())
 SET FORMAT TO \PAVEDB\INQUIRY\INQ_LAYR

72
CHANGE ELSE @ 20, 15 SAY "SID number not found" WAIT ENDIF CASE INQCOLL = "3" * Display GEOMETRIC AND SHOULDER data for a SID number to the screen USE \PAVEDB\FILES\GEOSHOG INDE \PAVEDB\INDEXES\GEONDX SEEK STR(MSID NO,4) IF FOUND() MFOUND = .T. ENDIF IF MSID NO = 0 MFOUND = .T. GOTO TOP ENDIF IF MFOUND .AND. (.NOT. EOF()) SET FORMAT TO \PAVEDB\INQUIRY\INQ_GEO CHANGE ELSE @ 20, 15 SAY "SID number not found" WAIT ENDIF CASE INQCOLL = "4" * Display SURFACE data for a SID number to the screen USE \PAVEDB\FILES\SURFACE INDE \PAVEDB\INDEXES\SURFNDX SEEK STR(MSID NO,4) IF FOUND() MFOUND = .T. ENDIF IF MSID NO = 0 MFOUND = .T. GOTO TOP ENDIF IF MFOUND .AND. (.NOT. EOF()) SET FORMAT TO \PAVEDB\INQUIRY\INQ_SURF CHANGE ELSE @ 20, 15 SAY "SID number not found" WAIT ENDIF CASE INQCOLL = "5" * Display SUBGRADE data for a SID number to the screen USE \PAVEDB\FILES\SUBGRADE INDE \PAVEDB\INDEXES\SUBGNDX SEEK STR(MSID NO,4) IF FOUND() MFOUND = .T. ENDIF IF MSID NO = 0 MFOUND = .T. GOTO TOP ENDIF IF MFOUND .AND. (.NOT. EOF()) SET FORMAT TO \PAVEDB\INQUIRY\INQ_SUBG
CHANGE
ELSE
 @ 20, 15 SAY "SID number not found"
 WAIT
ENDIF
CASE INQCXL = "6"
 * Display LAYER THICKNESS ACROSS THE ROAD data for a SID number to the screen
 USE \PAVEDB\FILES\LAYTHICK INDE \PAVEDB\INDEXES\LAYINDEX
 SEEK SIR(MSID_NO,4)
 IF FOUND()
 MFOUND = .T.
 ENDIF
 IF MSID NO = 0
 MFOUND = .T.
 GOTO TOP
 ENDIF
 IF MFOUND .AND. (.NOT. EOF())
 SET FORMAT TO \PAVEDB\INQUIRY\INQ_LAYT
 CHANGE
 ELSE
 @ 20, 15 SAY "SID number not found"
 WAIT
 ENDIF
ENDCASE
CLEAR
RETURN

* PROCEDURE COLLECT2

PROCEDURE COLLECT2
 MFOUND = .F.
DO CASE
 CASE INQCOLL = "1"
 * Display VISUAL data for a SID number to the screen
 USE \PAVEDB\FILES\VISUAL INDE \PAVEDB\INDEXES\VISUAL
 SEEK SIR(MSID_NO,4)
 IF FOUND()
 MFOUND = .T.
 ENDIF
 IF MSID NO = 0
 MFOUND = .T.
 GOTO TOP
 ENDIF
 IF MFOUND .AND. (.NOT. EOF())
 SET FORMAT TO \PAVEDB\INQUIRY\INQ_VISL
 CHANGE
 ELSE
 @ 20, 15 SAY "SID number not found"
 WAIT
 ENDIF
 CASE INQCOLL = "2"
 * Display SERVICEABILITY INDEX data for a SID number to the screen

USE \PAVEDB\FILES\SI INDE \PAVEDB\INDEXES\SI
SEEK SIR(MSID_NO,4)
IF FOUND()
 MFOUND = .T.
ENDIF
IF MSID_NO = 0
 MFOUND = .T.
 GOTO TOP
ENDIF
IF MFOUND .AND. (.NOT. EOF())
 SET FORMAT TO \PAVEDB\INQUIRY\INQ_SI
 CHANGE
ELSE
 @ 20, 15 SAY "SID number not found"
 WAIT
ENDIF
CASE INQCOLL = "3"
 * Display FALLING WEIGHT data for a SID number to the screen
 USE \PAVEDB\FILES\FALL\WEIGHT INDE \PAVEDB\INDEXES\FALL\WEIGHT
 SEEK SIR(MSID_NO,4)
 IF FOUND()
 MFOUND = .T.
 ENDIF
 IF MSID_NO = 0
 MFOUND = .T.
 GOTO TOP
 ENDIF
 IF MFOUND .AND. (.NOT. EOF())
 SET FORMAT TO \PAVEDB\INQUIRY\INQ_FALL
 CHANGE
 ELSE
 @ 20, 15 SAY "SID number not found"
 WAIT
 ENDIF
CASE INQCOLL = "4"
 * Display DYNAFLD data for a SID number to the screen
 USE \PAVEDB\FILES\DYNAFLD INDE \PAVEDB\INDEXES\DYNAFLD
 SEEK SIR(MSID_NO,4)
 IF FOUND()
 MFOUND = .T.
 ENDIF
 IF MSID_NO = 0
 MFOUND = .T.
 GOTO TOP
 ENDIF
 IF MFOUND .AND. (.NOT. EOF())
 SET FORMAT TO \PAVEDB\INQUIRY\INQ_DYNA
 CHANGE
 ELSE
 @ 20, 15 SAY "SID number not found"
 WAIT
 ENDIF

75
CASE INQCOLL = "5"
* Display SKID data for a SID number to the screen
USE \\PAVEDB\\FILES\\SKID INDE \\PAVEDB\\INDEXES\\SKID
SEEK STR(MSID_NO,4)
IF FOUND()
 MFOUND = .T.
ENDIF
IF MSID NO = 0
 MFOUND = .T.
 GOTO TOP
ENDIF
IF MFOUND .AND. (.NOT. EOF())
 SET FORMAT TO \\PAVEDB\\INQUIRY\\INQ_SKID
 CHANGE
ELSE
 @ 20, 15 SAY "SID number not found"
 WAIT
ENDIF
ENDCASE
CLEAR
RETURN
CHAPTER 3

REPORT SUBSYSTEM
The Report Menu System written in dBase III Plus allows the user to print reports for any of the 14 master files and 7 tables. In addition to these 23 general reports, two specific reports have been set up - Summary and Inventory Update. The reports have been divided into 7 categories: Summary, Inventory Update, Inventory Data, Monitoring Data, Traffic Data, Environment Data and Tables. When a report is chosen, the program accesses the appropriate file and retrieves the data. The report is then sent to the printer as well as the screen. The reports program (REPORTS.PRG) generates all the reports except Summary and Inventory Update for which it calls separate programs. REPORTS.PRG also produces all of the screens contained in the Report Subsystem. All of the Report Subsystem programs are stored in the subdirectory \PAVEDB\REPORTS. The data and view files are stored in the subdirectory \PAVEDB\FILES. The index files are stored in \PAVEDB\INDEXES.

The Summary and Inventory Update Reports have the option of being printed by Individual SID number (SUMMSID.PRG or SUM2SID.PRG), by District (SUMMDIST.PRG or SUM2DIST.PRG) or by ALL SID numbers (SUMMALL.PRG or SUM2FILE.PRG). For the individual SID numbers, the program gets the SID number from the user, accesses the appropriate files to obtain the data and prints the report. For reports by district, the program obtains the district number from the user, gets the SID numbers for that district, accesses the applicable files to obtain the data and prints the report. For reports on all SID numbers, the program automatically gets the SID number, retrieves the data from the pertinent files and prints out the report.

The following information about the Report Subsystem is provided in this chapter:

- Program Flow Diagram
- Program Specifications
- Menu Screens
- Sample Reports
- Program Listings.
Report Subsystem - Program Flow Diagram

FIGURE 7
Report Subsystem - Program Flow Diagram

LOCATION.DBF
LAYER.DBF
SUBGRADE.DBF
SURFACE.DBF
GEOSSHO.DBF
LAYTHICK.DBF

SUM2DIST.PRG
SUM2FILE.PRG
SUM2SID.PRG

GETLOCT2.PRG
PRTREPT2.PRG
PRTREPT3.PRG

Inventory Update Report
Inventory Update Blank Form

FIGURE 8
FIGURE 9

Report Subsystem - Program Flow Diagram

One Page Summary Report
PROGRAM SPECIFICATION

Program Name: REPORTS.PRG

Purpose: Display report request screens and produce user requested reports.

Input Files: The following files are used along with their indices:

<table>
<thead>
<tr>
<th>Data File</th>
<th>Index File</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCATION.DBF</td>
<td>LOCSID.NDX</td>
</tr>
<tr>
<td>LAYER.DBF</td>
<td>LAYNDX.NDX</td>
</tr>
<tr>
<td>GEOGSHO.DBF</td>
<td>GEONDX.NDX</td>
</tr>
<tr>
<td>SURFACE.DBF</td>
<td>SURFDNX.NDX</td>
</tr>
<tr>
<td>SUBGRADE.DBF</td>
<td>SUBGNDX.NDX</td>
</tr>
<tr>
<td>LAYTHICK.DBF</td>
<td>LAYINDX.NDX</td>
</tr>
<tr>
<td>VISUAL.DBF</td>
<td>VISUAL.NDX</td>
</tr>
<tr>
<td>ST.DBF</td>
<td>ST.NDX</td>
</tr>
<tr>
<td>FALLWGT.DBF</td>
<td>FALLWGT.NDX</td>
</tr>
<tr>
<td>DYNAPL.ID.DBF</td>
<td>DYNAPLID.NDX</td>
</tr>
<tr>
<td>SKID.DBF</td>
<td>SKID.NDX</td>
</tr>
<tr>
<td>ENV.DBF</td>
<td>ENV.NDX</td>
</tr>
<tr>
<td>WEATHER.DBF</td>
<td>WEATHER.NDX</td>
</tr>
<tr>
<td>TRAFFIC.DBF</td>
<td>TRAFFIC.NDX</td>
</tr>
<tr>
<td>CNTYTB1N.DBF</td>
<td>CNTYTBNO.NDX</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data File</th>
<th>Index File</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAVETYPE.DBF</td>
<td>PAV.TBL.DBF</td>
</tr>
<tr>
<td>DISTTEM.DBF</td>
<td>DISTTEMP.DBF</td>
</tr>
<tr>
<td>WIDENFLG.DBF</td>
<td>WIDENFLG.DBF</td>
</tr>
<tr>
<td>LAYERTBL.DBF</td>
<td>LAYERTBL.DBF</td>
</tr>
<tr>
<td>FUNCLTB.DBF</td>
<td>FUCNLTBL.DBF</td>
</tr>
<tr>
<td>STRUCSEC.VUE</td>
<td>STRUCSEC.VUE</td>
</tr>
<tr>
<td>STRUCSEC2.VUE</td>
<td>STRUCSEC2.VUE</td>
</tr>
</tbody>
</table>

dBase Programs Called (See Program Flow Diagram):

<table>
<thead>
<tr>
<th>Program Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMSID.PRG</td>
<td>Gets SID Number for the Summary Report</td>
</tr>
<tr>
<td>SUMMDIST.PRG</td>
<td>Gets SID Numbers of a District for the Summary Report</td>
</tr>
<tr>
<td>SUMMALL.PRG</td>
<td>Gets all SID Number's for the Summary</td>
</tr>
<tr>
<td>GETSKID.PRG</td>
<td>Gets Skid Data for Summary Report</td>
</tr>
<tr>
<td>GETENVIR.PRG</td>
<td>Gets Environment Data for Summary Report</td>
</tr>
<tr>
<td>GETLOCAT.PRG</td>
<td>Gets Location Data for Summary Report</td>
</tr>
<tr>
<td>GETPAVCN.PRG</td>
<td>Gets Pavement Condition Data for the Summary Report</td>
</tr>
</tbody>
</table>

83
dBase Programs Called (See Program Flow Diagram): (continued)

<table>
<thead>
<tr>
<th>Program Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRNTREPT.PRG</td>
<td>Prints the Summary Report</td>
</tr>
<tr>
<td>SUMM2SID.PRG</td>
<td>Gets SID Number for the Inventory Update Report</td>
</tr>
<tr>
<td>SUMM2DIST.PRG</td>
<td>Gets SID Numbers for a District for Inventory Update Report</td>
</tr>
<tr>
<td>SUM2FILE.PRG</td>
<td>Gets all SID Numbers for the Inventory Update Report</td>
</tr>
<tr>
<td>GETLOCT2.PRG</td>
<td>Gets Data for the Inventory Update Report</td>
</tr>
<tr>
<td>PRITREPT2.PRG</td>
<td>Prints the Inventory Update Report</td>
</tr>
<tr>
<td>PRITREPT3.PRT</td>
<td>Prints a Blank Inventory Update Form.</td>
</tr>
</tbody>
</table>

NOTE: REPORTS.PRG produces all of the reports except the Summary Report and the Inventory Update Report.

Output Files: None

Reports (Using dBASE III Procedures):

The following reports are printed on request:

<table>
<thead>
<tr>
<th>Inventory Data</th>
<th></th>
<th>REPORT FILES</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Location</td>
<td></td>
<td>SEC_LOCN.FRM</td>
</tr>
<tr>
<td>- Location Section</td>
<td></td>
<td>LOCATION.FRM</td>
</tr>
<tr>
<td>- Layer Identification</td>
<td></td>
<td>LAYER.FRM</td>
</tr>
<tr>
<td>- Layer Thickness</td>
<td></td>
<td>LAYTHICK.FRM</td>
</tr>
<tr>
<td>- Geometric & Shoulder Info</td>
<td></td>
<td>GEOSHO.FRM</td>
</tr>
<tr>
<td>- Surface</td>
<td></td>
<td>SURFACE.FRM</td>
</tr>
<tr>
<td>- Subgrade</td>
<td></td>
<td>SUBGRADE.FRM</td>
</tr>
<tr>
<td>- Double Surface Treated</td>
<td></td>
<td>DSTREET.FRM</td>
</tr>
<tr>
<td>Summary</td>
<td></td>
<td>SUMMALL.PRG</td>
</tr>
<tr>
<td>- For All SID Numbers</td>
<td></td>
<td>SUMMSID.PRG</td>
</tr>
<tr>
<td>- For Individual SID Number</td>
<td></td>
<td>SUMMDIST.PRG</td>
</tr>
<tr>
<td>- For a Particular District</td>
<td></td>
<td>SUMM2SID.PRG</td>
</tr>
<tr>
<td>Inventory Update</td>
<td></td>
<td>FILE.PRG</td>
</tr>
<tr>
<td>- For Individual SID numbers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- For a Particular District</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- For All SID Numbers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitoring Data</td>
<td></td>
<td>VISUAL.FRM</td>
</tr>
<tr>
<td>- Visual</td>
<td></td>
<td>SI.FRM</td>
</tr>
<tr>
<td>- Serviceability Index</td>
<td></td>
<td>FALLWGHT.FRM &</td>
</tr>
<tr>
<td>- Falling Weight</td>
<td></td>
<td>FALLWGHT2.FRM</td>
</tr>
<tr>
<td>- Dynaflect</td>
<td></td>
<td>DYNAFLLD.FRM</td>
</tr>
<tr>
<td>- Skid</td>
<td></td>
<td>SKID.FRM</td>
</tr>
<tr>
<td>Environment Data</td>
<td></td>
<td>ENV.FRM</td>
</tr>
<tr>
<td>- Environment</td>
<td></td>
<td>WEATHER.FRM</td>
</tr>
<tr>
<td>- Weather</td>
<td></td>
<td>TRAFFIC.FRM</td>
</tr>
<tr>
<td>Traffic Data</td>
<td></td>
<td>CNTYTVBL.FRM</td>
</tr>
<tr>
<td>Tables</td>
<td></td>
<td>MATLITBL.FRM</td>
</tr>
<tr>
<td>- County Name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Material Type</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reports (Using dBASE III Procedures): (continued)

<table>
<thead>
<tr>
<th>REPORT FILES</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAVETYPE.FRM</td>
</tr>
<tr>
<td>DISTTEMP.FRM</td>
</tr>
<tr>
<td>WIDENFLG.FRM</td>
</tr>
<tr>
<td>FUNCLTBL.FRM</td>
</tr>
<tr>
<td>LAYERTBL.FRM</td>
</tr>
</tbody>
</table>

- Type of Pavement
- District Temperature
 Constant
- Widening Flag
- Functional Classification
- Layer Description
REPORT SCREENS

Other than the Main Menu, all of the screens illustrated in this section are produced by REPORTS.PRG.

Texas Flexible Pavement Database

Main Menu

1 - Inquiry
2 - Reports
3 - Edit & Update
4 - Applications
5 - Backup
6 - Installation
7 - Reindex Master Files
Q - QUIT

Above is the Main Menu of the Texas Flexible Pavement Database System. When the Reports option is chosen, the next screen 2.0 is displayed. Choice 1 - Summary displays the screen 2.1 on the next page while choice 2 - Inventory Update Forms displays screen 2.2.

Texas Flexible Pavement Database 2.0

Reports

1 - Summary
2 - Inventory Update Forms
3 - Inventory Data
4 - Monitoring Data
5 - Traffic Data
6 - Environmental Data
7 - Tables

86
REPORT SCREENS (continued)

TEXAS FLEXIBLE PAVEMENT DATABASE
REPORTS
Summary Report

1 - By SID Number
2 - By District
3 - ALL SID Numbers

OPTION

TEXAS FLEXIBLE PAVEMENT DATABASE
REPORTS
Inventory Update Forms

1 - By District
2 - By SID Number
3 - ALL SID Numbers

OPTION
Choice 3 - Inventory Data on the Reports Menu brings up the above screen 2.3, while choice 4 - Monitoring Data brings up the next screen 2.4.
REPORT SCREENS (continued)

<table>
<thead>
<tr>
<th>TEXAS FLEXIBLE PAVEMENT DATABASE 2.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPORTS</td>
</tr>
<tr>
<td>Environmental Data</td>
</tr>
</tbody>
</table>

1 - Environment
2 - Weather

Choice 6 - Environmental Data displays the above screen 2.6 while choice 7 - Tables displays the next screen 2.7.

<table>
<thead>
<tr>
<th>TEXAS FLEXIBLE PAVEMENT DATABASE 2.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPORTS</td>
</tr>
<tr>
<td>Tables</td>
</tr>
</tbody>
</table>

1 - County Name
2 - Material Type
3 - Type of Pavement
4 - District Temperature Constant
5 - Widening Flag
6 - Layer Description
7 - Functional Classification

OPTION ➔
REPORT SUBSYSTEM
SAMPLE REPORTS
Page No.
11/11 /88

SID
No.

Texas Flexible Pavement Database
Location File

Beg.
Actv Highway County Mile
Flag District Number Post

End
Mile
Post

Highway
Number

Lane Control/
IO Section

Milepoint
Begn to End

Mile
Point
Date

\.0

w

. T.
. T.
• T.
. T.
.T.
. T.
. T.
.F.
. T.
.T.
• T.
• T.
. T.
. T.
. T.
. T.
. F.
. T.
. T.
.T.
• T.
• T.
• T.
. T.
. T.
. T.

1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3

92
92
117
, 17
117
117
139
139
139
190
190
73
73
120
120
127
127
220
220
220
127
39
39
169
169
224

22+00 24+00 us 82
6+00 FM 2729
4+00
106+00 109+00 IH 30
28+00 30+00 SH 34
4+00 FM 1566
2+00
2+00 FM 2736
2-20
8+00 us 271
6+00
14+00 14+16 FM 905
14+00 16+00 FM 79
4+11
8+00 us 69
4+00 FM 779
2+00
8+00 10+00 SH 6
6+00 FM 2157
4+00
36+00 38+00 us 281
4+00 FM 206
6+00
28+00 30+00 us 67
4+00 FM 917
2+00
2+00 us 377
0+00
2+00 SH 303S
0+00
4+00 FM 1709
2+00
18+00 20+00 IH 35W
6+00 SH 79
4+00
10+00 12+00 FM 1197
20+00 22+00 SH 59
8+00 FM 455
6+00
34+00 34+20 us 183

275
288
291
306
319
322
335
348
351
364
377
380
393
408
411
424
437
440
453
466

• T.
. F.
. T.
. T.
. T.
• T.
. T.
.T.
. T.
. T.

3
3
3
4
4
4
4
4
4
4
4
4
4
4
4
4
5
5
5
5

224
244
244
33
33
33
104
104
118
118
148
148
180
180
180
104
96
96
96
96

2+00 FM 2651
0-01
28+00 30+00 us 183
10+00 10+20 FM 91
104+00 106+00 IH 40
26+00 26+18 us 60
10+00 12 ... 08 FM 1342
6+00 us 87
4+00
4+00 FM 998
2+00
8+00 SH 152
6+00
2+00 FM 1598
2-18
4+00 SH 305
2 ... 00
28+00 30+01 SH 23
20+00 22 ... 00 IH 40
6+00 us 385
4+00
4 ... 16 SH 214
4+00
34+00 36+00 us 54
24+00 26+00 us 87
8+00 SH 194
6+00
26+00 28+00 FM 400
2+00 FM 1612
0+00

R
R
R
R
L
R
R
R
L.

R
R
R
R
L.
L.

R
R
R
L
R
R
L
R
L.

R
L
R
L
R
L.

L
L
L
R
L
L.

R
R
R
L

L
R
R
R
R
L

6/75
6/75
11/76
11/76
6/75
2/76
6/75
11 /76
6/75
6/75
11/76
6/75
6/75
6/75
2/76
6/75
6/75
6/77

45/4
2798/3
9/13
173/6
1495/1
2732/ 1
136/8
730/3
688/2
203/3
2606/1
258/1
1990/1
249/7
391/7
259/4
1181/2
80/7
2208/1
1603/3
14/4
282/2
1350/1
239/2
845/1
404/1

22.000 TO 24.000
10.720 TO 12.720
27.800 TO 29.800
0.026 TO 1 .850
2.000 TO 3.980
0.000 TO 2.010
5.620 TO 7.560
14.790 TO 16.440
14.000 TO 16.000
6. 140 TO 8. 140
2.000 TO 4.000
8.000 TO 10.000
4.000 TO 6.000
41.100 TO 43.100
4.000 TO 6.000
2.790 TO 4.790
2.000 TO 4.000
8.591 TO 10.589
12.144 TO 14.144
2.000 TO 4.000
4.680 TO 6.680
3.940 TO 6.330
9.960 TO 11.940
16.950 TO 18.950
4.010 TO 5.970
33.840 TO 35.830

2645/1
147/1
702/1
275/4
169/5
1884/1
41 /1
1622/2
557/2
1515/3
582/1
1337/2
90/3
226/2
461/13
238/2
67/6
439/4
1041/1
2332/2

2/76
6.000 TO 7.750
6/75
4.170 TO 5.570
6/75
9.940 TO 11 .930
2/76
0.174 TO 1.180
10/75
7 .100 TO 8.860
6/75
9.700 TO 11. 630
6/75
5.070 TO 7.010
6/75
2.040 TO 4.000
2/76
6.023 TO 7.870
10/76
1.488 TO 3.328
11. 980 TO 13.890 6/75
26.700 TO 28.550 5/81
2/76
5.430 TO 7.430
6/75
4.930 TO 6.930
5/81
8.950 TO 10.575
14.640 TO 16.580 6/75
24.230 TO 26.230 2/76
6/75
6.000 TO 8.000
35.360 TO 37.360 6/75
6/75
0.000 TO 2.000

EXHIBIT.1
SAMPLE LOCATION FILE

Comments

---13
26
39
42
55
68
71
84
97
102
115
128
131
144
157
160
173
186
199
204
217
220
233
246
259
262

No.
Prev Next Inactv of
Date Lanes
SID SID

6177

4/76
2/76
2/76
6/75
6/75
11 /76
6/75

0
0
0
0
0
0
0
0
0
0
0
0
0
0 5089
0
0
0
0
0
0
o
0
0
0
0
0
0
o
o
0
o
0

0/ 0
0/ 0
0/ 0
01 0
01 0
01 0
01 0
6/81
01 0
01 0
01 0
01 0
01 0
01 0
01 0
01 0
4/78
01 0
01 o
01 o
0/ 0
01 o
01 0
01 0
01 0
0/ 0

1
1
2
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
2
1
2
1
1
1
1
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

01 0
1/58
0/ 0
01 0
01 0
01 o
01 0
01 0
01 0
0/ 0
01 0
01 0
01 o
01 0
01 0
01 0
0/ 0
01 0
0/ 0
01 0

1
1
1
2
2
1
1
1
1
1
1
1
2
1
1
1
2
1
1
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 5110

o
o

0

o

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

o

RECONSTRUCTION

RECONSTRUCT! ON

MISSING INVENTORY
FOLDER SINCE 3/87
WIDENING FLAG = 2


<table>
<thead>
<tr>
<th>Standard ID Number</th>
<th>Highway District Number</th>
<th>County Highway Number</th>
<th>Beginning Milepost</th>
<th>Ending Milepost</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>1</td>
<td>92 US 82</td>
<td>22+00</td>
<td>24+00</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>92 FM2729</td>
<td>4+00</td>
<td>6+00</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>117 IH 30</td>
<td>106+00</td>
<td>109+00</td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td>117 SH 34</td>
<td>28+00</td>
<td>30+00</td>
</tr>
<tr>
<td>55</td>
<td>1</td>
<td>117 FM1566</td>
<td>2+00</td>
<td>4+00</td>
</tr>
<tr>
<td>68</td>
<td>1</td>
<td>117 FM2736</td>
<td>2-20</td>
<td>2+00</td>
</tr>
<tr>
<td>71</td>
<td>1</td>
<td>139 US 271</td>
<td>6+00</td>
<td>8+00</td>
</tr>
<tr>
<td>84</td>
<td>1</td>
<td>139 FM 905</td>
<td>14+00</td>
<td>14+16</td>
</tr>
<tr>
<td>97</td>
<td>1</td>
<td>139 FM 79</td>
<td>14+00</td>
<td>16+00</td>
</tr>
<tr>
<td>102</td>
<td>1</td>
<td>190 US 69</td>
<td>4+11</td>
<td>8+00</td>
</tr>
<tr>
<td>115</td>
<td>1</td>
<td>190 FM 779</td>
<td>2+00</td>
<td>4+00</td>
</tr>
<tr>
<td>128</td>
<td>2</td>
<td>73 SH 6</td>
<td>8+00</td>
<td>10+00</td>
</tr>
<tr>
<td>131</td>
<td>2</td>
<td>73 FM2157</td>
<td>4+00</td>
<td>6+00</td>
</tr>
<tr>
<td>144</td>
<td>2</td>
<td>120 US 281</td>
<td>36+00</td>
<td>38+00</td>
</tr>
<tr>
<td>157</td>
<td>2</td>
<td>120 FM 206</td>
<td>6+00</td>
<td>4+00</td>
</tr>
<tr>
<td>160</td>
<td>2</td>
<td>127 US 67</td>
<td>28+00</td>
<td>30+00</td>
</tr>
<tr>
<td>173</td>
<td>2</td>
<td>127 FM 917</td>
<td>2+00</td>
<td>4+00</td>
</tr>
<tr>
<td>186</td>
<td>2</td>
<td>220 US 377</td>
<td>0+00</td>
<td>2+00</td>
</tr>
<tr>
<td>199</td>
<td>2</td>
<td>220 SH 303S</td>
<td>0+00</td>
<td>2+00</td>
</tr>
<tr>
<td>204</td>
<td>2</td>
<td>220 FM1709</td>
<td>2+00</td>
<td>4+00</td>
</tr>
<tr>
<td>217</td>
<td>2</td>
<td>127 IH 35W</td>
<td>18+00</td>
<td>20+00</td>
</tr>
<tr>
<td>220</td>
<td>3</td>
<td>39 SH 79</td>
<td>4+00</td>
<td>6+00</td>
</tr>
<tr>
<td>233</td>
<td>3</td>
<td>39 FM1197</td>
<td>10+00</td>
<td>12+00</td>
</tr>
<tr>
<td>246</td>
<td>3</td>
<td>169 SH 59</td>
<td>20+00</td>
<td>22+00</td>
</tr>
<tr>
<td>259</td>
<td>3</td>
<td>169 FM 455</td>
<td>6+00</td>
<td>8+00</td>
</tr>
<tr>
<td>262</td>
<td>3</td>
<td>224 US 183</td>
<td>34+00</td>
<td>34+20</td>
</tr>
<tr>
<td>275</td>
<td>3</td>
<td>224 FM2651</td>
<td>0-01</td>
<td>2+00</td>
</tr>
<tr>
<td>288</td>
<td>3</td>
<td>244 US 183</td>
<td>28+00</td>
<td>30+00</td>
</tr>
<tr>
<td>291</td>
<td>3</td>
<td>244 FM 91</td>
<td>10+00</td>
<td>10+20</td>
</tr>
<tr>
<td>306</td>
<td>4</td>
<td>33 IH 40</td>
<td>104+00</td>
<td>106+00</td>
</tr>
<tr>
<td>319</td>
<td>4</td>
<td>33 US 60</td>
<td>26+00</td>
<td>26+18</td>
</tr>
<tr>
<td>322</td>
<td>4</td>
<td>33 FM1342</td>
<td>10+00</td>
<td>12+08</td>
</tr>
<tr>
<td>335</td>
<td>4</td>
<td>104 US 87</td>
<td>4+00</td>
<td>6+00</td>
</tr>
<tr>
<td>348</td>
<td>4</td>
<td>104 FM 998</td>
<td>2+00</td>
<td>4+00</td>
</tr>
<tr>
<td>351</td>
<td>4</td>
<td>118 SH 152</td>
<td>6+00</td>
<td>8+00</td>
</tr>
<tr>
<td>364</td>
<td>4</td>
<td>118 FM1598</td>
<td>2-18</td>
<td>2+00</td>
</tr>
<tr>
<td>377</td>
<td>4</td>
<td>148 SH 305</td>
<td>2+00</td>
<td>4+00</td>
</tr>
</tbody>
</table>

SAMPLE TEST LOCATION FILE REPORT

EXHIBIT 2
Texas Flexible Database
Layer Identification File

<table>
<thead>
<tr>
<th>SID Number</th>
<th>Struc Layer No.</th>
<th>Layer No.</th>
<th>Layer Description</th>
<th>Material Center Thickness</th>
<th>Material Type Class</th>
<th>Date Job Completed</th>
<th>Widened Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>0.00</td>
<td>44</td>
<td>6/31</td>
<td>0/ 0</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>6.00</td>
<td>17</td>
<td>6/31</td>
<td>8/46</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>2.00</td>
<td>1</td>
<td>7/47</td>
<td>0/ 0</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>1.30</td>
<td>1</td>
<td>1/63</td>
<td>0/ 0</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>0.40</td>
<td>11</td>
<td>8/79</td>
<td>0/ 0</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>0.00</td>
<td>44</td>
<td>10/65</td>
<td>0/ 0</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>6.00</td>
<td>21</td>
<td>10/65</td>
<td>0/ 0</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>5.20</td>
<td>21</td>
<td>6/66</td>
<td>0/ 0</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>4</td>
<td>10</td>
<td>0.36</td>
<td>6</td>
<td>6/66</td>
<td>0/ 0</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>0.25</td>
<td>6</td>
<td>6/66</td>
<td>0/ 0</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>0.00</td>
<td>44</td>
<td>9/52</td>
<td>0/ 0</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>6.00</td>
<td>31</td>
<td>9/52</td>
<td>0/ 0</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>10.00</td>
<td>17</td>
<td>9/52</td>
<td>9/52</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>2.50</td>
<td>1</td>
<td>8/67</td>
<td>0/ 0</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>1.50</td>
<td>1</td>
<td>8/67</td>
<td>0/ 0</td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>0.00</td>
<td>44</td>
<td>6/45</td>
<td>0/ 0</td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>6.00</td>
<td>25</td>
<td>6/45</td>
<td>0/ 0</td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td>3</td>
<td>10</td>
<td>0.25</td>
<td>5</td>
<td>6/45</td>
<td>0/ 0</td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>4.00</td>
<td>21</td>
<td>12/54</td>
<td>0/ 0</td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td>5</td>
<td>10</td>
<td>0.26</td>
<td>6</td>
<td>12/54</td>
<td>0/ 0</td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td>6</td>
<td>10</td>
<td>0.26</td>
<td>6</td>
<td>12/54</td>
<td>0/ 0</td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>4.00</td>
<td>21</td>
<td>7/64</td>
<td>0/ 0</td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td>8</td>
<td>10</td>
<td>0.36</td>
<td>6</td>
<td>7/64</td>
<td>0/ 0</td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td>9</td>
<td>10</td>
<td>0.25</td>
<td>6</td>
<td>7/64</td>
<td>0/ 0</td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td>10</td>
<td>3</td>
<td>0.30</td>
<td>11</td>
<td>9/72</td>
<td>0/ 0</td>
</tr>
<tr>
<td>42</td>
<td>2</td>
<td>11</td>
<td>2</td>
<td>0.40</td>
<td>11</td>
<td>7/82</td>
<td>0/ 0</td>
</tr>
<tr>
<td>55</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>0.00</td>
<td>44</td>
<td>9/51</td>
<td>0/ 0</td>
</tr>
<tr>
<td>55</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>4.00</td>
<td>21</td>
<td>9/51</td>
<td>0/ 0</td>
</tr>
<tr>
<td>55</td>
<td>1</td>
<td>3</td>
<td>10</td>
<td>0.20</td>
<td>6</td>
<td>9/51</td>
<td>0/ 0</td>
</tr>
<tr>
<td>55</td>
<td>1</td>
<td>4</td>
<td>10</td>
<td>0.20</td>
<td>6</td>
<td>9/51</td>
<td>0/ 0</td>
</tr>
<tr>
<td>55</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>0.20</td>
<td>11</td>
<td>7/56</td>
<td>0/ 0</td>
</tr>
<tr>
<td>55</td>
<td>1</td>
<td>6</td>
<td>3</td>
<td>0.33</td>
<td>11</td>
<td>6/63</td>
<td>0/ 0</td>
</tr>
<tr>
<td>68</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>0.00</td>
<td>44</td>
<td>9/65</td>
<td>0/ 0</td>
</tr>
<tr>
<td>68</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>6.00</td>
<td>21</td>
<td>9/65</td>
<td>0/ 0</td>
</tr>
<tr>
<td>68</td>
<td>1</td>
<td>3</td>
<td>10</td>
<td>0.36</td>
<td>6</td>
<td>9/65</td>
<td>0/ 0</td>
</tr>
<tr>
<td>68</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>0.25</td>
<td>6</td>
<td>9/65</td>
<td>0/ 0</td>
</tr>
</tbody>
</table>

SAMPLE LAYER IDENTIFICATION FILE REPORT

EXHIBIT 3
Texas Flexible Pavement Database

Section Identification Numbers with Two Course Surface Treatment (DST)

<table>
<thead>
<tr>
<th>Section Identification Number</th>
<th>Date Job Completed (Month/Year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>6/66</td>
</tr>
<tr>
<td>26</td>
<td>6/66</td>
</tr>
<tr>
<td>42</td>
<td>12/54</td>
</tr>
<tr>
<td>42</td>
<td>7/64</td>
</tr>
<tr>
<td>55</td>
<td>9/51</td>
</tr>
<tr>
<td>68</td>
<td>9/65</td>
</tr>
<tr>
<td>84</td>
<td>6/71</td>
</tr>
<tr>
<td>97</td>
<td>8/55</td>
</tr>
<tr>
<td>102</td>
<td>6/66</td>
</tr>
<tr>
<td>115</td>
<td>7/62</td>
</tr>
<tr>
<td>128</td>
<td>5/40</td>
</tr>
<tr>
<td>144</td>
<td>8/53</td>
</tr>
<tr>
<td>160</td>
<td>5/41</td>
</tr>
<tr>
<td>186</td>
<td>7/47</td>
</tr>
<tr>
<td>199</td>
<td>9/60</td>
</tr>
<tr>
<td>217</td>
<td>8/66</td>
</tr>
<tr>
<td>220</td>
<td>11/41</td>
</tr>
<tr>
<td>246</td>
<td>5/42</td>
</tr>
<tr>
<td>259</td>
<td>6/49</td>
</tr>
</tbody>
</table>

SAMPLE SECTION IDENTIFICATION NUMBERS WITH TWO COURSE SURFACE TREATMENT (DST) REPORT

EXHIBIT 4
Texas Flexible Pavement Database
Layer Thickness Across The Road File

<table>
<thead>
<tr>
<th>SID</th>
<th>Struc Layr</th>
<th>Thickness From Center</th>
<th>Distance From Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>No</td>
<td>3rd Pos</td>
<td>2nd Pos</td>
</tr>
<tr>
<td>-----</td>
<td>----</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>2</td>
<td>10.0</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>3</td>
<td>0.0</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>4</td>
<td>0.0</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>5</td>
<td>0.0</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>2</td>
<td>0.0</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>3</td>
<td>0.0</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>4</td>
<td>0.0</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>5</td>
<td>0.0</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>2</td>
<td>0.0</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>3</td>
<td>0.0</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>4</td>
<td>0.0</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>5</td>
<td>0.0</td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td>2</td>
<td>0.0</td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td>3</td>
<td>0.0</td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td>4</td>
<td>0.0</td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td>5</td>
<td>0.0</td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td>6</td>
<td>0.0</td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td>7</td>
<td>0.0</td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td>8</td>
<td>0.0</td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td>9</td>
<td>0.0</td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td>10</td>
<td>0.0</td>
</tr>
<tr>
<td>42</td>
<td>2</td>
<td>11</td>
<td>0.0</td>
</tr>
<tr>
<td>55</td>
<td>1</td>
<td>2</td>
<td>0.0</td>
</tr>
<tr>
<td>55</td>
<td>1</td>
<td>3</td>
<td>0.0</td>
</tr>
<tr>
<td>55</td>
<td>1</td>
<td>4</td>
<td>0.0</td>
</tr>
<tr>
<td>55</td>
<td>1</td>
<td>5</td>
<td>0.0</td>
</tr>
<tr>
<td>55</td>
<td>1</td>
<td>6</td>
<td>0.0</td>
</tr>
<tr>
<td>68</td>
<td>1</td>
<td>2</td>
<td>0.0</td>
</tr>
<tr>
<td>68</td>
<td>1</td>
<td>3</td>
<td>0.0</td>
</tr>
<tr>
<td>68</td>
<td>1</td>
<td>4</td>
<td>0.0</td>
</tr>
<tr>
<td>71</td>
<td>1</td>
<td>2</td>
<td>0.0</td>
</tr>
<tr>
<td>71</td>
<td>1</td>
<td>3</td>
<td>0.0</td>
</tr>
<tr>
<td>71</td>
<td>1</td>
<td>4</td>
<td>0.0</td>
</tr>
<tr>
<td>71</td>
<td>1</td>
<td>5</td>
<td>0.0</td>
</tr>
<tr>
<td>84</td>
<td>1</td>
<td>2</td>
<td>0.0</td>
</tr>
<tr>
<td>84</td>
<td>1</td>
<td>3</td>
<td>0.0</td>
</tr>
</tbody>
</table>

SAMPLE LAYER THICKNESS ACROSS THE ROAD FILE REPORT

EXHIBIT 5
<table>
<thead>
<tr>
<th>SID</th>
<th>Struc No</th>
<th>Pavmnt Width</th>
<th>Type</th>
<th>Outside Shoulder Width</th>
<th>Shoulder Shoulder Shoulder Shoulder</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>13.0</td>
<td>1</td>
<td>12.0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>13.0</td>
<td>1</td>
<td>12.0</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>26.0</td>
<td>1</td>
<td>12.0</td>
<td>2</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>39.0</td>
<td>1</td>
<td>12.0</td>
<td>3</td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td>42.0</td>
<td>1</td>
<td>12.0</td>
<td>5</td>
</tr>
<tr>
<td>55</td>
<td>1</td>
<td>55.0</td>
<td>1</td>
<td>12.0</td>
<td>1</td>
</tr>
<tr>
<td>55</td>
<td>2</td>
<td>55.0</td>
<td>1</td>
<td>12.0</td>
<td>1</td>
</tr>
<tr>
<td>68</td>
<td>1</td>
<td>68.0</td>
<td>1</td>
<td>12.0</td>
<td>1</td>
</tr>
<tr>
<td>71</td>
<td>1</td>
<td>71.0</td>
<td>1</td>
<td>12.0</td>
<td>2</td>
</tr>
<tr>
<td>84</td>
<td>1</td>
<td>84.0</td>
<td>1</td>
<td>12.0</td>
<td>1</td>
</tr>
<tr>
<td>97</td>
<td>1</td>
<td>97.0</td>
<td>1</td>
<td>12.0</td>
<td>3</td>
</tr>
<tr>
<td>102</td>
<td>1</td>
<td>102.0</td>
<td>1</td>
<td>12.0</td>
<td>5</td>
</tr>
<tr>
<td>102</td>
<td>2</td>
<td>102.0</td>
<td>1</td>
<td>12.0</td>
<td>5</td>
</tr>
<tr>
<td>115</td>
<td>1</td>
<td>115.0</td>
<td>1</td>
<td>12.0</td>
<td>2</td>
</tr>
<tr>
<td>115</td>
<td>2</td>
<td>115.0</td>
<td>1</td>
<td>12.0</td>
<td>5</td>
</tr>
<tr>
<td>128</td>
<td>1</td>
<td>128.0</td>
<td>1</td>
<td>12.0</td>
<td>2</td>
</tr>
<tr>
<td>128</td>
<td>2</td>
<td>128.0</td>
<td>1</td>
<td>12.0</td>
<td>5</td>
</tr>
<tr>
<td>131</td>
<td>1</td>
<td>131.0</td>
<td>1</td>
<td>12.0</td>
<td>3</td>
</tr>
<tr>
<td>131</td>
<td>2</td>
<td>131.0</td>
<td>1</td>
<td>12.0</td>
<td>3</td>
</tr>
<tr>
<td>131</td>
<td>3</td>
<td>131.0</td>
<td>1</td>
<td>12.0</td>
<td>3</td>
</tr>
<tr>
<td>144</td>
<td>1</td>
<td>144.0</td>
<td>1</td>
<td>12.0</td>
<td>2</td>
</tr>
<tr>
<td>144</td>
<td>2</td>
<td>144.0</td>
<td>1</td>
<td>12.0</td>
<td>2</td>
</tr>
<tr>
<td>157</td>
<td>1</td>
<td>157.0</td>
<td>1</td>
<td>12.0</td>
<td>2</td>
</tr>
<tr>
<td>157</td>
<td>2</td>
<td>157.0</td>
<td>1</td>
<td>12.0</td>
<td>1</td>
</tr>
<tr>
<td>157</td>
<td>3</td>
<td>157.0</td>
<td>1</td>
<td>12.0</td>
<td>1</td>
</tr>
<tr>
<td>160</td>
<td>1</td>
<td>160.0</td>
<td>1</td>
<td>12.0</td>
<td>2</td>
</tr>
<tr>
<td>160</td>
<td>2</td>
<td>160.0</td>
<td>1</td>
<td>12.0</td>
<td>2</td>
</tr>
<tr>
<td>160</td>
<td>3</td>
<td>160.0</td>
<td>1</td>
<td>12.0</td>
<td>2</td>
</tr>
<tr>
<td>173</td>
<td>1</td>
<td>173.0</td>
<td>1</td>
<td>12.0</td>
<td>2</td>
</tr>
<tr>
<td>173</td>
<td>2</td>
<td>173.0</td>
<td>1</td>
<td>12.0</td>
<td>2</td>
</tr>
<tr>
<td>173</td>
<td>3</td>
<td>173.0</td>
<td>1</td>
<td>12.0</td>
<td>2</td>
</tr>
<tr>
<td>186</td>
<td>1</td>
<td>186.0</td>
<td>1</td>
<td>12.0</td>
<td>2</td>
</tr>
<tr>
<td>186</td>
<td>2</td>
<td>186.0</td>
<td>1</td>
<td>12.0</td>
<td>2</td>
</tr>
<tr>
<td>199</td>
<td>1</td>
<td>199.0</td>
<td>1</td>
<td>12.0</td>
<td>2</td>
</tr>
<tr>
<td>199</td>
<td>2</td>
<td>199.0</td>
<td>1</td>
<td>12.0</td>
<td>2</td>
</tr>
<tr>
<td>199</td>
<td>3</td>
<td>199.0</td>
<td>1</td>
<td>12.0</td>
<td>2</td>
</tr>
</tbody>
</table>

SAMPLE GEOMETRIC AND SHOULDER INFORMATION FILE REPORT

EXHIBIT 6
Texas Flexible Pavement Database
Surface File

<table>
<thead>
<tr>
<th>SID</th>
<th>Structure Layer Application</th>
<th>Aggregate Type</th>
<th>Percent</th>
<th>Asphalt Application</th>
<th>Admixture Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>1</td>
<td>AC</td>
<td>5.70</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>13</td>
<td>4</td>
<td>AC</td>
<td>5.40</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>13</td>
<td>5</td>
<td>AC-10</td>
<td>0.00</td>
<td>0.45</td>
<td>0.00</td>
</tr>
<tr>
<td>26</td>
<td>4</td>
<td>AC-10</td>
<td>0.00</td>
<td>0.30</td>
<td>0.25</td>
</tr>
<tr>
<td>39</td>
<td>3</td>
<td>AC</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>39</td>
<td>5</td>
<td>AC</td>
<td>4.70</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>42</td>
<td>3</td>
<td>OA-230</td>
<td>0.00</td>
<td>0.30</td>
<td>0.22</td>
</tr>
<tr>
<td>42</td>
<td>5</td>
<td>OA-230</td>
<td>0.00</td>
<td>0.22</td>
<td>0.22</td>
</tr>
<tr>
<td>42</td>
<td>6</td>
<td>OA-135</td>
<td>0.00</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>42</td>
<td>8</td>
<td>OA-135</td>
<td>0.00</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>42</td>
<td>9</td>
<td>OA-135</td>
<td>0.00</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>55</td>
<td>3</td>
<td>RC-2</td>
<td>0.00</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>55</td>
<td>4</td>
<td>RC-2</td>
<td>0.00</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>68</td>
<td>3</td>
<td>OA-135</td>
<td>0.00</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>68</td>
<td>4</td>
<td>OA-135</td>
<td>0.00</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>71</td>
<td>3</td>
<td>AC</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>71</td>
<td>4</td>
<td>AC</td>
<td>4.97</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>84</td>
<td>4</td>
<td>AC-5</td>
<td>0.00</td>
<td>0.35</td>
<td>0.35</td>
</tr>
<tr>
<td>84</td>
<td>5</td>
<td>AC-5</td>
<td>0.00</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>97</td>
<td>3</td>
<td>AC</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>102</td>
<td>4</td>
<td>OA-135</td>
<td>0.00</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>102</td>
<td>5</td>
<td>OA-135</td>
<td>0.00</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>102</td>
<td>6</td>
<td>OA-135</td>
<td>0.00</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>102</td>
<td>7</td>
<td>OA-135</td>
<td>0.00</td>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td>115</td>
<td>3</td>
<td>OA-135</td>
<td>0.00</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>115</td>
<td>4</td>
<td>OA-135</td>
<td>0.00</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>128</td>
<td>3</td>
<td>OA-135</td>
<td>0.00</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>128</td>
<td>4</td>
<td>OA-135</td>
<td>0.00</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>128</td>
<td>5</td>
<td>OA-230</td>
<td>0.00</td>
<td>0.25</td>
<td>0.25</td>
</tr>
</tbody>
</table>

SAMPLE SURFACE FILE REPORT
EXHIBIT 7
Texas Flexible Pavement Database
Subgrade File

<table>
<thead>
<tr>
<th>SID</th>
<th>Struc Number</th>
<th>Layer Number</th>
<th>Percent</th>
<th>Passing No 200 Sieve</th>
<th>Plast. Limit</th>
<th>Texas Liquid Triaxial Limit</th>
<th>Class</th>
<th>Permeability Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>1</td>
<td>1</td>
<td>88.8</td>
<td>40.4</td>
<td>64.5</td>
<td>5.3</td>
<td></td>
<td>0.23</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>1</td>
<td>63.5</td>
<td>27.5</td>
<td>50.1</td>
<td>5.2</td>
<td></td>
<td>0.36</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>1</td>
<td>85.7</td>
<td>39.1</td>
<td>61.3</td>
<td>5.6</td>
<td></td>
<td>0.60</td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td>1</td>
<td>79.3</td>
<td>29.7</td>
<td>48.0</td>
<td>5.1</td>
<td></td>
<td>0.06</td>
</tr>
<tr>
<td>55</td>
<td>1</td>
<td>1</td>
<td>81.8</td>
<td>33.8</td>
<td>53.6</td>
<td>5.3</td>
<td></td>
<td>0.06</td>
</tr>
<tr>
<td>68</td>
<td>1</td>
<td>1</td>
<td>79.3</td>
<td>29.7</td>
<td>48.0</td>
<td>5.1</td>
<td></td>
<td>0.06</td>
</tr>
<tr>
<td>71</td>
<td>1</td>
<td>1</td>
<td>70.9</td>
<td>26.7</td>
<td>36.6</td>
<td>4.2</td>
<td></td>
<td>0.27</td>
</tr>
<tr>
<td>84</td>
<td>1</td>
<td>1</td>
<td>85.0</td>
<td>41.8</td>
<td>65.5</td>
<td>0.0</td>
<td></td>
<td>0.06</td>
</tr>
<tr>
<td>97</td>
<td>1</td>
<td>1</td>
<td>79.1</td>
<td>29.9</td>
<td>48.0</td>
<td>5.6</td>
<td></td>
<td>0.06</td>
</tr>
<tr>
<td>102</td>
<td>1</td>
<td>1</td>
<td>78.0</td>
<td>24.0</td>
<td>48.0</td>
<td>4.8</td>
<td></td>
<td>0.06</td>
</tr>
<tr>
<td>115</td>
<td>1</td>
<td>1</td>
<td>92.9</td>
<td>35.0</td>
<td>50.0</td>
<td>0.0</td>
<td></td>
<td>0.16</td>
</tr>
<tr>
<td>128</td>
<td>1</td>
<td>1</td>
<td>58.5</td>
<td>21.9</td>
<td>42.6</td>
<td>4.7</td>
<td></td>
<td>0.40</td>
</tr>
<tr>
<td>131</td>
<td>1</td>
<td>1</td>
<td>41.7</td>
<td>15.5</td>
<td>31.4</td>
<td>0.0</td>
<td></td>
<td>2.19</td>
</tr>
<tr>
<td>144</td>
<td>1</td>
<td>1</td>
<td>90.6</td>
<td>23.9</td>
<td>45.5</td>
<td>4.9</td>
<td></td>
<td>0.21</td>
</tr>
<tr>
<td>157</td>
<td>1</td>
<td>1</td>
<td>71.9</td>
<td>20.7</td>
<td>41.0</td>
<td>4.8</td>
<td></td>
<td>1.58</td>
</tr>
<tr>
<td>160</td>
<td>1</td>
<td>1</td>
<td>82.5</td>
<td>32.4</td>
<td>55.5</td>
<td>4.8</td>
<td></td>
<td>0.23</td>
</tr>
<tr>
<td>173</td>
<td>1</td>
<td>1</td>
<td>66.5</td>
<td>24.6</td>
<td>43.7</td>
<td>0.0</td>
<td></td>
<td>0.75</td>
</tr>
<tr>
<td>186</td>
<td>1</td>
<td>1</td>
<td>85.8</td>
<td>34.7</td>
<td>56.5</td>
<td>4.9</td>
<td></td>
<td>0.15</td>
</tr>
<tr>
<td>199</td>
<td>1</td>
<td>1</td>
<td>55.6</td>
<td>21.3</td>
<td>43.1</td>
<td>4.1</td>
<td></td>
<td>0.64</td>
</tr>
<tr>
<td>204</td>
<td>1</td>
<td>1</td>
<td>69.6</td>
<td>25.9</td>
<td>46.3</td>
<td>4.7</td>
<td></td>
<td>0.29</td>
</tr>
<tr>
<td>217</td>
<td>1</td>
<td>1</td>
<td>90.0</td>
<td>46.5</td>
<td>69.0</td>
<td>0.0</td>
<td></td>
<td>0.06</td>
</tr>
<tr>
<td>220</td>
<td>1</td>
<td>1</td>
<td>51.7</td>
<td>10.2</td>
<td>28.6</td>
<td>4.1</td>
<td></td>
<td>2.16</td>
</tr>
<tr>
<td>233</td>
<td>1</td>
<td>1</td>
<td>87.2</td>
<td>28.7</td>
<td>48.6</td>
<td>4.2</td>
<td></td>
<td>0.15</td>
</tr>
<tr>
<td>259</td>
<td>1</td>
<td>1</td>
<td>66.2</td>
<td>23.9</td>
<td>40.3</td>
<td>3.8</td>
<td></td>
<td>0.40</td>
</tr>
<tr>
<td>275</td>
<td>1</td>
<td>1</td>
<td>85.7</td>
<td>28.6</td>
<td>51.7</td>
<td>4.7</td>
<td></td>
<td>0.33</td>
</tr>
<tr>
<td>291</td>
<td>1</td>
<td>1</td>
<td>33.0</td>
<td>8.4</td>
<td>24.9</td>
<td>3.9</td>
<td></td>
<td>3.09</td>
</tr>
<tr>
<td>306</td>
<td>1</td>
<td>1</td>
<td>87.5</td>
<td>27.5</td>
<td>47.5</td>
<td>4.5</td>
<td></td>
<td>0.11</td>
</tr>
<tr>
<td>319</td>
<td>1</td>
<td>1</td>
<td>87.5</td>
<td>27.5</td>
<td>47.5</td>
<td>4.5</td>
<td></td>
<td>0.11</td>
</tr>
<tr>
<td>322</td>
<td>1</td>
<td>1</td>
<td>87.5</td>
<td>27.5</td>
<td>47.5</td>
<td>4.5</td>
<td></td>
<td>0.11</td>
</tr>
<tr>
<td>335</td>
<td>1</td>
<td>1</td>
<td>51.3</td>
<td>12.8</td>
<td>28.8</td>
<td>3.9</td>
<td></td>
<td>1.30</td>
</tr>
<tr>
<td>348</td>
<td>1</td>
<td>1</td>
<td>51.3</td>
<td>12.8</td>
<td>28.8</td>
<td>4.2</td>
<td></td>
<td>1.30</td>
</tr>
<tr>
<td>351</td>
<td>1</td>
<td>1</td>
<td>55.4</td>
<td>9.1</td>
<td>26.9</td>
<td>3.8</td>
<td></td>
<td>1.05</td>
</tr>
<tr>
<td>364</td>
<td>1</td>
<td>1</td>
<td>80.3</td>
<td>22.2</td>
<td>41.2</td>
<td>4.4</td>
<td></td>
<td>0.57</td>
</tr>
<tr>
<td>377</td>
<td>1</td>
<td>1</td>
<td>87.5</td>
<td>27.5</td>
<td>47.5</td>
<td>4.5</td>
<td></td>
<td>0.11</td>
</tr>
<tr>
<td>380</td>
<td>1</td>
<td>1</td>
<td>71.4</td>
<td>20.2</td>
<td>37.9</td>
<td>5.0</td>
<td></td>
<td>0.48</td>
</tr>
<tr>
<td>393</td>
<td>1</td>
<td>1</td>
<td>87.5</td>
<td>27.5</td>
<td>47.5</td>
<td>4.5</td>
<td></td>
<td>0.11</td>
</tr>
</tbody>
</table>

SAMPLE SUBGRADE FILE REPORT

EXHIBIT 8
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>1</td>
<td>4</td>
<td>73</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>4</td>
<td>74</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>4</td>
<td>75</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>4</td>
<td>76</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>4</td>
<td>77</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>5</td>
<td>80</td>
<td>8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>5</td>
<td>73</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>5</td>
<td>74</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>5</td>
<td>75</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>5</td>
<td>76</td>
<td>7</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>5</td>
<td>77</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>5</td>
<td>80</td>
<td>9</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>5</td>
<td>74</td>
<td>10</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>5</td>
<td>75</td>
<td>7</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>5</td>
<td>76</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>5</td>
<td>77</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>5</td>
<td>78</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>5</td>
<td>80</td>
<td>9</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>5</td>
<td>83</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>5</td>
<td>87</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td>10</td>
<td>73</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td>10</td>
<td>77</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td>10</td>
<td>77</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td>10</td>
<td>80</td>
<td>9</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>55</td>
<td>1</td>
<td>6</td>
<td>73</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>55</td>
<td>1</td>
<td>6</td>
<td>77</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>55</td>
<td>1</td>
<td>6</td>
<td>80</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

EXHIBIT 9

SAMPLE VISUAL RATING FILE
Texas Flexible Pavement Database

Serviceability Index File

<table>
<thead>
<tr>
<th>Ident. Number</th>
<th>Struc Layr No.</th>
<th>Act1 Yr</th>
<th>Act1 Mnth</th>
<th>Act1 Day</th>
<th>Act1 Year</th>
<th>Count Mean</th>
<th>Stand. Deviat. Val</th>
<th>Low Val</th>
<th>High Val</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>2</td>
<td>5</td>
<td>80</td>
<td>9</td>
<td>16</td>
<td>80</td>
<td>3.17500</td>
<td>0.38079</td>
<td>2.5</td>
</tr>
<tr>
<td>13</td>
<td>4</td>
<td>77</td>
<td>8</td>
<td>5</td>
<td>77</td>
<td>10</td>
<td>3.50000</td>
<td>0.29440</td>
<td>3.0</td>
</tr>
<tr>
<td>13</td>
<td>4</td>
<td>76</td>
<td>7</td>
<td>22</td>
<td>76</td>
<td>10</td>
<td>3.36000</td>
<td>0.35650</td>
<td>2.7</td>
</tr>
<tr>
<td>13</td>
<td>4</td>
<td>75</td>
<td>8</td>
<td>24</td>
<td>75</td>
<td>10</td>
<td>3.42000</td>
<td>0.28210</td>
<td>2.9</td>
</tr>
<tr>
<td>13</td>
<td>4</td>
<td>73</td>
<td>7</td>
<td>19</td>
<td>73</td>
<td>10</td>
<td>3.38000</td>
<td>0.26600</td>
<td>3.0</td>
</tr>
<tr>
<td>26</td>
<td>5</td>
<td>80</td>
<td>9</td>
<td>16</td>
<td>80</td>
<td>10</td>
<td>2.52999</td>
<td>0.66508</td>
<td>1.4</td>
</tr>
<tr>
<td>26</td>
<td>5</td>
<td>77</td>
<td>8</td>
<td>5</td>
<td>77</td>
<td>10</td>
<td>4.02000</td>
<td>0.12290</td>
<td>3.8</td>
</tr>
<tr>
<td>26</td>
<td>5</td>
<td>76</td>
<td>7</td>
<td>22</td>
<td>76</td>
<td>10</td>
<td>3.95000</td>
<td>0.15810</td>
<td>3.6</td>
</tr>
<tr>
<td>26</td>
<td>5</td>
<td>75</td>
<td>8</td>
<td>24</td>
<td>75</td>
<td>10</td>
<td>3.35000</td>
<td>0.20700</td>
<td>3.4</td>
</tr>
<tr>
<td>26</td>
<td>5</td>
<td>74</td>
<td>8</td>
<td>27</td>
<td>74</td>
<td>4</td>
<td>3.58000</td>
<td>0.26300</td>
<td>3.2</td>
</tr>
<tr>
<td>39</td>
<td>5</td>
<td>73</td>
<td>7</td>
<td>19</td>
<td>73</td>
<td>9</td>
<td>3.74000</td>
<td>0.20700</td>
<td>3.4</td>
</tr>
<tr>
<td>39</td>
<td>5</td>
<td>80</td>
<td>9</td>
<td>16</td>
<td>80</td>
<td>10</td>
<td>2.66000</td>
<td>0.32042</td>
<td>2.1</td>
</tr>
<tr>
<td>39</td>
<td>5</td>
<td>77</td>
<td>8</td>
<td>5</td>
<td>77</td>
<td>10</td>
<td>3.30000</td>
<td>0.35590</td>
<td>2.7</td>
</tr>
<tr>
<td>39</td>
<td>5</td>
<td>76</td>
<td>7</td>
<td>22</td>
<td>76</td>
<td>10</td>
<td>3.45000</td>
<td>0.58360</td>
<td>2.1</td>
</tr>
<tr>
<td>39</td>
<td>5</td>
<td>74</td>
<td>10</td>
<td>26</td>
<td>74</td>
<td>9</td>
<td>3.44000</td>
<td>0.23000</td>
<td>2.9</td>
</tr>
<tr>
<td>42</td>
<td>10</td>
<td>80</td>
<td>9</td>
<td>16</td>
<td>80</td>
<td>10</td>
<td>3.71000</td>
<td>0.47144</td>
<td>2.7</td>
</tr>
<tr>
<td>42</td>
<td>10</td>
<td>77</td>
<td>3</td>
<td>12</td>
<td>78</td>
<td>9</td>
<td>4.17780</td>
<td>0.26820</td>
<td>3.7</td>
</tr>
<tr>
<td>42</td>
<td>10</td>
<td>76</td>
<td>7</td>
<td>21</td>
<td>76</td>
<td>9</td>
<td>4.13330</td>
<td>0.44160</td>
<td>3.4</td>
</tr>
<tr>
<td>42</td>
<td>10</td>
<td>75</td>
<td>8</td>
<td>28</td>
<td>75</td>
<td>9</td>
<td>3.96670</td>
<td>0.49750</td>
<td>3.1</td>
</tr>
<tr>
<td>55</td>
<td>6</td>
<td>80</td>
<td>9</td>
<td>16</td>
<td>80</td>
<td>10</td>
<td>1.60000</td>
<td>0.30912</td>
<td>1.1</td>
</tr>
<tr>
<td>55</td>
<td>6</td>
<td>77</td>
<td>8</td>
<td>5</td>
<td>77</td>
<td>10</td>
<td>2.34000</td>
<td>0.45510</td>
<td>1.4</td>
</tr>
<tr>
<td>55</td>
<td>6</td>
<td>76</td>
<td>7</td>
<td>22</td>
<td>76</td>
<td>9</td>
<td>1.72220</td>
<td>0.43900</td>
<td>0.5</td>
</tr>
<tr>
<td>55</td>
<td>6</td>
<td>75</td>
<td>8</td>
<td>28</td>
<td>75</td>
<td>10</td>
<td>1.86000</td>
<td>0.47190</td>
<td>0.8</td>
</tr>
<tr>
<td>55</td>
<td>6</td>
<td>74</td>
<td>10</td>
<td>26</td>
<td>74</td>
<td>9</td>
<td>2.18000</td>
<td>0.42900</td>
<td>1.2</td>
</tr>
<tr>
<td>55</td>
<td>6</td>
<td>73</td>
<td>7</td>
<td>20</td>
<td>73</td>
<td>10</td>
<td>2.18000</td>
<td>0.53700</td>
<td>1.0</td>
</tr>
<tr>
<td>68</td>
<td>4</td>
<td>80</td>
<td>9</td>
<td>16</td>
<td>80</td>
<td>10</td>
<td>1.74000</td>
<td>0.67856</td>
<td>0.9</td>
</tr>
<tr>
<td>68</td>
<td>4</td>
<td>77</td>
<td>8</td>
<td>5</td>
<td>77</td>
<td>8</td>
<td>2.25000</td>
<td>0.70100</td>
<td>1.5</td>
</tr>
<tr>
<td>68</td>
<td>4</td>
<td>76</td>
<td>7</td>
<td>22</td>
<td>76</td>
<td>8</td>
<td>1.27500</td>
<td>0.70650</td>
<td>0.5</td>
</tr>
<tr>
<td>68</td>
<td>4</td>
<td>75</td>
<td>8</td>
<td>28</td>
<td>75</td>
<td>7</td>
<td>1.77140</td>
<td>0.72960</td>
<td>1.0</td>
</tr>
<tr>
<td>68</td>
<td>4</td>
<td>74</td>
<td>10</td>
<td>26</td>
<td>74</td>
<td>9</td>
<td>2.03000</td>
<td>0.52700</td>
<td>1.4</td>
</tr>
<tr>
<td>68</td>
<td>4</td>
<td>73</td>
<td>1</td>
<td>10</td>
<td>74</td>
<td>10</td>
<td>2.16000</td>
<td>0.56000</td>
<td>1.2</td>
</tr>
</tbody>
</table>

SAMPLE SERVICEABILITY INDEX FILE REPORT

EXHIBIT 10

102
<table>
<thead>
<tr>
<th>SID</th>
<th>Str Lyr</th>
<th>Date</th>
<th>SSI</th>
<th>SSI</th>
<th>Avg. Temp</th>
<th>SSI Reading 1</th>
<th>Geophone 1 - 7</th>
<th>SSI Reading 2</th>
<th>Geophone 1 - 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>1</td>
<td>5</td>
<td>0/0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>5</td>
<td>0/0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>55</td>
<td>1</td>
<td>6</td>
<td>0/0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>68</td>
<td>1</td>
<td>4</td>
<td>0/0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>71</td>
<td>1</td>
<td>5</td>
<td>0/0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>97</td>
<td>1</td>
<td>8</td>
<td>0/0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>102</td>
<td>2</td>
<td>7</td>
<td>0/0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>115</td>
<td>1</td>
<td>4</td>
<td>0/0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>128</td>
<td>3</td>
<td>8</td>
<td>0/0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>144</td>
<td>3</td>
<td>8</td>
<td>0/0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>268</td>
<td>1</td>
<td>11</td>
<td>0/0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>199</td>
<td>4</td>
<td>10</td>
<td>0/0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>204</td>
<td>2</td>
<td>8</td>
<td>0/0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>217</td>
<td>2</td>
<td>9</td>
<td>0/0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>220</td>
<td>2</td>
<td>12</td>
<td>0/0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>233</td>
<td>1</td>
<td>6</td>
<td>0/0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>246</td>
<td>2</td>
<td>11</td>
<td>0/0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>259</td>
<td>2</td>
<td>7</td>
<td>0/0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>275</td>
<td>1</td>
<td>5</td>
<td>0/0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>288</td>
<td>3</td>
<td>5</td>
<td>0/0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>291</td>
<td>1</td>
<td>6</td>
<td>0/0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>306</td>
<td>3</td>
<td>9</td>
<td>0/0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>319</td>
<td>2</td>
<td>5</td>
<td>0/0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>322</td>
<td>2</td>
<td>7</td>
<td>0/0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>335</td>
<td>2</td>
<td>11</td>
<td>0/0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>348</td>
<td>2</td>
<td>6</td>
<td>0/0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>351</td>
<td>2</td>
<td>6</td>
<td>0/0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>364</td>
<td>2</td>
<td>7</td>
<td>0/0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>377</td>
<td>2</td>
<td>7</td>
<td>0/0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>380</td>
<td>2</td>
<td>7</td>
<td>0/0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>393</td>
<td>2</td>
<td>10</td>
<td>0/0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>406</td>
<td>1</td>
<td>3</td>
<td>0/0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>411</td>
<td>1</td>
<td>6</td>
<td>0/0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>424</td>
<td>1</td>
<td>5</td>
<td>0/0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>440</td>
<td>2</td>
<td>7</td>
<td>0/0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>453</td>
<td>2</td>
<td>7</td>
<td>0/0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>466</td>
<td>1</td>
<td>5</td>
<td>0/0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>479</td>
<td>1</td>
<td>6</td>
<td>0/0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>482</td>
<td>1</td>
<td>5</td>
<td>0/0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>495</td>
<td>1</td>
<td>5</td>
<td>0/0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>526</td>
<td>1</td>
<td>6</td>
<td>0/0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>539</td>
<td>3</td>
<td>10</td>
<td>0/0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>542</td>
<td>1</td>
<td>4</td>
<td>0/0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>555</td>
<td>1</td>
<td>7</td>
<td>0/0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>568</td>
<td>1</td>
<td>6</td>
<td>0/0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

SAMPLE FALLING WEIGHT SSI REPORT FILE

EXHIBIT 11
Texas Flexible Pavement Database

Falling Weight SSI File

<table>
<thead>
<tr>
<th>SID</th>
<th>Str Lyr</th>
<th>Date No.</th>
<th>MM/DD/YY</th>
<th>SSI Reading 3 Geophone 1 - 7</th>
<th>SSI Reading 4 Geophone 1 - 7</th>
<th>SSI Reading 5 Geophone 1 - 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>1</td>
<td>5/0/0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>5/0/0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>55</td>
<td>1</td>
<td>6/0/0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>68</td>
<td>1</td>
<td>4/0/0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>71</td>
<td>1</td>
<td>5/0/0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>97</td>
<td>1</td>
<td>3/0/0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>102</td>
<td>2</td>
<td>7/0/0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>115</td>
<td>1</td>
<td>4/0/0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>128</td>
<td>3</td>
<td>8/0/0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>144</td>
<td>3</td>
<td>8/0/0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>160</td>
<td>2</td>
<td>6/0/0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>186</td>
<td>2</td>
<td>11/0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>199</td>
<td>4</td>
<td>10/0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>204</td>
<td>3</td>
<td>8/0/0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>217</td>
<td>2</td>
<td>9/0/0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>220</td>
<td>2</td>
<td>12/0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>233</td>
<td>1</td>
<td>6/0/0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>246</td>
<td>2</td>
<td>11/0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>259</td>
<td>2</td>
<td>7/0/0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>279</td>
<td>2</td>
<td>7/0/0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>288</td>
<td>3</td>
<td>5/0/0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>291</td>
<td>1</td>
<td>6/0/0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>306</td>
<td>3</td>
<td>9/0/0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>319</td>
<td>2</td>
<td>5/0/0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>322</td>
<td>2</td>
<td>7/0/0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>335</td>
<td>2</td>
<td>11/0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>348</td>
<td>2</td>
<td>6/0/0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>351</td>
<td>2</td>
<td>6/0/0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>364</td>
<td>2</td>
<td>7/0/0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>377</td>
<td>2</td>
<td>7/0/0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>380</td>
<td>2</td>
<td>7/0/0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>393</td>
<td>2</td>
<td>10/0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>411</td>
<td>1</td>
<td>6/0/0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>413</td>
<td>1</td>
<td>6/0/0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>424</td>
<td>1</td>
<td>5/0/0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>440</td>
<td>2</td>
<td>7/0/0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>459</td>
<td>2</td>
<td>7/0/0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>464</td>
<td>1</td>
<td>5/0/0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>479</td>
<td>1</td>
<td>6/0/0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>482</td>
<td>1</td>
<td>5/0/0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>495</td>
<td>1</td>
<td>6/0/0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>526</td>
<td>1</td>
<td>6/0/0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>539</td>
<td>3</td>
<td>10/0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>542</td>
<td>1</td>
<td>4/0/0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>555</td>
<td>1</td>
<td>7/0/0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>568</td>
<td>1</td>
<td>6/0/0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

SAMPLE FALLING WEIGHT SSI REPORT FILE

EXHIBIT 11 (Continued)
<table>
<thead>
<tr>
<th>SID</th>
<th>Struct Layer No.</th>
<th>Numbr Year Month Day Station</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>1</td>
<td>4</td>
<td>76</td>
<td>8</td>
<td>10</td>
<td>1</td>
<td>0.570 0.540 0.470 0.380 0.320</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>4</td>
<td>76</td>
<td>8</td>
<td>10</td>
<td>2</td>
<td>0.620 0.590 0.530 0.430 0.360</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>4</td>
<td>76</td>
<td>8</td>
<td>10</td>
<td>3</td>
<td>0.246 0.231 0.189 0.138 0.102</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>4</td>
<td>76</td>
<td>8</td>
<td>10</td>
<td>4</td>
<td>0.252 0.228 0.180 0.126 0.090</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>4</td>
<td>76</td>
<td>8</td>
<td>10</td>
<td>5</td>
<td>0.560 0.530 0.460 0.370 0.310</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>4</td>
<td>76</td>
<td>8</td>
<td>10</td>
<td>6</td>
<td>0.680 0.650 0.560 0.450 0.370</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>4</td>
<td>76</td>
<td>8</td>
<td>10</td>
<td>7</td>
<td>0.450 0.430 0.380 0.300 0.240</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>4</td>
<td>76</td>
<td>8</td>
<td>10</td>
<td>8</td>
<td>0.470 0.450 0.390 0.320 0.261</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>4</td>
<td>76</td>
<td>8</td>
<td>10</td>
<td>9</td>
<td>0.410 0.380 0.320 0.255 0.195</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>4</td>
<td>76</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>0.430 0.400 0.340 0.252 0.192</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>4</td>
<td>76</td>
<td>8</td>
<td>10</td>
<td>11</td>
<td>0.360 0.340 0.290 0.222 0.168</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>4</td>
<td>76</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>0.370 0.350 0.300 0.225 0.168</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>4</td>
<td>76</td>
<td>8</td>
<td>10</td>
<td>13</td>
<td>0.550 0.530 0.470 0.380 0.300</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>4</td>
<td>76</td>
<td>8</td>
<td>10</td>
<td>14</td>
<td>0.680 0.660 0.570 0.440 0.360</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>5</td>
<td>76</td>
<td>8</td>
<td>10</td>
<td>1</td>
<td>0.630 0.410 0.210 0.102 0.053</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>5</td>
<td>76</td>
<td>8</td>
<td>10</td>
<td>2</td>
<td>0.550 0.400 0.204 0.096 0.053</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>5</td>
<td>76</td>
<td>8</td>
<td>10</td>
<td>3</td>
<td>0.470 0.270 0.108 0.046 0.027</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>5</td>
<td>76</td>
<td>8</td>
<td>10</td>
<td>4</td>
<td>0.294 0.132 0.033 0.001 0.001</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>5</td>
<td>76</td>
<td>8</td>
<td>10</td>
<td>5</td>
<td>0.310 0.126 0.038 0.001 0.001</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>5</td>
<td>76</td>
<td>8</td>
<td>10</td>
<td>6</td>
<td>0.270 0.108 0.029 0.001 0.001</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>5</td>
<td>76</td>
<td>8</td>
<td>10</td>
<td>7</td>
<td>0.273 0.096 0.028 0.001 0.001</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>5</td>
<td>76</td>
<td>8</td>
<td>10</td>
<td>8</td>
<td>0.320 0.165 0.063 0.028 0.001</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>5</td>
<td>76</td>
<td>8</td>
<td>10</td>
<td>9</td>
<td>0.650 0.440 0.279 0.183 0.138</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>5</td>
<td>76</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>0.690 0.440 0.249 0.153 0.120</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>5</td>
<td>76</td>
<td>8</td>
<td>10</td>
<td>11</td>
<td>0.730 0.450 0.228 0.108 0.050</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>5</td>
<td>76</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>0.660 0.360 0.171 0.078 0.033</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>5</td>
<td>76</td>
<td>8</td>
<td>10</td>
<td>13</td>
<td>0.420 0.276 0.126 0.061 0.030</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>5</td>
<td>76</td>
<td>8</td>
<td>10</td>
<td>14</td>
<td>0.470 0.297 0.141 0.052 0.026</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>5</td>
<td>76</td>
<td>8</td>
<td>9</td>
<td>1</td>
<td>0.500 0.470 0.440 0.380 0.330</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>5</td>
<td>76</td>
<td>8</td>
<td>9</td>
<td>2</td>
<td>0.530 0.500 0.470 0.400 0.340</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>5</td>
<td>76</td>
<td>8</td>
<td>9</td>
<td>3</td>
<td>0.740 0.700 0.660 0.590 0.530</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>5</td>
<td>76</td>
<td>8</td>
<td>9</td>
<td>4</td>
<td>0.790 0.760 0.720 0.660 0.600</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>5</td>
<td>76</td>
<td>8</td>
<td>9</td>
<td>5</td>
<td>0.530 0.500 0.470 0.420 0.360</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>5</td>
<td>76</td>
<td>8</td>
<td>9</td>
<td>6</td>
<td>0.510 0.480 0.450 0.390 0.350</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>5</td>
<td>76</td>
<td>8</td>
<td>9</td>
<td>7</td>
<td>0.600 0.560 0.520 0.460 0.420</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>5</td>
<td>76</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>0.550 0.520 0.470 0.400 0.340</td>
</tr>
</tbody>
</table>

SAMPLE DYNAFLECT MEASUREMENT FILE REPORT

EXHIBIT 12
Texas Flexible Pavement Database
Monitoring Data
Skid Measurement Data

<table>
<thead>
<tr>
<th>Section Identification Number</th>
<th>Structure Layer Number</th>
<th>Year</th>
<th>Month</th>
<th>Skid Number</th>
<th>Skid MEAN</th>
<th>Skid HIGH</th>
<th>Skid LOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>4</td>
<td>71</td>
<td>4</td>
<td>38</td>
<td>42</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>4</td>
<td>74</td>
<td>7</td>
<td>39</td>
<td>49</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>5</td>
<td>74</td>
<td>8</td>
<td>33</td>
<td>44</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>5</td>
<td>75</td>
<td>7</td>
<td>31</td>
<td>39</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>6</td>
<td>71</td>
<td>4</td>
<td>31</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>6</td>
<td>74</td>
<td>8</td>
<td>28</td>
<td>30</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>4</td>
<td>75</td>
<td>3</td>
<td>26</td>
<td>34</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>6</td>
<td>75</td>
<td>2</td>
<td>32</td>
<td>38</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>6</td>
<td>76</td>
<td>9</td>
<td>23</td>
<td>26</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>4</td>
<td>76</td>
<td>9</td>
<td>55</td>
<td>65</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>144</td>
<td>7</td>
<td>75</td>
<td>1</td>
<td>16</td>
<td>24</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>5</td>
<td>74</td>
<td>11</td>
<td>36</td>
<td>42</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>5</td>
<td>76</td>
<td>8</td>
<td>28</td>
<td>31</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>173</td>
<td>8</td>
<td>76</td>
<td>8</td>
<td>26</td>
<td>48</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>186</td>
<td>8</td>
<td>74</td>
<td>11</td>
<td>33</td>
<td>36</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>186</td>
<td>8</td>
<td>76</td>
<td>8</td>
<td>30</td>
<td>44</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>11</td>
<td>75</td>
<td>7</td>
<td>42</td>
<td>60</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>11</td>
<td>75</td>
<td>10</td>
<td>43</td>
<td>50</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>233</td>
<td>6</td>
<td>75</td>
<td>7</td>
<td>37</td>
<td>57</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>233</td>
<td>6</td>
<td>75</td>
<td>12</td>
<td>35</td>
<td>42</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>246</td>
<td>0</td>
<td>74</td>
<td>8</td>
<td>16</td>
<td>19</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>259</td>
<td>6</td>
<td>75</td>
<td>12</td>
<td>30</td>
<td>42</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>275</td>
<td>5</td>
<td>76</td>
<td>4</td>
<td>35</td>
<td>48</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>291</td>
<td>6</td>
<td>76</td>
<td>5</td>
<td>33</td>
<td>43</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>335</td>
<td>11</td>
<td>76</td>
<td>8</td>
<td>48</td>
<td>49</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>351</td>
<td>6</td>
<td>76</td>
<td>7</td>
<td>40</td>
<td>46</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>424</td>
<td>5</td>
<td>76</td>
<td>8</td>
<td>47</td>
<td>50</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>440</td>
<td>6</td>
<td>75</td>
<td>4</td>
<td>39</td>
<td>54</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>440</td>
<td>6</td>
<td>75</td>
<td>4</td>
<td>40</td>
<td>52</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>453</td>
<td>6</td>
<td>76</td>
<td>1</td>
<td>36</td>
<td>55</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>453</td>
<td>6</td>
<td>76</td>
<td>1</td>
<td>34</td>
<td>51</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>479</td>
<td>6</td>
<td>74</td>
<td>6</td>
<td>25</td>
<td>29</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>479</td>
<td>6</td>
<td>74</td>
<td>6</td>
<td>24</td>
<td>33</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>526</td>
<td>6</td>
<td>75</td>
<td>4</td>
<td>39</td>
<td>47</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>526</td>
<td>6</td>
<td>75</td>
<td>4</td>
<td>41</td>
<td>48</td>
<td>33</td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE SKID MEASUREMENT DATA REPORT

EXHIBIT 13
<table>
<thead>
<tr>
<th>Section Identification Number</th>
<th>Year</th>
<th>Average Annual Daily Traffic (ONE-WAY)</th>
<th>Annual 18KIP Equivalent Axis Loads (ONE-WAY)</th>
<th>Percent Trucks</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>1933</td>
<td>386</td>
<td>54259</td>
<td>17.7</td>
</tr>
<tr>
<td>13</td>
<td>1934</td>
<td>486</td>
<td>63188</td>
<td>17.7</td>
</tr>
<tr>
<td>13</td>
<td>1935</td>
<td>586</td>
<td>71027</td>
<td>17.7</td>
</tr>
<tr>
<td>13</td>
<td>1936</td>
<td>686</td>
<td>78009</td>
<td>17.7</td>
</tr>
<tr>
<td>13</td>
<td>1937</td>
<td>702</td>
<td>79091</td>
<td>17.7</td>
</tr>
<tr>
<td>13</td>
<td>1938</td>
<td>719</td>
<td>80187</td>
<td>17.7</td>
</tr>
<tr>
<td>13</td>
<td>1939</td>
<td>736</td>
<td>81233</td>
<td>17.7</td>
</tr>
<tr>
<td>13</td>
<td>1940</td>
<td>792</td>
<td>84689</td>
<td>17.7</td>
</tr>
<tr>
<td>13</td>
<td>1941</td>
<td>849</td>
<td>87994</td>
<td>17.7</td>
</tr>
<tr>
<td>13</td>
<td>1942</td>
<td>906</td>
<td>91108</td>
<td>17.7</td>
</tr>
<tr>
<td>13</td>
<td>1943</td>
<td>912</td>
<td>91457</td>
<td>17.7</td>
</tr>
<tr>
<td>13</td>
<td>1944</td>
<td>919</td>
<td>91830</td>
<td>17.7</td>
</tr>
<tr>
<td>13</td>
<td>1945</td>
<td>926</td>
<td>92175</td>
<td>17.7</td>
</tr>
<tr>
<td>13</td>
<td>1946</td>
<td>986</td>
<td>95269</td>
<td>17.7</td>
</tr>
<tr>
<td>13</td>
<td>1947</td>
<td>1046</td>
<td>98217</td>
<td>17.7</td>
</tr>
<tr>
<td>13</td>
<td>1948</td>
<td>1106</td>
<td>101031</td>
<td>17.7</td>
</tr>
<tr>
<td>13</td>
<td>1949</td>
<td>1206</td>
<td>105453</td>
<td>17.7</td>
</tr>
<tr>
<td>13</td>
<td>1950</td>
<td>1306</td>
<td>109576</td>
<td>17.7</td>
</tr>
<tr>
<td>13</td>
<td>1951</td>
<td>1406</td>
<td>113436</td>
<td>17.7</td>
</tr>
<tr>
<td>13</td>
<td>1952</td>
<td>1494</td>
<td>116656</td>
<td>17.7</td>
</tr>
<tr>
<td>13</td>
<td>1953</td>
<td>1582</td>
<td>119692</td>
<td>17.7</td>
</tr>
<tr>
<td>13</td>
<td>1954</td>
<td>1670</td>
<td>122594</td>
<td>17.7</td>
</tr>
<tr>
<td>13</td>
<td>1955</td>
<td>1660</td>
<td>122274</td>
<td>17.7</td>
</tr>
<tr>
<td>13</td>
<td>1956</td>
<td>1650</td>
<td>121951</td>
<td>17.7</td>
</tr>
<tr>
<td>13</td>
<td>1957</td>
<td>1640</td>
<td>121627</td>
<td>17.7</td>
</tr>
<tr>
<td>13</td>
<td>1958</td>
<td>1536</td>
<td>118107</td>
<td>17.7</td>
</tr>
<tr>
<td>13</td>
<td>1959</td>
<td>1430</td>
<td>114364</td>
<td>17.7</td>
</tr>
<tr>
<td>13</td>
<td>1960</td>
<td>1326</td>
<td>110368</td>
<td>17.7</td>
</tr>
<tr>
<td>13</td>
<td>1961</td>
<td>1349</td>
<td>111286</td>
<td>17.7</td>
</tr>
<tr>
<td>13</td>
<td>1962</td>
<td>1372</td>
<td>112171</td>
<td>17.7</td>
</tr>
<tr>
<td>13</td>
<td>1963</td>
<td>1396</td>
<td>113061</td>
<td>17.7</td>
</tr>
<tr>
<td>13</td>
<td>1964</td>
<td>1502</td>
<td>116939</td>
<td>17.7</td>
</tr>
<tr>
<td>13</td>
<td>1965</td>
<td>1609</td>
<td>120593</td>
<td>17.7</td>
</tr>
<tr>
<td>13</td>
<td>1966</td>
<td>1716</td>
<td>124016</td>
<td>17.7</td>
</tr>
<tr>
<td>13</td>
<td>1967</td>
<td>1806</td>
<td>126773</td>
<td>17.7</td>
</tr>
<tr>
<td>CNTY Mth</td>
<td>PREC</td>
<td>PRECMN</td>
<td>PRECSD</td>
<td>TFC</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>-----</td>
</tr>
<tr>
<td>01 19</td>
<td>3.26</td>
<td>1.39</td>
<td>0.20</td>
<td>0.51</td>
</tr>
<tr>
<td>02 19</td>
<td>3.10</td>
<td>1.08</td>
<td>0.77</td>
<td>0.51</td>
</tr>
<tr>
<td>03 20</td>
<td>3.06</td>
<td>1.45</td>
<td>1.05</td>
<td>0.51</td>
</tr>
<tr>
<td>04 20</td>
<td>3.04</td>
<td>1.77</td>
<td>1.35</td>
<td>0.51</td>
</tr>
<tr>
<td>05 20</td>
<td>3.02</td>
<td>2.09</td>
<td>1.65</td>
<td>0.51</td>
</tr>
<tr>
<td>06 20</td>
<td>3.00</td>
<td>2.34</td>
<td>2.02</td>
<td>0.51</td>
</tr>
<tr>
<td>07 20</td>
<td>3.00</td>
<td>2.67</td>
<td>2.34</td>
<td>0.51</td>
</tr>
<tr>
<td>08 20</td>
<td>3.00</td>
<td>2.95</td>
<td>2.67</td>
<td>0.51</td>
</tr>
<tr>
<td>09 20</td>
<td>3.00</td>
<td>3.23</td>
<td>3.00</td>
<td>0.51</td>
</tr>
<tr>
<td>10 20</td>
<td>3.00</td>
<td>3.51</td>
<td>3.23</td>
<td>0.51</td>
</tr>
</tbody>
</table>

SAMPLE WEATHER FILE REPORT

EXHIBIT 15
<table>
<thead>
<tr>
<th>County No</th>
<th>Thornthwaite Index Mean</th>
<th>Thornthwaite Std. Dev.</th>
<th>Thornthwaite Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.510</td>
<td>26.102</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>-39.322</td>
<td>7.059</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>11.692</td>
<td>23.917</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>-10.252</td>
<td>18.861</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>-16.158</td>
<td>12.329</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>-17.534</td>
<td>11.719</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>-22.308</td>
<td>16.070</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>4.458</td>
<td>23.532</td>
<td>20</td>
</tr>
<tr>
<td>9</td>
<td>-21.861</td>
<td>8.537</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>-11.434</td>
<td>17.491</td>
<td>20</td>
</tr>
<tr>
<td>11</td>
<td>-10.698</td>
<td>18.953</td>
<td>20</td>
</tr>
<tr>
<td>12</td>
<td>-18.964</td>
<td>10.214</td>
<td>20</td>
</tr>
<tr>
<td>13</td>
<td>-15.863</td>
<td>13.017</td>
<td>20</td>
</tr>
<tr>
<td>14</td>
<td>-12.490</td>
<td>16.739</td>
<td>20</td>
</tr>
<tr>
<td>15</td>
<td>-15.722</td>
<td>16.517</td>
<td>20</td>
</tr>
<tr>
<td>16</td>
<td>-6.667</td>
<td>24.871</td>
<td>20</td>
</tr>
<tr>
<td>17</td>
<td>-30.379</td>
<td>7.260</td>
<td>20</td>
</tr>
<tr>
<td>18</td>
<td>-10.233</td>
<td>16.502</td>
<td>20</td>
</tr>
<tr>
<td>19</td>
<td>49.059</td>
<td>29.631</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td>38.530</td>
<td>40.910</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>4.594</td>
<td>23.644</td>
<td>20</td>
</tr>
<tr>
<td>22</td>
<td>-31.617</td>
<td>7.766</td>
<td>20</td>
</tr>
<tr>
<td>23</td>
<td>-17.867</td>
<td>12.314</td>
<td>20</td>
</tr>
<tr>
<td>24</td>
<td>-28.007</td>
<td>14.497</td>
<td>19</td>
</tr>
<tr>
<td>25</td>
<td>-19.138</td>
<td>12.262</td>
<td>20</td>
</tr>
<tr>
<td>26</td>
<td>2.098</td>
<td>24.167</td>
<td>20</td>
</tr>
<tr>
<td>27</td>
<td>-13.876</td>
<td>15.861</td>
<td>20</td>
</tr>
<tr>
<td>28</td>
<td>-6.157</td>
<td>19.694</td>
<td>20</td>
</tr>
<tr>
<td>29</td>
<td>1.149</td>
<td>25.127</td>
<td>20</td>
</tr>
<tr>
<td>30</td>
<td>-19.656</td>
<td>16.029</td>
<td>20</td>
</tr>
<tr>
<td>31</td>
<td>-27.658</td>
<td>11.298</td>
<td>20</td>
</tr>
<tr>
<td>32</td>
<td>47.402</td>
<td>42.416</td>
<td>20</td>
</tr>
<tr>
<td>33</td>
<td>-18.714</td>
<td>11.884</td>
<td>20</td>
</tr>
<tr>
<td>34</td>
<td>49.248</td>
<td>37.978</td>
<td>20</td>
</tr>
<tr>
<td>35</td>
<td>-22.058</td>
<td>10.633</td>
<td>20</td>
</tr>
</tbody>
</table>

SAMPLE ENVIRONMENTAL DATA - ENVIRONMENT DATA REPORT

EXHIBIT 16
LOCATION

- **SECTION ID NO:** 39
- **DISTRICT NO:** 1
- **COUNTY NO/NAME:** 117/HUNT
- **CONTROL-SECTION:** 9-13
- **HIGHWAY:** IH 30
- **MILE POSTS:** 106+00 TO 109+00
- **LANE:** R
- **PREVIOUS SID:** -
- **NEXT SID:** -
- **FUNCTIONAL CLASS:** 0
- **TYPE OF PAVEMENT:** PCC
- **HIGHWAY:** IH 30
- **MILE POSTS:** 106+00 TO 109+00
- **LANE:** R
- **PREVIOUS SID:** -
- **NEXT SID:** -
- **FUNCTIONAL CLASS:** 0
- **TYPE OF PAVEMENT:** PCC

ENVIRONMENT - 20 YEAR SUMMARY (1955-1974)

<table>
<thead>
<tr>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
<th>ANN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>41.6</td>
</tr>
</tbody>
</table>

- **THORNTHWAITE INDEX:** - - - - - - - - - - - 41.6
- **MEAN TEMPERATURE:** 41 46 53 63 71 78 83 82 76 86 53 45 63.1
- **PRECIPITATION:** 2.2 2.7 3.3 5.1 5.2 3.5 3.0 2.2 2.6 3.4 4.1 3.0 3.0 42.6
- **WET F-T CYCLES:** 2 1 1 0 0 0 0 0 0 0 0 0 0 1 6
- **TOTAL F-T CYCLES:** 13 9 4 0 0 0 0 0 0 0 3 11 40.2
- **DIST TEMP CONSTANT:** - - - - - - - - - - - - 21

TRAFFIC

- **1986 ADT:** 7800
- **1986 PERCENT TRUCKS:** 28.4
- **1954-1986 VEHICLES:** 4796822
- **1954-1986 18K AXLES:** 14603862

SERVICEABILITY INDEX

<table>
<thead>
<tr>
<th>YR</th>
<th>MEAN</th>
<th>STD DEV</th>
<th>N</th>
<th>CV</th>
<th>LOW</th>
<th>HIGH</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>2.66</td>
<td>.320</td>
<td>10</td>
<td>2.6</td>
<td>10.0</td>
<td>2.10</td>
</tr>
<tr>
<td>77</td>
<td>3.30</td>
<td>.356</td>
<td>10</td>
<td>3.3</td>
<td>10.8</td>
<td>3.20</td>
</tr>
<tr>
<td>76</td>
<td>3.45</td>
<td>.564</td>
<td>10</td>
<td>3.4</td>
<td>16.9</td>
<td>4.00</td>
</tr>
<tr>
<td>74</td>
<td>3.44</td>
<td>.230</td>
<td>9</td>
<td>3.4</td>
<td>6.7</td>
<td>2.90</td>
</tr>
</tbody>
</table>

SKID NUMBER

<table>
<thead>
<tr>
<th>DATE</th>
<th>AVG</th>
<th>LOW</th>
<th>HIGH</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/75</td>
<td>25</td>
<td>22</td>
<td>29</td>
</tr>
<tr>
<td>7/74</td>
<td>33</td>
<td>30</td>
<td>36</td>
</tr>
</tbody>
</table>

DEFLECTION (MEAN VARIABLES)

<table>
<thead>
<tr>
<th>DATE</th>
<th>D</th>
<th>W1</th>
<th>W2</th>
<th>W3</th>
<th>W4</th>
<th>W5</th>
<th>W6</th>
<th>W7</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/9/76</td>
<td>D</td>
<td>0.56</td>
<td>0.53</td>
<td>0.50</td>
<td>0.44</td>
<td>0.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/0/0</td>
<td>F</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

STRUCTURAL SECTION

<table>
<thead>
<tr>
<th>LAYER STRUCTURE DESCRIPTION</th>
<th>DATE</th>
<th>MATERIAL TYPE</th>
<th>AGG. ADCMIXTURE APPLICATION</th>
<th>THICK</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 1 S OS 8/67 HOT MIX - HOT LAID</td>
<td>AC</td>
<td>4.90</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>4 1 S OVLY 8/67 HOT MIX - HOT LAID</td>
<td>AC</td>
<td>4.70</td>
<td>2.50</td>
<td></td>
</tr>
<tr>
<td>3 1 S OS 9/52 PORTLAND CEMENT CONC</td>
<td>10.00</td>
<td>6.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 1 SB BSLY 9/52 FLEXIBLE</td>
<td>5.6 61.3 39.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 1 SG SBGR 9/52 CLAY</td>
<td>5.6 61.3 39.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE SUMMARY REPORT

EXHIBIT 17
<table>
<thead>
<tr>
<th>LOCATION</th>
<th>GEOMETRIC AND SHOULDER INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SECTION ID NO: 39</td>
<td>TYPE</td>
</tr>
<tr>
<td>DISTRICT NO: 1</td>
<td>OUTSIDE</td>
</tr>
<tr>
<td>COUNTY NO/NAME: 117/HUNT</td>
<td>SHOULDER</td>
</tr>
<tr>
<td>CONTROL-SECTION: 9-13</td>
<td>SHOULDER</td>
</tr>
<tr>
<td>HIGHWAY: IN 30</td>
<td>BASE</td>
</tr>
<tr>
<td>MILE POINTS: 27.800-29.800</td>
<td>Width</td>
</tr>
<tr>
<td>LANE: R</td>
<td>Width</td>
</tr>
<tr>
<td>MILE POST: 106+0O TO 109+0O</td>
<td>TYPE</td>
</tr>
<tr>
<td>PREVIOUS SID: -</td>
<td>TYPE</td>
</tr>
<tr>
<td>NEXT SID: -</td>
<td>TYPE</td>
</tr>
<tr>
<td>FUNCTIONAL CLASS: 0</td>
<td>TYPE</td>
</tr>
<tr>
<td>TYPE OF PAVEMENT: PCC</td>
<td>TYPE</td>
</tr>
<tr>
<td>HIGHWAY: IN 30</td>
<td>TYPE</td>
</tr>
<tr>
<td>MILE POINTS: 27.800-29.800</td>
<td>TYPE</td>
</tr>
<tr>
<td>LANE: R</td>
<td>TYPE</td>
</tr>
<tr>
<td>MILE POST: 106+0O TO 109+0O</td>
<td>TYPE</td>
</tr>
<tr>
<td>PREVIOUS SID: -</td>
<td>TYPE</td>
</tr>
<tr>
<td>NEXT SID: -</td>
<td>TYPE</td>
</tr>
<tr>
<td>FUNCTIONAL CLASS: 0</td>
<td>TYPE</td>
</tr>
<tr>
<td>TYPE OF PAVEMENT: PCC</td>
<td>TYPE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STRUCTURAL SECTION</th>
<th>THICK</th>
<th>WIDENING AGG.</th>
<th>=====ADMIXTURE====</th>
<th>APPL % PASSING</th>
<th>PERM.</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRUCTURE LAYER DESCRIPTION</td>
<td>CENT</td>
<td>MATERIAL TYPE</td>
<td>DATE</td>
<td>DATE</td>
<td>RATE</td>
</tr>
<tr>
<td>1 5 S OS 1.50 HOT MIX - HOT LAID</td>
<td>8/67</td>
<td>4.90</td>
<td>4.70</td>
<td>0.60</td>
<td>85.7</td>
</tr>
<tr>
<td>LOCATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SECTION ID NO: 39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISTRICT NO: 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COUNTY NO/NAME: 117/HUNT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTROL-SECTION: 9-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIGHWAY: IH 30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MILE POINTS: 27.800-29.800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LANE: R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MILE POST: 106+00 TO 109+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PREVIOUS SID: -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEXT SID: -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FUNCTIONAL CLASS: 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TYPE OF PAVEMENT: PCC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GEOMETRIC AND SHOULDER INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRUCTURE OF</td>
</tr>
<tr>
<td>PAVEMENT</td>
</tr>
<tr>
<td>WIDTH</td>
</tr>
<tr>
<td>TYPE</td>
</tr>
<tr>
<td>OUTSIDE</td>
</tr>
<tr>
<td>SHOULDER</td>
</tr>
<tr>
<td>WIDTH</td>
</tr>
<tr>
<td>TYPE</td>
</tr>
<tr>
<td>SHOULDER</td>
</tr>
<tr>
<td>SURFACE</td>
</tr>
<tr>
<td>BASE</td>
</tr>
<tr>
<td>SHOULDER</td>
</tr>
<tr>
<td>SURFACE</td>
</tr>
<tr>
<td>BASE</td>
</tr>
<tr>
<td>WIDENING</td>
</tr>
<tr>
<td>THICKNESS</td>
</tr>
<tr>
<td>THICKNESS</td>
</tr>
<tr>
<td>THICKNESS</td>
</tr>
<tr>
<td>FLAG</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STRUCTURAL SECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>THICK</td>
</tr>
<tr>
<td>WIDENING AGG.</td>
</tr>
<tr>
<td>======ADMIXTURE=====</td>
</tr>
<tr>
<td>APPL % PASSING</td>
</tr>
<tr>
<td>PERM.</td>
</tr>
</tbody>
</table>

| SAMPLE INVENTORY UPDATE REPORT |
| EXHIBIT 18 (Continued) |
Texas Flexible Pavement Database

County Name Table

<table>
<thead>
<tr>
<th>County Number</th>
<th>County Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ANDERSON</td>
</tr>
<tr>
<td>2</td>
<td>ANDREWS</td>
</tr>
<tr>
<td>3</td>
<td>ANGELINA</td>
</tr>
<tr>
<td>4</td>
<td>ARANSAS</td>
</tr>
<tr>
<td>5</td>
<td>ARCHER</td>
</tr>
<tr>
<td>6</td>
<td>ARMSTRONG</td>
</tr>
<tr>
<td>7</td>
<td>ATASCOSA</td>
</tr>
<tr>
<td>8</td>
<td>AUSTIN</td>
</tr>
<tr>
<td>9</td>
<td>BAILEY</td>
</tr>
<tr>
<td>10</td>
<td>BANDERA</td>
</tr>
<tr>
<td>11</td>
<td>BASTROP</td>
</tr>
<tr>
<td>12</td>
<td>BAYLOR</td>
</tr>
<tr>
<td>13</td>
<td>BEE</td>
</tr>
<tr>
<td>14</td>
<td>BELL</td>
</tr>
<tr>
<td>15</td>
<td>BEAR</td>
</tr>
<tr>
<td>16</td>
<td>BLANCO</td>
</tr>
<tr>
<td>17</td>
<td>BORDEN</td>
</tr>
<tr>
<td>18</td>
<td>BOSQUE</td>
</tr>
<tr>
<td>19</td>
<td>BOWIE</td>
</tr>
<tr>
<td>20</td>
<td>BRAZORIA</td>
</tr>
<tr>
<td>21</td>
<td>BRAZOS</td>
</tr>
<tr>
<td>22</td>
<td>BREWSTER</td>
</tr>
<tr>
<td>23</td>
<td>BRISCOE</td>
</tr>
<tr>
<td>24</td>
<td>BROOKS</td>
</tr>
<tr>
<td>25</td>
<td>BROWN</td>
</tr>
<tr>
<td>26</td>
<td>BURLESON</td>
</tr>
<tr>
<td>27</td>
<td>BURNET</td>
</tr>
<tr>
<td>28</td>
<td>CALDWELL</td>
</tr>
<tr>
<td>29</td>
<td>CALHOUN</td>
</tr>
<tr>
<td>30</td>
<td>CALHAN</td>
</tr>
<tr>
<td>31</td>
<td>CAMERON</td>
</tr>
<tr>
<td>32</td>
<td>CAMP</td>
</tr>
<tr>
<td>33</td>
<td>CARSON</td>
</tr>
<tr>
<td>34</td>
<td>CASS</td>
</tr>
<tr>
<td>35</td>
<td>CASTRO</td>
</tr>
</tbody>
</table>
Texas Flexible Pavement Database
Material Type Classification Table

<table>
<thead>
<tr>
<th>Material Code</th>
<th>Description</th>
<th>Short Code</th>
<th>Layer Descr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HOT MIX - HOT LAID</td>
<td>HMAC</td>
<td>S</td>
</tr>
<tr>
<td>2</td>
<td>HOT MIX-COLD LAID</td>
<td>HMCL</td>
<td>S</td>
</tr>
<tr>
<td>4</td>
<td>COLD MIX ROCK ASPH</td>
<td>CMRA</td>
<td>S</td>
</tr>
<tr>
<td>5</td>
<td>ONE COURSE SURF TRT</td>
<td>ST</td>
<td>S</td>
</tr>
<tr>
<td>6</td>
<td>TWO COURSE SURF TRT</td>
<td>DST</td>
<td>S</td>
</tr>
<tr>
<td>7</td>
<td>THREE CORSE SURF TRT</td>
<td>TST</td>
<td>S</td>
</tr>
<tr>
<td>9</td>
<td>RUBBER ASPH CONCRETE</td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>10</td>
<td>OPEN GRADE FRIC COUR</td>
<td>FC</td>
<td>S</td>
</tr>
<tr>
<td>11</td>
<td>SEAL COAT - REGULAR</td>
<td>SC</td>
<td>S</td>
</tr>
<tr>
<td>16</td>
<td>BLACK BASE</td>
<td>ASB</td>
<td>S</td>
</tr>
<tr>
<td>17</td>
<td>PORTLAND CEMENT CONC</td>
<td>PCC</td>
<td>S</td>
</tr>
<tr>
<td>18</td>
<td>BLANK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>FLEXIBLE BASE</td>
<td>FB</td>
<td>B</td>
</tr>
<tr>
<td>22</td>
<td>LIME STABILIZED</td>
<td>LSB</td>
<td>B</td>
</tr>
<tr>
<td>23</td>
<td>CEMENT STABILIZED</td>
<td>CSB</td>
<td>B</td>
</tr>
<tr>
<td>24</td>
<td>ASPHALT STAB BASE</td>
<td>ASB</td>
<td>B</td>
</tr>
<tr>
<td>25</td>
<td>ASPHILL BASE ROAD MIX</td>
<td>ARM</td>
<td>B</td>
</tr>
<tr>
<td>27</td>
<td>FABRIC</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>31</td>
<td>FLEXIBLE</td>
<td>FLEX</td>
<td>SB</td>
</tr>
<tr>
<td>32</td>
<td>LIME STABIL SUBGRADE</td>
<td>LSS</td>
<td>SB</td>
</tr>
<tr>
<td>33</td>
<td>CEMENT STABIL SUBG</td>
<td>CSS</td>
<td>SB</td>
</tr>
<tr>
<td>41</td>
<td>GRAVEL</td>
<td></td>
<td>SG</td>
</tr>
<tr>
<td>42</td>
<td>SAND</td>
<td></td>
<td>SG</td>
</tr>
<tr>
<td>43</td>
<td>SILT</td>
<td></td>
<td>SG</td>
</tr>
<tr>
<td>44</td>
<td>CLAY</td>
<td></td>
<td>SG</td>
</tr>
<tr>
<td>45</td>
<td>PEAT</td>
<td></td>
<td>SG</td>
</tr>
<tr>
<td>Pavement Code</td>
<td>Type of Base</td>
<td>Surface Thickness</td>
<td>Comments</td>
</tr>
<tr>
<td>---------------</td>
<td>------------------------------------</td>
<td>-----------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>1</td>
<td>GRANULAR BASE</td>
<td>SURFACE TREATED</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>GRANULAR BASE</td>
<td>HMAC < 2.5''</td>
<td>(NO SEALS)</td>
</tr>
<tr>
<td>3</td>
<td>GRANULAR BASE</td>
<td>HMAC < 2.5''</td>
<td>(WITH SEALS)</td>
</tr>
<tr>
<td>4</td>
<td>GRANULAR BASE</td>
<td>HMAC < 2.5''</td>
<td>(NO SEALS)</td>
</tr>
<tr>
<td>5</td>
<td>GRANULAR BASE</td>
<td>HMAC < 2.5''</td>
<td>(WITH SEALS)</td>
</tr>
<tr>
<td>6</td>
<td>GRANULAR BASE</td>
<td>HMAC >= 5.5</td>
<td>(NO SEALS)</td>
</tr>
<tr>
<td>7</td>
<td>GRANULAR BASE</td>
<td>HMAC >= 5.5</td>
<td>(WITH SEALS)</td>
</tr>
<tr>
<td>11</td>
<td>STABILIZED (CEMENT/LIME)</td>
<td>SURFACE TREATED</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>STABILIZED (CEMENT/LIME)</td>
<td>HMAC < 2.5''</td>
<td>(NO SEALS)</td>
</tr>
<tr>
<td>13</td>
<td>STABILIZED (CEMENT/LIME)</td>
<td>HMAC < 2.5''</td>
<td>(WITH SEALS)</td>
</tr>
<tr>
<td>14</td>
<td>STABILIZED (CEMENT/LIME)</td>
<td>HMAC < 2.5''</td>
<td>(NO SEALS)</td>
</tr>
<tr>
<td>15</td>
<td>STABILIZED (CEMENT/LIME)</td>
<td>HMAC < 2.5''</td>
<td>(WITH SEALS)</td>
</tr>
<tr>
<td>16</td>
<td>STABILIZED (CEMENT/LIME)</td>
<td>HMAC >= 5.5</td>
<td>(NO SEALS)</td>
</tr>
<tr>
<td>17</td>
<td>STABILIZED (CEMENT/LIME)</td>
<td>HMAC >= 5.5</td>
<td>(WITH SEALS)</td>
</tr>
<tr>
<td>21</td>
<td>ASPHALT STABILIZED BASE</td>
<td>SURFACE TREATED</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>ASPHALT STABILIZED BASE</td>
<td>HMAC < 2.5''</td>
<td>(NO SEALS)</td>
</tr>
<tr>
<td>23</td>
<td>ASPHALT STABILIZED BASE</td>
<td>HMAC < 2.5''</td>
<td>(WITH SEALS)</td>
</tr>
<tr>
<td>24</td>
<td>ASPHALT STABILIZED BASE</td>
<td>HMAC < 2.5''</td>
<td>(NO SEALS)</td>
</tr>
<tr>
<td>25</td>
<td>ASPHALT STABILIZED BASE</td>
<td>HMAC < 2.5''</td>
<td>(WITH SEALS)</td>
</tr>
<tr>
<td>26</td>
<td>ASPHALT STABILIZED BASE</td>
<td>HMAC >= 5.5</td>
<td>(NO SEALS)</td>
</tr>
<tr>
<td>27</td>
<td>ASPHALT STABILIZED BASE</td>
<td>HMAC >= 5.5</td>
<td>(WITH SEALS)</td>
</tr>
<tr>
<td>31</td>
<td>PCC</td>
<td>SURFACE TREATED</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>PCC</td>
<td>HMAC < 2.5''</td>
<td>(NO SEALS)</td>
</tr>
<tr>
<td>33</td>
<td>PCC</td>
<td>HMAC < 2.5''</td>
<td>(WITH SEALS)</td>
</tr>
<tr>
<td>34</td>
<td>PCC</td>
<td>HMAC < 2.5''</td>
<td>(NO SEALS)</td>
</tr>
<tr>
<td>35</td>
<td>PCC</td>
<td>HMAC < 2.5''</td>
<td>(WITH SEALS)</td>
</tr>
<tr>
<td>36</td>
<td>PCC</td>
<td>HMAC >= 5.5</td>
<td>(NO SEALS)</td>
</tr>
<tr>
<td>37</td>
<td>PCC</td>
<td>HMAC >= 5.5</td>
<td>(WITH SEALS)</td>
</tr>
</tbody>
</table>

SAMPLE TYPE OF PAVEMENT TABLE REPORT

EXHIBIT 21
Texas Flexible Pavement Database
District Temperature Constant Table

<table>
<thead>
<tr>
<th>District</th>
<th>Temperature Constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21</td>
</tr>
<tr>
<td>2</td>
<td>22</td>
</tr>
<tr>
<td>3</td>
<td>22</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>23</td>
</tr>
<tr>
<td>7</td>
<td>26</td>
</tr>
<tr>
<td>8</td>
<td>26</td>
</tr>
<tr>
<td>9</td>
<td>28</td>
</tr>
<tr>
<td>10</td>
<td>24</td>
</tr>
<tr>
<td>11</td>
<td>28</td>
</tr>
<tr>
<td>12</td>
<td>33</td>
</tr>
<tr>
<td>13</td>
<td>33</td>
</tr>
<tr>
<td>14</td>
<td>31</td>
</tr>
<tr>
<td>15</td>
<td>31</td>
</tr>
<tr>
<td>16</td>
<td>36</td>
</tr>
<tr>
<td>17</td>
<td>30</td>
</tr>
<tr>
<td>18</td>
<td>26</td>
</tr>
<tr>
<td>19</td>
<td>25</td>
</tr>
<tr>
<td>20</td>
<td>32</td>
</tr>
<tr>
<td>21</td>
<td>38</td>
</tr>
<tr>
<td>22</td>
<td>31</td>
</tr>
<tr>
<td>23</td>
<td>25</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>25</td>
<td>19</td>
</tr>
</tbody>
</table>
Texas Flexible Pavement Database
Layer Description Table

<table>
<thead>
<tr>
<th>Layer Code</th>
<th>Short Code</th>
<th>Layer Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OVLY</td>
<td>Overlay</td>
</tr>
<tr>
<td>2</td>
<td>SC</td>
<td>Seal Coat</td>
</tr>
<tr>
<td>3</td>
<td>OS</td>
<td>Original Surface</td>
</tr>
<tr>
<td>4</td>
<td>HMAC</td>
<td>HMAC Layer</td>
</tr>
<tr>
<td>5</td>
<td>BSLY</td>
<td>Base Layer</td>
</tr>
<tr>
<td>6</td>
<td>SBLY</td>
<td>Subbase Layer</td>
</tr>
<tr>
<td>7</td>
<td>SBGR</td>
<td>Subgrade</td>
</tr>
<tr>
<td>8</td>
<td>INTL</td>
<td>Interlayer</td>
</tr>
<tr>
<td>9</td>
<td>PRFC</td>
<td>Porous Friction Course</td>
</tr>
<tr>
<td>10</td>
<td>ST</td>
<td>Surface Treatment</td>
</tr>
<tr>
<td>11</td>
<td>EMBK</td>
<td>Embankment (Fill)</td>
</tr>
<tr>
<td>12</td>
<td>RCSF</td>
<td>Recycle Surface</td>
</tr>
<tr>
<td>13</td>
<td>RMSF</td>
<td>Partially Milled Surface</td>
</tr>
<tr>
<td>14</td>
<td>FABR</td>
<td>Fabric</td>
</tr>
</tbody>
</table>
Texas Flexible Pavement Database Conversion
Widening Table

<table>
<thead>
<tr>
<th>Widening Code</th>
<th>Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No Widening</td>
<td>The center thickness can be used for Deflection data - materials have been added to the shoulder</td>
</tr>
<tr>
<td>1</td>
<td>Widening Present</td>
<td>The center thickness can be used for Deflection data - materials have been added to the shoulder</td>
</tr>
<tr>
<td></td>
<td>Special Widening</td>
<td>The center thickness cannot be changed in the middle of the lane.</td>
</tr>
</tbody>
</table>
Texas Flexible Pavement Database
Functional Classification Table

<table>
<thead>
<tr>
<th>Code</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Interstate</td>
</tr>
<tr>
<td>2</td>
<td>Other Urban Freeway and Expressway</td>
</tr>
<tr>
<td>3</td>
<td>Rural or Urban Principal Arterials</td>
</tr>
<tr>
<td>4</td>
<td>Minor Arterial Road or Street</td>
</tr>
<tr>
<td>5</td>
<td>Rural Major or Urban Collector Street</td>
</tr>
<tr>
<td>6</td>
<td>Rural Minor Collectors</td>
</tr>
<tr>
<td>7</td>
<td>Local Road or Street</td>
</tr>
</tbody>
</table>
PROGRAM LISTING

SUBSYSTEM: REPORTS MAIN MENU
PROGRAM NAME: REPORTS.PRG 05/25/88
UPDATED ON: 09/04/88
PROJECT 2456 - TEXAS FLEXIBLE PAVEMENT DATABASE CONVERSION
AUTHOR: TREvor X. PEREIRA

PURPOSE: TO PRINT REPORTS FOR THE FOLLOWING:
- Monitoring data
- Environment data
- Inventory data
- Traffic data
- Inventory Update forms
- Summary report
- Tables

ON ERROR DO \PAVEDB\REPORTS\ERR_PRINT
SET PRINT TO 'IMPORT1
SET PRINT TO 'IMPORT2
ON ERROR DO \PAVEDB\ERROR
MREPEAT2 = .T.
DO WHILE MREPEAT2
* set parameters and initialize variables
STORE "" TO REPTICK

* set up the report menu screen and do the loop until REPTICK is 1-7
DO WHILE .NOT. (REPTICK $ '1234567')
 @ 0, 0 CLEAR
 @ 4, 22 SAY "TEXAS FLEXIBLE PAVEMENT DATABASE 2.0"
 @ 5, 33 SAY "Reports"
 @ 8, 16 SAY "1 - Summary"
 @ 9, 16 SAY "2 - Inventory Update Forms"
 @ 10, 16 SAY "3 - Inventory Data"
 @ 11, 16 SAY "4 - Monitoring Data"
 @ 12, 16 SAY "5 - Traffic Data"
 @ 13, 16 SAY "6 - Environmental Data"
 @ 14, 16 SAY "7 - Tables"
 @ 17, 36 SAY "OPTION >>"
 @ 17, 50 GET REPTICK
 @ 3, 9 TO 18, 65 DOUBLE
 READ
 IF READKEY() = 12
 RETURN TO MASTER
 ENDDIF
ENDDO

* according to the response received from the report menu, the appropriate
* commands are executed
IF MREPEAT2
 DO CASE
 * print summary report
 CASE REPTPICK = "1"
 DO \PAVEDB\EDITUPDT\TABLFILE
 close all
 IF .NOT. FILE('":\PAVEDB\FILES\STRUCSEC.VUE")
 CLEAR
 "STRUCTURAL SECTION VIEW FILE (STRUCSEC.VUE) not found. Please
 check . . . "
 WAIT
 RETURN TO MASTER
 ENDIF
 SET SAFETY OFF
 CLEAR
 REPTCOLL = " "
 DO WHILE .NOT. (REPTCOLL $ '123')
 @ 4, 22 SAY "TEXAS FLEXIBLE PAVEMENT DATABASE 2.1"
 @ 5, 34 SAY "REPORTS"
 @ 6, 30 SAY "Summary Report"
 @ 9, 16 SAY "1 - By SID Number"
 @ 10, 16 SAY "2 - By District"
 @ 11, 16 SAY "3 - ALL SID Numbers"
 @ 15, 41 SAY "OPTION" "="
 @ 15, 55 GET REPTCOLL
 @ 3, 9 TO 17, 65 DOUBLE
 READ
 IF READKEY() = 12
 EXIT
 ENDIF
 ENDDO
 DO CASE
 CASE REPTCOLL = "3"
 * run program to print report for all the SID numbers
 DO \PAVEDB\REPORTS\SUMMALL
 CLEAR TYPE
 CASE REPTCOLL = "2"
 * run program to print report for a certain district
 DO \PAVEDB\REPORTS\SUMMDIST
 CLEAR TYPE
 CASE REPTCOLL = "1"
 * run program to print report for one SID number
 DO \PAVEDB\REPORTS\SUMMSID
 CLEAR TYPE
 ENDCASE
 CLEAR
 ENDIF
 SET SAFETY ON
 ENDCASE
 CLEAR
 SET SAFETY ON

* print inventory update forms for a single SID number or for a complete
* district if choice 2 is chosen
CASE REPTPICK = "2"
 DO \PAVEDB\EDITUPDT\TABLFILE
 close all
 IF .NOT. FILE('":\PAVEDB\FILES\STRUCSEC2.VUE")
CLEAR

? "STRUCTURAL SECTION VIEW FILE (STROSEC2.VUE) not found. Please check . . . "

WAIT
RETURN TO MASTER
ENDIF
SET SAFETY OFF
CLEAR
REPTCOLL = " "
DO WHILE .NOT. (REPTCOLL $ '123')
 @ 4, 22 SAY "TEXAS FLEXIBLE PAVEMENT DATABASE 2.2"
 @ 5, 34 SAY "REPORTS"
 @ 6, 27 SAY "Inventory Update Forms"
 @ 10, 16 SAY "1 - By District"
 @ 11, 16 SAY "2 - By SID Number"
 @ 12, 16 SAY "3 - All SID Numbers"
 @ 15, 41 SAY "OPTION ==>"
 @ 15, 55 GET REPTCOLL
 @ 3, 9 TO 17, 65 DOUBLE
READ
 IF READKEY() = 12
 EXIT
 ENDF
ENDDO
DO CASE
 CASE REPTCOLL = "1"
 DO \PAVEDB\REPORTS\SUM2DIST
 CLEA TYPE
 CASE REPTCOLL = "2"
 DO \PAVEDB\REPORTS\SUM2SID
 CLEA TYPE
 CASE REPTCOLL = "3"
 DO \PAVEDB\REPORTS\SUM2FILE
 CLEA TYPE
 ENDCASE
SET SAFETY ON

* If choice 3 is chosen, print one of the 8 reports for the Inventory data
CASE REPTCOLL = "3"
MREPEAT = .T.
DO WHILE MREPEAT
 CLEAR
 SET PRINT TO &MPORT2
 REPTCOLL = " "
 DO WHILE .NOT. (REPTCOLL $ '12345678')
 @ 3, 21 SAY "TEXAS FLEXIBLE PAVEMENT DATABASE 2.3"
 @ 4, 34 SAY "REPORTS"
 @ 5, 30 SAY "Inventory Data"
 @ 8, 16 SAY "1 - Location"
 @ 9, 16 SAY "2 - Location Section"
 @ 10, 16 SAY "3 - Layer ID"
 @ 11, 16 SAY "4 - Geometric & Shoulder"
 @ 12, 16 SAY "5 - Surface"
 @ 13, 16 SAY "6 - Subgrade"
@ 14, 16 SAY "7 - Layer Thickness Across the Road"
@ 15, 16 SAY "8 - Double Surface Treatment"
@ 17, 37 SAY "OPTION ->"
@ 17, 51 GET REPTCOLL
@ 2, 9 TO 19, 65 DOUBLE READ
IF READKEY() = 12
 MREPEAT = .F.
 EXIT
ENDIF
ENDDO
SET ESCAPE ON
DO CASE
 CASE REPTCOLL = "1"
 CLEAR
 USE \PAVEDB\FILES\LOCATION INDEX \PAVEDB\INDEXES\LOCSD Report Form \PAVEDB\REPORTS\SEC_LOCN TO PRINT
 CASE REPTCOLL = "2"
 CLEAR
 USE \PAVEDB\FILES\LOCATION INDEX \PAVEDB\INDEXES\LOCSD Report Form \PAVEDB\REPORTS\LOCATION TO PRINT
 CASE REPTCOLL = "3"
 CLEAR
 USE \PAVEDB\FILES\LAYER INDEX \PAVEDB\INDEXES\LAYNDX Report Form \PAVEDB\REPORTS\LAYER TO PRINT
 CASE REPTCOLL = "4"
 CLEAR
 USE \PAVEDB\FILES\GEOHOT INDEX \PAVEDB\INDEXES\GEOHDX Report Form \PAVEDB\REPORTS\GEOHOT TO PRINT
 CASE REPTCOLL = "5"
 CLEAR
 USE \PAVEDB\FILES\SURFACE INDEX \PAVEDB\INDEXES\SURFNDX Report Form \PAVEDB\REPORTS\SURFACE TO PRINT
 CASE REPTCOLL = "6"
 CLEAR
 USE \PAVEDB\FILES\SUBGRADE INDEX \PAVEDB\INDEXES\SUBGNDX Report Form \PAVEDB\REPORTS\SUBGRADE TO PRINT
 CASE REPTCOLL = "7"
 CLEAR
 USE \PAVEDB\FILES\LAYTHICK INDEX \PAVEDB\INDEXES\LAYTNDX Report Form \PAVEDB\REPORTS\LAYTHICK TO PRINT
 CASE REPTCOLL = "8"
 CLEAR
 USE \PAVEDB\FILES\LAYER INDEX \PAVEDB\INDEXES\LAYNDX Report Form \PAVEDB\REPORTS\DISTREPT FOR LAYMATCL = 6 TO PRINT
ENDCASE
SET ESCAPE OFF
CLEAR TYPE
CLEAR
* if choice 4 is chosen, print one of the 5 reports for the monitoring data
CASE REPTPICK = "4"
MREPEAT = .T.
DO WHILE MREPEAT
CLEAR
SET PRINT TO &IMPORT2
REPTCOLL = " "
DO WHILE .NOT. (REPTCOLL $ '12345')
 @ 4, 22 SAY "TEXAS FLEXIBLE PAVEMENT DATABASE 2.4"
 @ 5, 34 SAY "REPORTS"
 @ 6, 30 SAY "Monitoring Data"
 @ 9, 16 SAY "1 - Visual"
 @ 10, 16 SAY "2 - Serviceability Index"
 @ 11, 16 SAY "3 - Falling Weight"
 @ 12, 16 SAY "4 - Dynaflect"
 @ 13, 16 SAY "5 - Skid"
 @ 16, 38 SAY "OPTION ————>
 @ 16, 52 GET REPTCOLL
 @ 3, 9 TO 18, 65 DOUBLE
READ
IF READKEY() = 12
 MREPEAT = .F.
 EXIT
ENDIF
ENDDO
IF MREPEAT
SET ESCAPE ON
DO CASE
CASE REPTCOLL = "1"
 CLEAR
 SET PRINT TO &IMPORT1
 @ 10, 5 SAY "Please set the printer to Condensed print to print this report"
 WAIT
 CLEAR
 USE \PAVEDB\FILES\VISUAL INDEX \PAVEDB\INDEXES\VISUAL REPORT FORM \PAVEDB\REPORTS\VISUAL TO FILE VISUAL1.RPT
CASE REPTCOLL = "2"
 CLEAR
 USE \PAVEDB\FILES\SI INDEX \PAVEDB\INDEXES\SI REPORT FORM \PAVEDB\REPORTS\SI TO PRINT
CASE REPTCOLL = "3"
 CLEAR
 SET PRINT TO &IMPORT1
 @ 10, 5 SAY "Please set the printer to Condensed print to print this report"
 @ 11, 5 SAY " Note that this report is in 2 parts and that the first"
 @ 12, 5 SAY " part will be printed completely before the next part is printed."
 WAIT
CLEAR
USE \PAVEDB\FILES\FALLWIGHT INDEX \PAVEDB\INDEXES\FALLWIGHT
REPORT FORM \PAVEDB\REPORTS\FALLWIGHT TO PRINT
GOTO TOP
REPORT FORM \PAVEDB\REPORTS\FALLWIGHT2 TO PRINT
CASE REPTCOLL = "4"

CLEAR
USE \PAVEDB\FILES\DYNAFLIID INDEX \PAVEDB\INDEXES\DYNAFLIID
REPORT FORM \PAVEDB\REPORTS\DYNAFLIID TO PRINT
CASE REPTCOLL = "5"

CLEAR
USE \PAVEDB\FILES\SKID INDEX \PAVEDB\INDEXES\SKID
REPORT FORM \PAVEDB\REPORTS\SKID TO PRINT
ENDCASE
SET ESCAPE OFF
CLEA TYPE
CLEAR
ENDIF
ENDDO

* print traffic data if 5 is chosen
CASE REPTPICK = "5"

CLEAR
MRESPONSE = " "
@ 10,10 SAY "You are about to print the Traffic report."
@ 11,11 SAY "Want to continue (Y/N)? " GET MRESPONSE
READ
IF MRESPONSE = "Y"
SET ESCAPE ON
SET PRINT TO &IMPORT2
USE \PAVEDB\FILES\TRAFFIC INDEX \PAVEDB\INDEXES\TRAFFIC
REPORT FORM \PAVEDB\REPORTS\TRAFFIC TO PRINT
SET ESCAPE OFF
ENDIF

* print out weather or environment data if choice 6 is chosen
CASE REPTPICK = "6"

MREPEAT = .T.
DO WHILE MREPEAT
CLEAR
SET PRINT TO &IMPORT2
REPTCOLL = " "
DO WHILE .NOT. (REPTCOLL $ '12')
@ 5, 22 SAY "TEXAS FLEXIBLE PAVEMENT DATABASE 2.6"
@ 6, 34 SAY "REPORTS"
@ 7, 29 SAY "Environmental Data"
@ 10, 15 SAY "1 - Environment"
@ 11, 15 SAY "2 - Weather"
@ 13, 40 SAY "OPTION ———>
@ 13, 55 GET REPTCOLL
@ 4, 9 TO 15, 65 DOUBLE
READ
IF READKEY() = 12
MREPEAT = .F.

125
EXIT
ENDIF
ENDO
IF MREPEAT
SET ESCAPE ON
DO CASE
CASE REPTCOLL = "1"
 CLEAR
 USE \PAVEDB\FILES\ENV INDEX \PAVEDB\INDEXES\ENV
 REPORT FORM \PAVEDB\REPORTS\ENV TO PRINT
CASE REPTCOLL = "2"
 CLEAR
 SET PRINT TO EMPORT1
 @ 10, 5 SAY "Please set the printer to Condensed print to print this report"
 WAIT
 CLEAR
 USE \PAVEDB\FILES\WEATHER INDEX \PAVEDB\INDEXES\WEATHER
 REPORT FORM \PAVEDB\REPORTS\WEATHER TO PRINT
ENDCASE
SET ESCAPE OFF
CLEAR
ENDIF
ENDO

* print out one of the tables if choice 7 is picked
CASE REPTPICK = "7"
MREPEAT = .T.
DO WHILE MREPEAT
 CLEAR
 REPTCOLL = " "
 DO WHILE .NOT. (REPTCOLL $ '1234567')
 @ 3, 21 SAY "TEXAS FLEXIBLE PAVEMENT DATABASE 2.7"
 @ 4, 34 SAY "REPORTS"
 @ 5, 34 SAY "Tables"
 @ 8, 16 SAY "1 - County Name"
 @ 9, 16 SAY "2 - Material Type"
 @ 10, 16 SAY "3 - Type of Pavement"
 @ 11, 16 SAY "4 - District Temperature Constant"
 @ 12, 16 SAY "5 - Widening Flag"
 @ 13, 16 SAY "6 - Layer Description"
 @ 14, 16 SAY "7 - Functional Classification"
 @ 17, 42 SAY "OPTION ———>
 @ 17, 56 GET REPTCOLL
 @ 2, 9 TO 19, 65 DOUBLE
 READ
 IF READKEY() = 12
 MREPEAT = .F.
 EXIT
 ENDIF
 ENDWHILE
ENDIF
ENDO
IF MREPEAT
SET ESCAPE ON
DO CASE
CASE REPTCOLL = "1"
 CLEAR
 USE \PAVEDB\FILES\CNYTBL INDEX \PAVEDB\INDEXES\CNYTBLNO
 REPORT FORM \PAVEDB\REPORTS\CNYTBL TO PRINT
CASE REPTCOLL = "2"
 CLEAR
 USE \PAVEDB\FILES\MATLTLBL
 REPORT FORM \PAVEDB\REPORTS\MATLTLBL TO PRINT
CASE REPTCOLL = "3"
 CLEAR
 USE \PAVEDB\FILES\PAVETYPE
 REPORT FORM \PAVEDB\REPORTS\PAVETYPE TO PRINT
CASE REPTCOLL = "4"
 CLEAR
 USE \PAVEDB\FILES\DISTTEMP
 REPORT FORM \PAVEDB\REPORTS\DISTTEMP TO PRINT
CASE REPTCOLL = "5"
 CLEAR
 USE \PAVEDB\FILES\WIDENFLAG
 REPORT FORM \PAVEDB\REPORTS\WIDENFLAG TO PRINT
CASE REPTCOLL = "6"
 CLEAR
 USE \PAVEDB\FILES\LAYERTLBL
 REPORT FORM \PAVEDB\REPORTS\LAYERTLBL TO PRINT
CASE REPTCOLL = "7"
 CLEAR
 USE \PAVEDB\FILES\FUNCITTLBL
 REPORT FORM \PAVEDB\REPORTS\FUNCITTLBL TO PRINT
ENDCASE
 SET ESCAPE OFF
 CLEAR
ENDIF
ENDDO
ENDCASE
MREPEAT2 = .F.
ENDIF
MREPEAT2 = .T.
ENDDO
RETURN
* SUBSYSTEM: PRINT SUMMARY REPORT
* PROGRAM NAME: SUMMSID.PRG 01/21/88
* REVISED ON: 05/26/88
* PROJECT 2456 - TEXAS FLEXIBLE PAVEMENT DATABASE CONVERSION
* TAMU/TIT
* AUTHOR: TREVOR X. PEREIRA
* PURPOSE: TO PRINT OUT A SUMMARY REPORT FOR INDIVIDUAL SID NUMBERS IN
* THE LOCATION FILE. THE FOLLOWING PROGRAMS ARE CALLED:
* - GETPAVON.PRG
* - GETENVIR.PRG
* - GETLOCAT.PRG
* - PRNWREPT.PRG
* - GETSKID.PRG
* *THE FOLLOWING FILES ARE USED IN THIS PROGRAM:
* - CNTYENV.DBF CNTYENV.NDX
* - CNTYTBEL.DBF
* - CNTYWEAT.DBF WEATMNTH.NDX
* - WEATCNY.NDX
* - CNTYTBINO.NDX
* - DISTTEMP.DBF
* - DYNFILLD.DBF DYNFILLD.NDX
* - FALLWGT.DBF FALLWGT.NDX
* - GEOSH.PBF GEOSH.NDX
* - LAYER.DBF LAYINDX.NDX
* - LAYERBL.DBF
* - LAYTHICK.DBF LAYINDX.NDX
* - LOCATION.DBF LOCINDX.NDX
* - MAILTBEL.DBF
* - PAVETYPE.DBF
* - SI.DBF SI.NDX
* - SIMPSKID.DBF SIMPSKID.NDX
* - SUBGRADE.DBF SUBGRADE.NDX
* - SURFACE.DBF SURFINDX.NDX
* - TRAFFIC.DBF TRAFFIC.NDX
* - VISUAL.DBF VISUAL.NDX
*
* the program first gets all the data and stores it in separate files
* using memory variables. When the report is printed out, the appropriate
* files with the variables are opened and deleted when done with them.
*
* set all parameters
SET TALK OFF
SET ECHO OFF
CLOSE DATABASES
CLEAR
SET PRINTER TO &MPORT2
PUBLIC MSID_NO, VALID, MOCOUNTY, MDISTRICT
STORE " " TO MQUIT
STORE .F. TO VALID
STORE 0 TO MSID_NO

* get the sid number
DO WHILE .NOT. VALID
 CLEAR
 @ 10, 5 SAY ""
 ACCEPT "Please enter Section Identification (SID) number: " TO SID_NO
 IF READKEY() = 12
 CLEAR
 @ 19, 5 SAY "ARE YOU SURE YOU WANT TO RETURN TO PREVIOUS MENU? (Y/N) "
 GET MQUIT
 READ
 IF MQUIT = "Y" .OR. MQUIT = "y"
 EXIT
 ENDFID
ENDIF
MSID_NO = VAL(SID_NO)

* calculates the correct Sid Number
STORE 0 TO VAR1, VAR2, VAR3, COMPARE
VAR1 = INT(MSID_NO/1000)
VAR2 = MOD(INT(MSID_NO/100),10)
VAR2 = VAR2 * 2
VAR3 = MOD(INT(MSID_NO/10),10)
VAR3 = VAR3 * 3
VAR4 = MOD(VAR1,10)+VAR2+VAR3
COMPARE = MOD(VAR4,10)

* compares calculated Sid number with Sid number entered
IF COMPARE = MOD(MSID_NO,10)
 STORE .T. TO VALID
ELSE
 @ 19, 10 SAY "Invalid SID Number"
 WAIT
 @ 18, 10 CLEAR
ENDIF
* verifies that Sid number has been entered
IF MSID_NO = 0
 STORE .F. TO VALID
 @ 19, 10 SAY "Invalid SID Number"
 WAIT
 @ 18, 10 CLEAR
ENDIF
ENDDO

* get all the data and print the report
IF VALID
 CLEAR
 DO \PAVEDB\REPORTS\GETLOCAT
 DO \PAVEDB\REPORTS\GETPAVCN
 DO \PAVEDB\REPORTS\GETENVIR
 DO \PAVEDB\REPORTS\GETSKID

129
DO \PAVEDB\REPORTS\PRINTREPT
ENDIF
RELEASE MSID_NO, VALID, MCOUNTY, MDISTRICT
RETURN
* SUBSYSTEM: PRINT SUMMARY REPORT
* PROGRAM NAME: SUMMDIST.PRG 02/04/88
* REVISED ON: 05/26/88
* PROJECT 2456 - TEXAS FLEXIBLE PAVEMENT DATABASE CONVERSION
* AUTHOR: TREVOR X. PEREIRA
* PURPOSE: TO PRINT OUT A SUMMARY REPORT FOR ALL SID NUMBERS IN A PARTICULAR DISTRICT. THE FOLLOWING PROGRAMS ARE CALLED:
 * GETPAVGN.PRG
 * GETENVIR.PRG
 * GETLOCAT.PRG
 * PRTNREPT.PRG
 * GETSKID.PRG

* THE FOLLOWING FILES ARE USED IN THIS PROGRAM:
 * CNTYENV.DBF CNTYENV.NDX
 * CNTYTL.BF
 * CNTYWEAT.DBF WEATMNTH.NDX
 * WEATCQTY.NDX
 * CNTYTLN.DO.NDX
 * DISTTEMP.DBF
 * DYNAFLLD.DBF DYNAFLLD.NDX
 * FALLWHT.DBF FALLWHT.NDX
 * GEOSHO.DBF GEOSHO.NDX
 * LAYER.DBF LAYNDX.NDX
 * LAYERD.BF
 * LAYTHICK.DBF LAYTHICK.NDX
 * LOCATION.DBF LOCSTR.NDX
 * ILD.BF
 * PAVETYPE.DBF
 * SI.DBF SI.NDX
 * SIMPSKID.DBF SIMPSKID.NDX
 * SUBGRADE.DBF SUBGRADE.NDX
 * SURFACE.DBF SURFNDX.NDX
 * TRAFFIC.DBF TRAFFIC.NDX
 * VISUAL.DBF VISUAL.NDX
 * SIDSTORE.DBF - This file is used to store the SID numbers for a particular district.

* the program first gets all the SID numbers for the particular district and stores them in a temporary file. Then data for each SID number is stored in memory variable files. When the report is printed out, the appropriate files with the variables are opened and deleted when done with them. This process continues for each SID number in the temporary file.

* set all parameters
CLOSE DATABASES
CLEAR
SET PRINTER TO &MPORT2
PUBLIC MSID_NO, VALID, MCOUNTY, MDISTRICT
STORE " " TO MQUIT, MDISTIT
STORE .F. TO VALID
STORE 0 TO MSID_NO, MDISTT

* get the sid number
DO WHILE .NOT. VALID
 CLEAR
 CLEAR TYPEAHEAD
 @ 10, 5 SAY " "
 ACCEPT "Please enter District number: " TO MDISTIT
 IF READKEY() = 12
 CLEAR
 @ 19, 5 SAY "ARE YOU SURE YOU WANT TO RETURN TO PREVIOUS MENU? (Y/N) "
 GET MQUIT
 READ
 IF MQUIT = "Y" .OR. MQUIT = "y"
 EXIT
 ENDIF
 ENDIF
 MDIST = VAL(MDISTIT)
 @ 10, 0 CLEAR

* Get all SID_NO's for the required district and store them to a temporary
 * dBASE file
SELECT 1
 USE \PAVEDB\FILES\LOCATION index \PAVEDB\INDEXES\locsid
SELECT 2
 IF .NOT. FILE('\PAVEDB\FILES\SIDSTORE.DBF')
 CLEAR
 ? "Temporary SID storage file (SIDSTORE.DBF) not found. Please check"
 WAIT
 RETURN TO MASTER
 ENDIF
 USE \PAVEDB\FILES\SIDSTORE
 DELE ALL
 PACK
SELECT 1
 LOCATE FOR HWYDIST = MDIST
 IF .NOT. FOUND()
 @ 12, 5 SAY "District not found. Please try again."
 WAIT
 ENDIF
DO WHILE FOUND()
 MSID_NO = A->SID_NO
 SELE 2
 APPEND BLANK
 REPLACE B->SID_NO WITH MSID_NO
 SELE 1
 VALID = .T.
 CONTINUE
ENDD
ENDDO
SELECT 1
 USE
SELECT 2
 APPEND BLANK
 REPLACE B->SID_NO WITH 0
 USE

* Print out the reports
USE \PAVEDB\FILES\SIDSTORE
MREC = 1
IF SID_NO = 0
 STORE .F. TO GOON
ELSE
 STORE .T. TO GOON
ENDIF
DO WHILE GOON
 MSID_NO = SID_NO
 DO \PAVEDB\REPORTS\GETLOCAT
 DO \PAVEDB\REPORTS\GETPAVCN
 DO \PAVEDB\REPORTS\GETENVIR
 DO \PAVEDB\REPORTS\GETSKID
 DO \PAVEDB\REPORTS\PRNTREPT
 MREC = MREC + 1
 USE \PAVEDB\FILES\SIDSTORE
 GOTO MREC
 IF SID_NO = 0
 GOON = .F.
 ENDIF
 CLEAR
ENDDO
SELECT 3
 USE
SELECT 2
 USE
SELECT 1
 USE

CLOSE DATABASES
SET PRINTER TO LPT1
RELEASE MSID_NO, VALID, MCOUUTY, MDISTRICT
RETURN
* PROGRAM LISTING

* SUBSYSTEM: PRINI
* PROGRAM NAME: SUMMALL.PRG 01/21/88
* REVISED ON: 05/26/88
* PROJECT 2456 - TEXAS FLEXIBLE PAVEMENT DATABASE CONVERSION
* TAMU/TTI
* AUTHOR: TREVOR X. PEREIRA
* PURPOSE: TO PRINT OUT A SUMMARY REPORT FOR ALL THE SID NUMBERS
* ARE CALLED: - GETPAVN.PRG
** - GETENVIR.PRG
** - GETLOCAT.PRG
** - PRNTREP.TRG
** - GEISKID.PRG

* THE FOLLOWING FILES ARE USED IN THIS PROGRAM:
* CNTYENV.DBF CNTYENV.NDX
* CNTYBL. DBF CNTYBL.NDX
* CNTYWEAT. DBF WEATMNTH.NDX
* WEATCNTY.NDX
* CNTYBLNO.NDX
* DISTTEMP. DBF DISTTEMP.NDX
* DYNALFL. DBF DYNALFLD.NDX
* FALLIGHT. DBF FALLIGHT.NDX
* GEOSHO. DBF GEOSHO.NDX
* LAYER. DBF LAYNDX.NDX
* LAYERTBL. DBF LAYTBLNDX.NDX
* LAYTHICK. DBF LAYTBL.NDX
* LOCATION. DBF LOCNSID.NDX
* MATLTBL. DBF MTLTBL.NDX
* PAVETYPE. DBF
* SI. DBF SI.NDX
* SIMPSKID. DBF SIMPSKID.NDX
* SUBGRADE. DBF SUBGRADE.NDX
* SURFACE. DBF SURFDNX.NDX
* TRAFFIC. DBF TRAFFIC.NDX
* VISUAL. DBF VISUAL.NDX

* the program first gets all the data and stores it in separate files
* using memory variables. When the report is printed out, the appropriate
* files with the variables are opened and closed when done with them.

* set all parameters
SET TALK OFF
SET ECHO OFF
CLOSE DATABASES
CLEAR
SET PRINTER TO &IMPORT2
PUBLIC MSID NO, MCOUNTY, MDISTRICT
STORE " " " TO MQUIT
STORE 0 TO MSID_NO
STORE 1 TO MREC
USE \\PAVEDB\\FILES\\LOCATION
MRECNUM = RECCOUNT() + 1

DO WHILE MREC < MRECNUM
 USE \\PAVEDB\\FILES\\LOCATION
 GOTO MREC
 MSID_NO = SID_NO
 USE
 IF READKEY() = 12
 CLEAR
 @ 19, 5 SAY "ARE YOU SURE YOU WANT TO QUIT? (Y/N) "
 @ 19, 43 GET MQUIT
 READ
 IF MQUIT = "Y" .OR. MQUIT = "y"
 EXIT
 ENDIF
 ENDIF
ENDIF

* get all the data and print the report
DO \\PAVEDB\\REPORTS\\GETLOCAT
DO \\PAVEDB\\REPORTS\\GETPAVCN
DO \\PAVEDB\\REPORTS\\GETENVIR
DO \\PAVEDB\\REPORTS\\GETSKID
DO \\PAVEDB\\REPORTS\\PRNTREPT
 MREC = MREC + 1
ENDDO

RELEASE MSID_NO, MCOUPNY, MDISTRICT
RETURN
PROGRAM LISTING

* SUBSYSTEM: PRINT SUMMARY REPORT
* PROGRAM NAME: GETLOCAT.PRG 01/26/88
* PROJECT 2456 - TEXAS FLEXIBLE PAVEMENT DATABASE CONVERSION
* TAMU/TTI
* AUTHOR: TREVOR X. PEREIRA
* PURPOSE: TO GET DATA FROM THE FOLLOWING FILES TO PRINT THE SUMMARY
* REPORT: 1) LOCATION dBASE FILE
* 2) SERVICEABILITY dBASE FILE
* 3) TRAFFIC dBASE FILE
* 4) LAYER IDENTIFICATION dBASE FILE
* 5) SUBGRADE LAYER dBASE FILE
* 6) SURFACE LAYER dBASE FILE
* 7) GEOMETRIC & SHOULDER INFO LAYER dBASE FILE

* GET LOCATION PART OF THE REPORT AND STORE THE DATA IN A FILE

@ 5, 5 SAY "Getting data for the Location section of the report"

* assign databases to different work areas
SELECT 1
use \PAVEDB\FILES\location INDEX \PAVEDB\INDEXES\LOCSID

SELECT 2
USE \PAVEDB\FILES\CNTY_TBL INDEX \PAVEDB\INDEXES\CTY_TBLNO

* locate for the requested sid number
SELECT 1
seek msid no
if .not. found()
 okay = .F.
 clear
 @ 19, 10 say "SID number not found. "
 WAIT
 @ 18, 10 CLEAR
 RETURN
else
 okay = .T.
endif
STORE 0 TO MCOUNTY
STORE 0 TO MDISTRICT

* if the sid number is found, get all the required data
if Okay
 nlhwydist = LITRIM(STR(hwydist,2))
 MDISTRICT = HWYDIST
 MCOUNTY = CNTYNUM
 mlcntynm = LITRIM(STR(cntynm,3))
SELECT 2
SEEK A->CNYNUM
IF FOUND()
 MLA->CNYNUM = LTRIM(CNYNAME)
ENDIF
SELECT 1
mcontrol = LTRIM(STR(control,4))
msaction = LTRIM(STR(section,2))
MLCONTSEC = MCONTROL + "=" + MSECTN
mprefix = hwyprefix
mhywnum = LTRIM(STR(hwynum,4))
msuffix = hwysuffix
MLHWY = MPREFIX + " " + LTRIM(MHWYNUM) + " " + MSUFFIX
MEGP = LTRIM(STR(EGMPST,3))
MEGD =
 RIGHT((STUFF(STR(EMPSTDIS,2),1,(2-LEN(LTRIM(STR(EMPSTDIS,2))))),"0")),2)
MPOSTB = MEGP+DISSIGN+MEGD
MEND =
 RIGHT((STUFF(STR(EMPSTDIS,2),1,(2-LEN(LTRIM(STR(EMPSTDIS,2))))),"0")),2)
MENDP = LTRIM(STR(ENDMPST,3))
MPOSTE = MENDP+DISSIGN+MEND
MLPOST = MPOSTB+" TO "+MPOSTE
mlaneid = laneid
IF PREVSID = 0
 MLPREVSD = "-"
ELSE
 MLPREVSD = LTRIM(STR(prevsid,4))
ENDIF
IF NEXTSID = 0
 MNEXTSD = "-"
ELSE
 MNEXTSD = LTRIM(STR(nextsid,4))
ENDIF
MLFUNCIS = LTRIM(STR(FUNCIS,2))
endif

* get geometric and shoulder information layer data
SELECT 1
use \PAVEDB\FILES\geosho index \PAVEDB\INDEXES\geonidx

SELECT 2
USE \PAVEDB\FILES\PAVETYPE

SELECT 1
seek str(msid_no,4)
if found()
 DO CASE
 CASE WIDENFIG = 0
 MLWIDEN = "NO WIDENING"
 END CASE
 CASE WIDENFIG = 1
 MLWIDEN = "WIDENING"
 END CASE
 CASE WIDENFIG = 2
 MLWIDEN = "UNUSUAL WIDENING"
 END CASE
137
ENDCASE
MPAVEM = PAVETYP
SELECT 2
LOCATE FOR PAVECODE = MPAVEM
IF FOUND()
 MLBASETYPEP = LITRIM(BASETYPEP)
 MLBASETHK = LITRIM(BASETHK)
 MLBASESEAL = LITRIM(BASESEAL)
ELSE
 MLBASETYPEP = " "
 MLBASETHK = " "
 MLBASESEAL = " "
ENDIF
ELSE
 MLWIDTHEN = " "
 MLBASETYPEP = " "
 MLBASETHK = " "
 MLBASESEAL = " "
ENDIF

* save all location variables to a file
SAVE ALL LIKE MI* TO GETLOCAT
RELEASE ALL LIKE MI*
select 1
use
select 2
use

* GET SERVICEABILITY FILE DATA AND STORE TO A FILE

06, 5 SAY "Getting data for Serviceability Index Section"
X = 1
use \PAVEDB\FILES\si index \PAVEDB\INDEXES\si
DO WHILE X < 7
 S = STR(X,1,0)
 msyear&S = " "
 msmean&S = " "
 mssstdd&S = " "
 mscont&S = " "
 mscoef&S = " "
 mslowv&S = " "
 mshigh&S = " "
 X = X + 1
ENDDO

seek str(msid_no,4)

* if the sid number is found, get the required data and store it in variables
if found()
 * move the file pointer to the last record of the sid_no in order to get
 * the most current year first
 DO WHILE .NOT. EOF() .AND. SID_NO = MSID_NO
SKIP
ENDDO
SKIP -1
X = 1
do while .NOT. EOF() .AND. SID NO = MSID NO
 IF X > 6
 EXIT
 ENDIF
 S = STR(X, 1, 0)
msyear&S = STR(actyear, 2)
msmean&S = STR(simean, 4, 2)
msstd&S = STR(sisd, 4, 3)
mscount&S = STR(sicount, 2)
mscoef&S = STR(((sisd/simean)*100), 4, 1)
mslowv&S = STR(silowval, 4, 2)
mshigh&S = STR(sihival, 4, 2)
 X = X + 1
 IF EOF()
 SKIP 35
 ENDIF
ENDDO
ENDDO
USE

* save all variables to file
save all like ms* to getservc
RELEASE ALL LIKE MS*

* GET TRAFFIC FILE DATA AND STORE IT IN VARIABLES

@ 7, 5 SAY "Getting data for the Traffic Section" USE \PAVEDB\FILES\TRAFFIC INDEX \PAVEDB\INDEXES\TRAFFIC SEEK STR(MSID NO, 4)
* if the sid number is found, get the required data
IF FOUND()
 MTBYEAR = STR(YEAR, 4)
 MVEHADD = AADT1WAY * 365.25
 MVEHICLE = MVEHADD
 M18KEAL = A18KEAL
 SKIP
 DO WHILE .NOT. EOF() .AND. TRAFFIC->SID NO = MSID NO
 MVEHADD = AADT1WAY * 365.25
 MVEHICLE = MVEHICLE + MVEHADD
 M18KEAL = M18KEAL + A18KEAL
 SKIP
 ENDDO
 MT18KEAL = STR(M18KEAL, 9)
 MTVEHIC = STR(MVEHICLE, 10)
139
GET STRUCTURAL SECTION OF THE REPORT AND SAVE THE DATA IN VARIABLES

* variable mcounr is to find out how many layers there are for the SID #.
* This will help determine the layer the subgrade goes on. This is needed
* if layer # 1 is the top most layer and not the subgrade.

```plaintext
@ 8, 5 SAY "Getting data for the Structural Section ...."
STORE " " TO MTIPLAST, MTLQILIM, MTXTIRL
MCOUNT = 1

set path to \pavedb\files,\pavedb\indexes
set view to \pavedb\files\strucsec
seek str(msid_no,4)

* if the sid number is found, get the required data
if found()
  do while .NOT. EOF() .AND. sid_no = msid_no
    skip
  enddo
  skip -1
  X = 1
  do while .NOT. EOF() .AND. sid_no = msid_no
    IF X < 10
      S = STR(X,1)
    ELSE
      S = STR(X,2)
    ENDIF
    mtstruc&S = str(structnum,2)
    mtlay&S = str(laynum,2)
    mlaydes&S = laydesc
    MTDAT&S = str(jobcomno,2)+"/"+ str(jobcompyr,2)
    mlaymat&S = laymatcl
    IF CENTHKL = 0
      MITCENTHKL&S = " "
    ELSE
```

140
mtoenthk&S = str(centthk,5,2)
ENDIF
IF AGAPPLRT = 0
 MTAGGRAT&S = " "
ELSE
 mtaggrat&S = str(agapplrt,3)
ENDIF
mtadmxtp&S = admxtyp
IF ADMXPER = 0
 MTADMXP&S = " "
ELSE
 mtadmxp&S = str(admxper,5,2)
ENDIF
IF ASAPPLRT = 0
 MTAPPRT&S = " "
ELSE
 mtapplrt&S = str(asapplrt,4,2)
ENDIF
SAVE ALL LIKE MT* TO GETSTC&S
RELEASE ALL LIKE MT*
X = X + 1
MCOUNT = MCOUNT + 1
skip -1
IF BOF()
 SKIP 35
ENDIF
enddo
X = MCOUNT
MCOUNT = MCOUNT - 1
* initialize all variables
DO WHILE X < 14
 IF X < 10
 S = STR(X,1)
 ELSE
 S = STR(X,2)
 ENDIF
 STORE " " TO MISTRUC&S, MITY&S, MIJOEM&S, MIJOBYR&S, MTCE McClk&S,
MTAGGRAT&S, MTADMXTP&S, MTADMXP&S
 STORE " " TO MTAPPRT&S, MDATE&S, MIYDE&S, MIYMAT&S
 SAVE ALL LIKE MT* TO GEISTC&S
 RELEASE ALL LIKE MT*
 X = X + 1
ENDDO

* get the material type and the layer names from the tables
SELECT 6
 USE \PAVEDB\FILES\MATL\TBL
SELECT 7
 USE \PAVEDB\FILES\LAYER\TBL
SELECT 6
MCOUNT = MCOUNT
X = 1
DO WHILE X < 14
 IF X < 10

141
S = STR(X,1)
ELSE
S = STR(X,2)
ENDIF
SELECT 6
TYPE1 = MLAYMAT&S
TYPE2 = "TYPE1"
TYPE3 = TYPE(TYPE2)
IF TYPE3 = "N"
 LOCATE FOR MATCODE = MLAYMAT&S
 IF FOUND()
 MZMATTYP&S = F->MATDESC
 MZLAYDA&S = F->LAYRDES
 ELSE
 MZMATTYP&S = " "
 MZLAYDA&S = " "
 ENDIF
ELSE
 MZMATTYP&S = " "
 MZLAYDA&S = " "
ENDIF
SELECT 7
TYPE1 = MLAYDES&S
TYPE2 = "TYPE1"
TYPE3 = TYPE(TYPE2)
IF TYPE3 = "N"
 LOCATE FOR CODE = MLAYDES&S
 IF FOUND()
 MZLAYDB&S = G->CODE_DESC
 ELSE
 MZLAYDB&S = " "
 ENDIF
ELSE
 MZLAYDB&S = " "
ENDIF
X = X + 1
ENDDO
ELSE
X = 1
DO WHILE X < 14
 IF X < 10
 S = STR(X,1)
 ELSE
 S = STR(X,2)
 ENDIF
STORE " " TO MISTRUC&S, MLAY&S, MICENHKS&S, MTAGGRAT&S, MTADMXP&S, MTAPEXPS
STORE " " TO MTPPRRT&S, MMTAPE&S, MZLAYDA&S, MZLAYDB&S, MZMATTYP&S
SAVE ALL LIKE MT* TO GEITSC&S
RELEASE ALL LIKE MT*
 X = X + 1
ENDDO
STORE 0 TO MZCOUNT
endif
MCOUNT = MCOUNT - 1
close DATABASES
set path to

* get the subgrade file data
use \PAVEDB\FILES\subgrade index \PAVEDB\INDEXES\subgndx
seek str(msid_no,4)
if found() -
 MZplast = str(plastix,4,1)
 MZliqlim = str(liqlim,4,1)
 MZtxtrl = str(txtriaxl,3,1)
ELSE
 MZplast = ""
 MZliqlim = ""
 MZtxtrl = ""
endif

close all

* save all the variables to file
save all like MZ* to getstruc
RELEASE ALL LIKE MZ*
return
* * * PROGRAM LISTING * * *
* SUBSYSTEM: PRINT SUMMARY REPORT
* PROGRAM NAME: GETENVIR.PRG 01/26/88
* PROJECT 2456 - TEXAS FLEXIBLE PAVEMENT DATABASE CONVERSION
* TAMU/TII
* AUTHOR: TREVOR X. PEREIRA
* PURPOSE: TO GET DATA FOR THE ENVIRONMENT SECTION OF THE REPORT FROM
* THE FOLLOWING FILES: 1) WEATHER dBASE FILE
* 2) ENVIRONMENT dBASE FILE
*
@ 10, 5 SAY "Getting Environment Summary data"

* get data from the environment file
USE \PAVEDB\FILES\ENV INDEX \PAVEDB\INDEXES\ENV
SEEK MUOCOUNTY
IF FOUND()
 METHORN = STR(THORNOR,4,1)
ELSE
 METHORN = " "
ENDIF

* get data from the weather file
USE \PAVEDB\FILES\WEATHER INDEX \PAVEDB\INDEXES\WEATHER
X = 1
* initialize variables
DO WHILE X < 13
 IF X < 10
 S = STR(X,1,0)
 ELSE
 S = STR(X,2,0)
 ENDIF
 MEMEAN&S = " "
 MEPREC&S = " "
 MWEITFC&S = " "
 MTOITFC&S = " "
 X = X + 1
ENDDO
MEMEAN& = " "
MEPREC& = " "
MWEITFC = " "
MTOITFC = " "

* get file data
SEEK str(MCOUNTY,3)
IF FOUND()
 X = 1
 STORE 0 TO MMITAVER, MEPRECIP, MWEITFC, MTOITFC
 DO WHILE .NOT. EOF() .AND. A->CNTNUM = MCOUNTY
 IF X > 12

144
EXIT
ENDIF
IF X < 10
 S = STR(X,1,0)
ELSE
 S = STR(X,2,0)
ENDIF
MEMEAN&S = STR(AIPMN,3,0)
MEPREC&S = STR(PRECMN,3,1)
MEWFTC&S = STR(WFTCMN,3,0)
MEITFC&S = STR(TFTCMN,3,0)
MTIAVER = MTIAVER + AIPMN
MPRECIP = MPRECIP + PRECMN
MWETITFC = MWETITFC + WFTCMN
MTOTITFC = MTOTITFC + TFTCMN
X = X + 1
SKIP
ENDDO
MTEMP = MTIAVER/12
MEMIAVER = STR(MTEMP,4,1)
MEPRECIP = STR(MPRECIP,4,1)
MWETITFC = STR(MWETITFC,3,0)
MTOTITFC = STR(MTOTITFC,4,1)
ENDIF

USE \PAVEDB\FILES\DISTTEMP
LOCATE FOR DISTTEMP->DISTRICT = MDISTRICT
IF FOUND()
 MTEMPFNC = STR(TEMP0NS,2)
ELSE
 MTEMPFNC = " "
ENDIF

* save all variables to file
SAVE ALL LIKE ME* TO GETENVIR
CLOSE ALL

RETURN
* SUBSYSTEM: PRINT SUMMARY REPORT *
PROGRAM NAME: GETPAVCN.PRG 01/26/88
PROJECT 2456 - TEXAS FLEXIBLE PAVEMENT DATABASE CONVERSION
TAMU/TTP

AUTHOR: TREVOR X. PEREIRA
PURPOSE: TO GET DATA FROM THE VISUAL dBASE FILE TO PRINT OUT THE SUMMARY REPORT.

X = 1
* initialize all variables
DO WHILE X < 7
 IF X < 10
 S = STR(X,1,0)
 ELSE
 S = STR(X,2,0)
 ENDIF
 mpactyr&S = " "
 mprprs&S = " "
 MPRTTN&S = " "
 MPRTTA&S = " "
 MPBLCKN&S = " "
 MPBLCKA&S = " "
 MPALIGN&S = " "
 MPALIGA&S = " "
 MPIDNGN&S = " "
 MPIDNGA&S = " "
 MPBICKN&S = " "
 MPBICKA&S = " "
 X = X + 1
ENDDO

@ 9, 5 SAY "Getting Pavement Condition Survey data"
use \PAVEDB\FILES\visual index \PAVEDB\INDEXES\visual
seek str(msid_no,4)
if found()
 * go to the last record of the sid number in order to get the most current
 * sid number first
 DO WHILE .NOT. EOF() .AND. MSID_NO = SID_NO
 SKIP
 ENDDO
 SKIP -1

 X = 1
 * get the required data and store it in variables
 do while .NOT. EOF() .AND. msid_no = sid_no
 IF X < 10
 S = STR(X,1,0)
 ELSE
 ...
S = STR(X,2,0)
ENDIF
mpactyr&S = str(actyear,2)
mpprs&S = str(prs,3)
DO CASE
 CASE RUTISSV<>0
 MPRTIN&S = STR(RUTISSV,1)
 MPRTTA&S = "SE"
 CASE RUTISSL<>0
 MPRTIN&S = STR(RUTISSL,1)
 MPRTTA&S = "SL"
 CASE RUTIMD<>0
 MPRTIN&S = STR(RUTIMD,1)
 MPRTTA&S = "MD"
 OTHERWISE
 MPRTIN&S = " "
 MPRTTA&S = "
ENDCASE
DO CASE
 CASE BLKCRKMD<>0
 mpblckN&S = STR(blkcrkMD,1)
 MPBLCMK&S = "MD"
 CASE BLKCRKSL<>0
 mpblckN&S = STR(blkcrkSL,1)
 MPBLCMK&S = "SL"
 CASE BLKCRKSV<>0
 mpblckN&S = STR(blkcrksv,1)
 MPBLCMK&S = "SV"
 OTHERWISE
 MPBLCMK&S = " "
 MPBLCMK&S = "
ENDCASE
DO CASE
 CASE ALLGCRMD<>0
 mpALIGN&S = STR(ALLGRMD,1)
 MPALIGA&S = "MD"
 CASE ALLGCRSL<>0
 mpALIGN&S = STR(ALLGRSL,1)
 MPALIGA&S = "SL"
 CASE ALLGCRSV<>0
 mpALIGN&S = STR(ALLGRSV,1)
 MPALIGA&S = "SV"
 OTHERWISE
 MPALIGA&S = " "
 MPALIGA&S = "
ENDCASE
DO CASE
 CASE LONGCRMD<>0
 mpLONGN&S = STR(LONGCRMD,1)
 MPLONGA&S = "MD"
 CASE LONGCRSL<>0
 mpLONGN&S = STR(LONGCRSL,1)
 MPLONGA&S = "SL"
 CASE LONGCRSV<>0
 mpLONGN&S = STR(LONGCRSV,1)
 MPLONGA&S = "SV"
ENDCASE

mpLONGN&S = STR(LONGCRsv,1)

mpLONGA&S = "SE"

OTHERWISE

mpLONGN&S = " "

mpLONGA&S = " "

ENDCASE

DO CASE

CASE TRANCRMD<>0

mpTRANN&S = STR(TRANCRMD,1)

mpTRANA&S = "MD"

CASE TRANCRSL<>0

mpTRANN&S = STR(TRANCRSL,1)

mpTRANA&S = "SL"

CASE TRANCRSV<>0

mpTRANN&S = STR(TRANCRSV,1)

mpTRANA&S = "SE"

OTHERWISE

mpTRANN&S = " "

mpTRANA&S = " "

ENDCASE

DO CASE

CASE SFAI.CRCD = 0

mpcrack&S = " "

CASE SFAI.CRCD = 1

mpcrack&S = " S"

CASE SFAI.CRCD = 2

mpcrack&S = "PS"

CASE SFAI.CRCD = 3

mpcrack&S = "NS"

ENDCASE

DO CASE

CASE PATCHGD<>0

mpPATCHN&S = STR(PATCHGD,1)

mpPATCHA&S = "G"

CASE PATCHFR<>0

mpPATCHN&S = STR(PATCHFR,1)

mpPATCHA&S = "F"

CASE PATCHFR<>0

mpPATCHN&S = STR(PATCHFR,1)

mpPATCHA&S = "F"

OTHERWISE

mpPATCHN&S = " "

mpPATCHA&S = " "

ENDCASE

mpfailml&S = str(failmile,1)

X = X + 1

skip -1

IF BOF()

SKIP 35

ENDIF

enddo
endif

use
* save the variables to file
save all like mp* to getpavcn
return
* Subsystem: Print Summary Report
* Program Name: GETSKID.PRG 01/26/88
* Project 2456 - Texas Flexible Pavement Database Conversion
* TAMU/TTI
* Author: Trevor X. Pereira
* Purpose: To get data from the following files:
* 1) Skid database file
* 2) Dynaflect database file
* 3) Falling weight database file

* Get Skid Data

@ 11, 5 SAY "Getting the Skid data"
X = 1
DO WHILE X < 7
 S = STR(X,1)
 MKDATE$ = " "
 MKMEAN$ = " "
 MKHIGH$ = " "
 MLOW$ = " "
 X = X + 1
ENDDO

USE \PAVEDB\FILES\SKID INDEX \PAVEDB\INDEXES\SKID
SEEK str(MSID_NO,4)
IF FOUND()
 DO WHILE .NOT. EOF() .AND. SID_NO = MSID_NO
 SKIP
 ENDDO
 SKIP -1
 X = 1
 DO WHILE .NOT. EOF() .AND. SID_NO = MSID_NO
 IF X > 6
 EXIT
 ENDF
 S = STR(X,1)
 MYEAR = STR(YEAR,2)
 MMONIH = STR(MONIH,2)
 MKDATE$ = MMONIH +"/"+ MYEAR
 MKMEAN$ = STR(SKIDNUMM,2)
 MKHIGH$ = STR(SKIDNUMH,2)
 MLOW$ = STR(SKIDNUML,2)
 X = X + 1
 SKIP -1
 IF EOF()
 SKIP 18
 ENDDO
ENDIF

150
EXIT
ENDIF
ENDIF
ENDDO
SAVE ALL LIKE MK* TO GETSKID

* GET DYNAFLCT DATA

@ 12, 5 SAY "Getting the Dynaflect data"
USE \PAVEDB\FILES\DYNAFLCT INDEX \PAVEDB\INDEXES\DYNAFLCT
SEEK STR(MSID_NO,4)
IF FOUND()
 MDAY = LTRIM(STR(DAY,2))
 MMMONTH = LTRIM(STR(MONTH,2))
 MYEAR = STR(YEAR,2)
 MDDATE = MMMONTH + "/" + MDAY + "/" + MYEAR
 MW1 = 0
 MW2 = 0
 MW3 = 0
 MW4 = 0
 MW5 = 0
DO WHILE .NOT. EOF() .AND. SID_NO = MSID_NO
 MW1 = MW1 + SENS1RD
 MW2 = MW2 + SENS2RD
 MW3 = MW3 + SENS3RD
 MW4 = MW4 + SENS4RD
 MW5 = MW5 + SENS5RD
 SKIP
ENDDO
MW1 = MW1/14
MW2 = MW2/14
MW3 = MW3/14
MW4 = MW4/14
MW5 = MW5/14
MDD = "D"
MDW1 = STR(MW1,5,2)
MDW2 = STR(MW2,5,2)
MDW3 = STR(MW3,5,2)
MDW4 = STR(MW4,5,2)
MDW5 = STR(MW5,5,2)
ELSE
 MDW1 = " "
 MDW2 = " "
 MDW3 = " "
 MDW4 = " "
 MDW5 = "
 MDD = " "
 MDDATE = "
ENDIF
SAVE ALL LIKE MD* TO GETDyna

* GET FALLING WEIGHT DATA

@ 13, 5 SAY "Getting Falling Weight data"
USE \\PAVEDB\\FILES\\FALLIGHT INDEX \\PAVEDB\\INDEXES\\FALLIGHT
SEEK STR(MSID NO,4)
IF FOUND()
 MDAY = LTRIM(STR(DAY,2))
 MMONTH = LTRIM(STR(MONTH,2))
 MYEAR = STR(YEAR,2)
 MDATE = MMONTH + "/" + MDAY + "/" + MYEAR
 MW1 = SSIGP11+SSIGP21+SSIGP31+SSIGP41+SSIGP51
 MW2 = SSIGP12+SSIGP22+SSIGP32+SSIGP42+SSIGP52
 MW3 = SSIGP13+SSIGP23+SSIGP33+SSIGP43+SSIGP53
 MW4 = SSIGP14+SSIGP24+SSIGP34+SSIGP44+SSIGP54
 MW5 = SSIGP15+SSIGP25+SSIGP35+SSIGP45+SSIGP55
 MW6 = SSIGP16+SSIGP26+SSIGP36+SSIGP46+SSIGP56
 MW7 = SSIGP17+SSIGP27+SSIGP37+SSIGP47+SSIGP57
 MW1 = MW1/5
 MW2 = MW2/5
 MW3 = MW3/5
 MW4 = MW4/5
 MW5 = MW5/5
 MW6 = MW6/5
 MW7 = MW7/5
 MFW1 = STR(MW1,5,2)
 MFW2 = STR(MW2,5,2)
 MFW3 = STR(MW3,5,2)
 MFW4 = STR(MW4,5,2)
 MFW5 = STR(MW5,5,2)
 MFW6 = STR(MW6,5,2)
 MFW7 = STR(MW7,5,2)
 MFD = "F"
ELSE
 MFW1 = " "
 MFW2 = "
 MFW3 = "
 MFW4 = "
 MFW5 = "
 MFW6 = "
 MFW7 = "
 MFD = "
ENDIF
SAVE ALL LIKE MF* TO GETFALL
CLOSE DATABASES
RETURN
* SUBSYSTEM: PRINT SUMMARY REPORT
* PROGRAM NAME: PRNTREPT.PRG 02/02/88
* MODIFIED ON: 09/08/88
* PROJECT 2456 - TEXAS FLEXIBLE PAVEMENT DATABASE CONVERSION
* TAMU/TTI
* AUTHOR: TREVOR X. PEREIRA
* PURPOSE: TO PRINT OUT THE SUMMARY REPORT USING THE DATA STORED IN MEMORY VARIABLE FILES.
*
STORE "N" TO MANSWER
CLEAR
ON ERROR DO \PAVEDB\REPORTS\ERR_PRINT
SET PRINT TO IMPORT
ON ERROR DO \PAVEDB\ERROR
@ 10, 10 SAY "Printing report for SID " + STR(MSID_NO,4)
mdate = dtoc(date())
SET DEVICE TO PRINT
@ 1,115 say "Date: " + mdate
@ 2, 0 say " "
@ 3, 0 say "LOCATION 20 YEAR SUMMARY (1955-1974)"

* PRINT LOCATION SECTION

RESTORE FROM GETLOCAT ADDITIVE
@ 4, 0 SAY " " SECTION ID NO: "+LITRIM(STR(MSID_NO,4))
@ 4, 47 SAY " "
@ 4, 131 SAY " "
@ 5, 0 SAY " " DISTRICT NO: "+MLHWYDST
RELEASE MLHWYDST
@ 5, 47 SAY " "
@ 5, 72 SAY "JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC ANN"
@ 6, 0 SAY " " COUNTY NO/NAME: "+MLCNTYNM+"/"+MLCNTYNAM

* PRINT ENVIRONMENT SECTION

RESTORE FROM GETENVIR ADDITIVE
@ 6, 47 SAY " " THORNHWAITE INDEX: - - - - - - -
@ 6, 122 SAY METHORN
@ 6, 131 SAY " "
@ 7, 0 SAY " " CONTROL-SECTION: "+MLCONISEC
@ 7, 47 SAY " " MEAN TEMPERATURE: "+MEMEAN1+" "+MEMEAN2+" "+MEMEAN3+"
"+MEMEAN4+" "+MEMEAN5+" "+MEMEAN6+" "+MEMEAN7"
@ 7, 100 SAY MEMEAN8+" "+MEMEAN9+" "+MEMEAN10+" "+MEMEAN11+" "+MEMEAN12+"
"+MEMEWAVER
@ 7, 131 SAY ""
@ 8, 0 SAY "" | HIGHWAY: "+MLHWY
@ 8, 47 SAY "" | PRECIPITATION:
@ 8, 72 SAY MEPREC1+" "+MEPREC2+" "+MEPREC3+" "+MEPREC4+" "+MEPREC5+"
"+MEPREC6+" "+MEPREC7+" "+MEPREC8+" "+MEPREC9
@ 8, 108 SAY MEPREC10+" "+MEPREC11+" "+MEPREC12+" "+MEPREC
@ 8, 131 SAY ""
@ 9, 0 SAY "" | MILE POSTS: "+MLPOST
@ 9, 47 SAY "" | WET F-T CYCLES:
@ 9, 72 SAY MWFTC1+" "+MWFTC2+" "+MWFTC3+" "+MWFTC4+" "+MWFTC5+"
"+MWFTC6+" "+MWFTC7+" "+MWFTC8+" "+MWFTC9
@ 9, 108 SAY MWFTC10+" "+MWFTC11+" "+MWFTC12+" "+MWFTF
@ 9, 131 SAY ""
@ 10, 0 SAY "" | LANE: "+MLLANEID
@ 10, 47 SAY "" | TOTAL F-T CYCLES:
@ 10, 72 SAY METFC1+" "+METFC2+" "+METFC3+" "+METFC4+" "+METFC5+"
"+METFC6+" "+METFC7+" "+METFC8+" "+METFC9
@ 10, 108 SAY METFC10+" "+METFC11+" "+METFC12+" "+MET
@ 10, 131 SAY ""
@ 11, 0 SAY "" | PREVIOUS SID: "+MLPREVSD
@ 11, 47 SAY "" | DIST TEMP CONSTANT: - - - - - - - - - - - -
@ 11, 131 SAY ""
RELEASE ALL LIKE ML*
@ 11, 131 SAY ""
@ 12, 0 SAY "" | NEXT SID: "+MLNEXTSD
@ 12, 47 SAY "" |
@ 12, 131 SAY ""
@ 13, 0 SAY "" | FUNCTIONAL CLASS: "+MLFUNCLS
@ 13, 47 SAY "" |-----------------------------

@ 14, 0 SAY "" | TYPE OF PAVEMENT: "+MLBASETYP
@ 14, 47 SAY " "
@ 15, 0 SAY " " "+MLBASEHK
@ 15, 47 SAY " "-----------------------------

@ 16, 0 SAY ""
@ 16, 22 SAY " " "+MLBASESEAL
@ 16, 47 SAY " " TRAFFIC"
@ 16, 85 SAY " " SERVICEABILITY INDEX"
@ 16, 131 SAY ""
@ 17, 0 SAY ""
@ 17, 47 SAY ""
@ 17, 22 SAY MLWIDEN
@ 17, 85 SAY ""
@ 17, 131 SAY ""
RELEASE ALL LIKE ML*

* PRINT TRAFFIC SECTION

RESTORE FROM GETTRAFFIC ADDITIVE
@ 18, 0 SAY ""

154
SAY "I " I "M YEAR " ADI:"
SAY " M YEAR " ADI:
SAY "I YR MEAN STD DEV N CV LOW HIGH "
SAY "I PERCENT TRUCKS:"
SAY "I M YEAR " ADI:"

* PRINT SERVICEABILITY SECTION

RESTORE FROM GETSERVC ADDITIVE
SAY "I M YEAR + M YEAR " ADI:"
SAY "M YEAR " ADI:
SAY "I M YEAR + M YEAR " ADI:

* PRINT PAVEMENT CONDITION SURVEY SECTION

RESTORE FROM GETPAVCN ADDITIVE
SAY "I M YEAR + M YEAR " ADI:"
SAY "M YEAR " ADI:
SAY "I M YEAR + M YEAR " ADI:

155
"+MPGRTIN3+MPGRTTA3" "+MPGRTIN4+MPGRTTA4" "+MPGRTIN5+MPGRTTA5" "
@ 26, 41 SAY "MPGRTING+MPGRTTA6" "
@ 27, 0 SAY "| BLOCK CR "+MPBLCKN1+MPBLCKA1" "+MPBLCKN2+MPBLCKA2" "+MPBLCKN3+MPBLCKA3" "+MPBLCKN4+MPBLCKA4" "
@ 27, 36 SAY "MPBLCKN5+MPBLCKA5" "+MPBLCKN6+MPBLCKA6" "
@ 27, 47 SAY "| "
@ 27, 79 SAY "| "
@ 28, 0 SAY "| ALLIG CR "+MPAIIGN1+MPAILGA1" "+MPAIIGN2+MPAILGA2" "+MPAIIGN3+MPAILGA3" "+MPAIIGN4+MPAILGA4" "
@ 28, 36 SAY "MPAIIGN5+MPAILGA5" "+MPAIIGN6+MPAILGA6" "|
RELEASE ALL LIKE MPPR5?, MPPR6?, MPBLKN?, MPACTYR?
@ 28, 47 SAY "| SKID NUMBER"
@ 28, 76 SAY "| DEFLECTION (MEAN VARIABLES)"
@ 28, 131 SAY "|
@ 29, 0 SAY "| LONG CR "+MPLONGN1+MPLONGA1" "+MPLONGN2+MPLONGA2" "+MPLONGN3+MPLONGA3" "+MPLONGN4+MPLONGA4" "
@ 29, 36 SAY "MPLONGN5+MPLONGA5" "+MPLONGN6+MPLONGA6" |
@ 29, 52 SAY "DATE AVG LOW HIGH | |
@ 29, 131 SAY "|
@ 30, 0 SAY "| TRANS CR "+MPTRAN1+MPTRAN1+" "+MPTRAN2+MPTRAN2+" "+MPTRAN3+MPTRAN3+" "+MPTRAN4+MPTRAN4+" "
@ 30, 36 SAY "MPTRAN5+MPTRAN5+" "+MPTRAN6+MPTRAN6+" |
RELEASE ALL LIKE MPAILG*, MPLONG*, MPTRAN*

* PRINT SKID DATA

RESTORE FROM GETSKID ADDITIVE
@ 30, 51 SAY "MDDATE1"
@ 30, 60 SAY "MRMEAN1+" "+MKLOW1+" "+MKHIGH1"
@ 30, 76 SAY "| DATE D W1 W2 W3 W4 W5 W6 W7 |
@ 31, 0 SAY "| CRACKS "+MCRAK1+" "+MCRAK2+" "+MCRAK3+" "+MCRAK4+" "+MCRAK5+" "+MCRAK6"
@ 31, 47 SAY "|
@ 31, 51 SAY "MDDATE2"
@ 31, 60 SAY "MRMEAN2+" "+MKLOW2+" "+MKHIGH2"
@ 31, 76 SAY "|

* PUT IN DEFLECTION DATA

RESTORE FROM GETDYNA ADDITIVE
@ 31, 79 SAY "MDDATE"
@ 31, 88 SAY "MD+" "+MDW1+" "+MDW2+" "+MDW3+" "+MDW4+" "+MDW5"
RELEASE ALL LIKE MD*
@ 31, 131 SAY "|
@ 32, 0 SAY "| PATCHING "+MPATC1+" "+MPATC2+" "+MPATC3+" "+MPATC4+" "+MPATC5+" "+MPATC6+"
@ 32, 36 SAY "MPATC5+" "+MPATC6+" |
@ 32, 51 SAY "MDDATE3"
@ 32, 60 SAY "MRMEAN3+" "+MKLOW3+" "+MKHIGH3"
@ 32, 76 SAY "|
RESTORE FROM GETFALL ADDITIVE
@ 32, 79 SAY "MDDATE"
RELEASE ALL LIKE MF*
@ 32, 131 SAY "|
@ 33, 0 SAY " | FAIL/MF "+MPFAIIML1+" "+MPFAIIML2+" "+MPFAIIML3+" "+MPFAIIML4+" "+MPFAIIML5+" "+MPFAIIML6+" |
RELEASE ALL LIKE MF*
@ 33, 51 SAY MKDATE4
@ 33, 60 SAY MKMEAN4+" "+MKLOW4+" "+MKHIGH4
@ 33, 76 SAY " |
@ 33, 131 SAY "|
@ 34, 0 SAY " |
@ 34, 47 SAY " |
@ 34, 51 SAY MKDATE5
@ 34, 60 SAY MKMEAN5+" "+MKLOW5+" "+MKHIGH5
@ 34, 76 SAY " |
@ 34, 131 SAY " |
@ 35, 0 SAY " |
@ 35, 47 SAY " |
@ 35, 51 SAY MKDATE6
@ 35, 60 SAY MKMEAN6+" "+MKLOW6+" "+MKHIGH6
RELEASE ALL LIKE MK*
@ 35, 76 SAY " |
@ 35, 131 SAY "|
@ 36, 0 SAY " |
@ 36, 47 SAY " |
@ 36, 76 SAY " |
@ 36, 131 SAY " |
@ 37, 0 SAY " |
| __ |
@ 37, 78 SAY " |
@ 39, 0 SAY " |

@ 40, 0 SAY "STRUCTURAL SECTION"
@ 40, 60 SAY "AGG. ———ADMIXTURE—— APPL THICK"
@ 40, 131 SAY "|
@ 41, 0 SAY " | LAYER STRUCTURE DESCRIPTION DATE MATERIAL TYPE
RATE TYPE PCNT RATE CENT TTC IL PI"
@ 41, 131 SAY "|

* PRINT STRUCTURAL SECTION

RESTORE FROM GETSTRUC ADDITIVE
X = 1
MROW = 42
DO WHILE X < 14
 IF X < 10
 S = STR(X,1)
 ELSE
 S = STR(X,2)
 ENDF
 RESTORE FROM GETSTCS ADDI
 @ MROW, 0 SAY "| "+MTLAY&S
@ MROW, 12 SAY MISTRUC&S
@ MROW, 21 SAY MZLAYD&S
@ MROW, 24 SAY MZLAYDB&S
@ MROW, 31 SAY MIDATE&S
@ MROW, 38 SAY MZMAITYP&S
@ MROW, 60 SAY MITAGGRAT&S
@ MROW, 65 SAY MIZADMXP&S
@ MROW, 78 SAY MIZADMXP&S
@ MROW, 85 SAY MZAPPLRT&S
@ MROW, 91 SAY MTCENIH&S
IF MZCOUNT = X
 @ MROW, 101 SAY MZTXTRL
 @ MROW, 108 SAY MZLIQLIM
 @ MROW, 114 SAY MZPLAST
ENDIF
REIE ALL LIKE MZ*
MFILE = "GETISTIC" + S + ".MEM"
DEIE FILE &MFILE
@ MROW, 131 SAY ":"
X = X + 1
MROW = MROW + 1
ENDDO
REIESE ALL LIKE MZ*

@ 55, 0 SAY ":"
@ 55, 131 SAY ":"
@ 56, 0 SAY
"|---|

* AT END DELETE ALL MEM FILES

CLEAR
SET PRINT OFF
SET DEVICE TO SCREEN
DELETE FILE GETENVIR.MEM
DELETE FILE GETLOCAT.MEM
DELETE FILE GETSKID.MEM
DELETE FILE GETPAVCN.MEM
DELETE FILE GETSERVC.MEM
DELETE FILE GETTRAFF.MEM
DELETE FILE GETISTRUC.MEM
DELETE FILE GTETDYNA.MEM
DELETE FILE GETFALL.MEM

@ 15, 20 SAY "DONE"
RETURN
PROGRAM LISTING

* SUBSYSTEM: PRINT SUMMARY REPORT
* PROGRAM NAME: SUM2DIST.PRG 02/04/88
* PROJECT 2456 - TEXAS FLEXIBLE PAVEMENT DATABASE CONVERSION
* TAMU/TTI
* AUTHOR: TREVOR X. PEREIRA
* PURPOSE: TO PRINT OUT THE INVENTORY UPDATE REPORT. THE FOLLOWING
 PROGRAMS ARE CALLED:
 - GETLOCT2.PRG
 - PRITREPT2.PRG
 - PRITREPT3.PRG

* the program first gets all the SID numbers for the particular district and
* stores them in a temporary file. Then data for each SID number is stored
* in memory variable files. When the report is printed out, the appropriate
* files with the variables are opened and deleted when done with them. This
* process continues for each SID number in the temporary file.

* set all parameters
CLOSE DATABASES
CLEAR
SET PRINTER TO &IMPORT2
PUBLIC MSID NO, VALID, MOUNTY, MDISTRICT
DEVICEON = "SET DEVICE TO PRINT"
DEVICEOFF = "SET DEVICE TO SCREEN"
STORE " " TO MQUIT, MDISTIT
STORE .F. TO VALID
STORE 0 TO MSID NO, MDISTIT

* get the sid number
DO WHILE .NOT. VALID
 CLEAR
 CLEAR TYPEAHEAD
 @ 10, 5 SAY " "
 ACCEPT "Please enter District number: " TO MDISTIT
 IF READKEY() = 12
 CLEAR
 RETURN
 ENDIF
 MDIST = VAL(MDISTIT)
 @ 10, 0 CLEAR

 * Get all SID_NO's for the required district and store them to a temporary
 * dBASE file
 SELECT 1
 USE \PAVEDB\FILES\LOCATION index \PAVEDB\INDEXES\locsid
 SELECT 2
 IF .NOT. FILE('\PAVEDB\FILES\SIDSTOR2.DBF')
 CLEAR
 ? "Temporary SID storage file (SIDSTOR2.DBF) not found. Please
check . . ."
 WAIT
 RETURN TO MASTER
ENDIF
USE \PAVEDB\FILES\SIDSTOR2
DELETE ALL
PACK

SELECT 1
LOCATE FOR HWYDIST = MDIST
IF .NOT. FOUND()
 @ 12, 5 SAY "Not found. Please try again."
 WAIT
ENDIF
DO WHILE FOUND()
 MSID_NO = A->SID_NO
 SELECT 2
 APPEND BLANK
 REPLACE B->SID_NO WITH MSID_NO
 SELECT 1
 VALID = .T.
 CONTINUE
ENDDO
SELECT 1
USE
SELECT 2
APPEND BLANK
 REPLACE B->SID_NO WITH 0
USE

* Print out the reports
USE \PAVEDB\FILES\SIDSTOR2
MREC = 1
IF SID_NO = 0
 STORE .F. TO GOON
ELSE
 STORE .T. TO GOON
ENDIF
DO WHILE GOON
 MSID_NO = SID_NO
 DO \PAVEDB\REPORT\GETLOCT2
 DO \PAVEDB\REPORT\PKREFT2
 DO \PAVEDB\REPORT\PKREFT3
 MREC = MREC + 1
 USE \PAVEDB\FILES\SIDSTOR2
 GOTO MREC
 IF SID_NO = 0
 GOON = .F.
 ENDIF
 CLEAR
ENDDO
SELECT 1
USE
SELE 2
USE
SELE 3
USE

CLOSE DATABASES
SET PRINTER TO LPT1
RELE MSID NO, VALID, MCOUNTY, MDISTRICT
RETURN
* SUBSYSTEM: PRINT INVENTORY UPDATE REPORT
* PROGRAM NAME: SUMM2SID.PRG 01/21/88
* PROJECT 2456 - TEXAS FLEXIBLE PAVEMENT DATABASE CONVERSION
* TAMU/TTI
* AUTHOR: TREVOR X. PEREIRA
* PURPOSE: TO PRINT OUT THE INVENTORY UPDATE REPORT. THE FOLLOWING
* PROGRAMS ARE CALLED:
* - GETLOC2.PRG
* - PRIREPT2.PRG
* - PRIREPT3.PRG
*
* the program first gets all the data and stores it in separate files
* using memory variables. When the report is printed out, the appropriate
* files with the variables are opened and closed when done with them.
*
* set all parameters
SET TALK OFF
SET ECHO OFF
CLOSE DATABASES
CLEAR
DEVICEON = "SET DEVICE TO PRINT"
DEVICEOFF = "SET DEVICE TO SCREEN"
SET PRINTER TO &IMPORT2
PUBLIC MSID NO, VALID, MCOUNTY, MDISTRICT
STORE " " TO MQUIT
STORE .F. TO VALID
STORE 0 TO MSID_NO
*
* get the sid number
DO WHILE .NOT. VALID
 CLEAR
 @ 10, 5 SAY " "
 ACCEPT "Please enter Section Identification (SID) number: " TO SID_NO
 IF READKEY() = 12
 CLEAR
 RETURN
 ENDIF
 @ 0, 0 CLEAR
 MSID_NO = VAL(SID_NO)
 *
 * check the sid number
 STORE 0 TO VAR1, VAR2, VAR3, COMPARE
*
 * calculates the correct Sid Number
 VAR1 = INT(MSID_NO/1000)
 VAR2 = MOD(INT(MSID_NO/100),10)
 VAR2 = VAR2 * 2
 VAR3 = MOD(INT(MSID_NO/10),10)
 VAR3 = VAR3 * 3
VAR4 = MOD(VAR1,10)+VAR2+VAR3
COMPARE = MOD(VAR4,10)

* compares calculated Sid number with Sid number entered
IF COMPARE = MOD(MSID NO,10)
 STORE .T. TO VALID
ELSE
 @ 19, 10 SAY "Invalid SID Number"
 WAIT
 @ 18, 10 CLEAR
ENDIF

* verifies that Sid number has been entered
IF MSID NO = 0
 STORE .F. TO VALID
 @ 19, 10 SAY "Invalid SID Number"
 WAIT
 @ 18, 10 CLEAR
ENDIF
ENDDO

* get all the data and print the report
IF VALID
 CLEAR
 DO \PAVEDB\REPORTS\GETLOC2
 DO \PAVEDB\REPORTS\PRTREP2
 DO \PAVEDB\REPORTS\PRTREP3
ENDIF

RELEASE MSID NO, VALID, MCOUNTY, MDISTRICT
CLOSE DATABASES
RETURN
MSID NO = SID NO
DO \PAVEDB\REPORTS\GETLOCT2
DO \PAVEDB\REPORTS\PRIREPT2
DO \PAVEDB\REPORTS\PRIREPT3
MREC = MREC + 1
USE \PAVEDB\FILES\LOCATN2
GOTO MREC
IF SID NO = 0
 GOON = .F.
ENDIF
CLEAR
ENDDO
SELE 1
 USE
SELE 2
 USE
SELE 3
 USE
CLOSE ALTE
RELEASE MSID NO, MCOUNT, MDISTRICT
CLOSE DATABASES
RETURN
PROGRAM LISTING

* * SUBSYSTEM: PRINT INVENTORY UPDATE REPORT
* * PROGRAM NAME: SUM2FILE.PRG 06/14/88
* PROJECT 2456 - TEXAS FLEXIBLE PAVEMENT DATABASE CONVERSION
* TAMU/TTI
* AUTHOR: TREVOR X. PEREIRA
* PURPOSE: TO PRINT OUT THE INVENTORY UPDATE REPORT FOR ALL THE SID
* NUMBERS. THE FOLLOWING PROGRAMS ARE CALLED:
* *
* GETLOCT2.PRG
* PRIREPT2.PRG
* PRIREPT3.PRG
* *
* the program first gets all the data and stores it in separate files
* using memory variables. When the report is printed out, the appropriate
* files with the variables are opened and closed when done with them.
* THE REPORT FOR EACH SID IS PRINTED OUT TO A FILE.
*
* set all parameters
SET TALK OFF
SET ECHO OFF
CLOSE DATABASES
CLEAR
SET PRINTER TO &IMPORT2
DEVICEON = "SET DEVICE TO PRINT"
DEVICEOFF = "SET DEVICE TO SCREEN"
PUBLIC MSID_NO, MCOUNTY, MDISTRICT
STORE " " TO MQUIT
STORE 0 TO MSID_NO
*
* get the sid number
IF FILE("\PAVED\FILES\LOCATN2.DBF")
 DELE FILE \PAVED\FILES\LOCATN2.DBF
ENDIF
COPY FILE \PAVED\FILES\LOCATION.DBF TO \PAVED\FILES\LOCATN2.DBF
USE \PAVED\FILES\LOCATN2
APPEND BLANK
REPLACE SID_NO WITH 0
GOTO TOP
MREC = 1
IF SID_NO = 0
 STORE .F. TO GOON
ELSE
 STORE .T. TO GOON
ENDIF
CLEAR
DO WHILE GOON
 IF READKEY() = 12
 CLEAR
 RETURN
 ENDIF
PROGRAM LISTING

* SUBSYSTEM: PRINT INVENTORY UPDATE REPORT
* PROGRAM NAME: GETIDC2.PRG 02/04/88
* PROJECT 2456 - TEXAS FLEXIBLE PAVEMENT DATABASE CONVERSION
* TAMU/TTI
* AUTHOR: TREVOR X. PEREIRA
* PURPOSE: TO GET DATA FROM THE FOLLOWING FILES TO PRINT THE SUMMARY
* REPORT:
 1) LOCATION DBASE FILE
 2) LAYER IDENTIFICATION DBASE FILE
 3) SUBGRADE LAYER DBASE FILE
 4) SURFACE LAYER DBASE FILE
 5) GEOMETRIC & SHOULDER INFO LAYER DBASE FILE
 6) LAYER THICKNESS ACROSS THE ROAD

* GET LOCATION PART OF THE REPORT AND STORE THE DATA IN A FILE

@ 2,14 SAY "PROCESSING SID NUMBER " + STR(MSID_NO,4)
@ 5, 5 SAY "Getting data for the Location section of the report"

close all

* assign databases to different work areas
SELECT 1
use \PAVEDB\FILES\location INDEX \PAVEDB\INDEXES\LOCSID

SELECT 2
USE \PAVEDB\FILES\CNTYTBBL INDEX \PAVEDB\INDEXES\CNTYTBBLNO

* locate for the requested sid number
SELECT 1
seek msid no
if .not. found()
 okay = .F.
 clear
 @ 19, 10 say "SID number not found. Please try again ..."
 WAIT
 @ 18, 10 CLEAR
 RETURN
else
 okay = .T.
endif
STORE 0 TO MCOUNTY
STORE 0 TO MDISTRICT

* if the sid number is found, get all the required data
if okay
 n1hwydst = LTRIM(STR(hwydist,2))
 MDISTRICT = HWYDIST
MCOUNTY = CNTYNUM
mclntyrm = LITRIM(SIR(cntyrm, 3))
SELECT 2
SEEK A->CNTYNUM
IF FOUND()
 MLCNTYNUM = LITRIM(CNTYNAME)
ENDIF
SELECT 1
mcontrol = LITRIM(SIR(control, 4))
msectn = LITRIM(SIR(section, 2))
MLCONSEC = MCONTROL + "-" + MSECIN
MINUMIAN = LITRIM(SIR(NUMIANES, 2))
mprefix = hwyprefix
mhymnum = LITRIM(SIR(hymnnum, 4))
msuffix = hwy_suffix
MLHWY = MPREFIX + " " + LITRIM(MHWYNUM) + " " + MSUFFIX
MBEGP = LITRIM(SIR(BEGMST, 3))
MBEGD =
 RIGHT((STUFF(SIR(BEGMSTDIS, 2), 1, (2-LEN(LITRIM(SIR(BEGMSTDIS, 2))))), "0")), 2)
MPOSTB = MBEGP+EDISSIGN+MBEGD
MEND =
 RIGHT((STUFF(SIR(BEGMSTDIS, 2), 1, (2-LEN(LITRIM(SIR(BEGMSTDIS, 2))))), "0")), 2)
MENDP = LITRIM(SIR(ENDMST, 3))
MPOSTE = MENDP+EDISSIGN+MENDD
MLPOST = MPOSTB+" "+MPOSTE
IF ACTIVFLAG
 MLINACTV = "NO"
ELSE
 MLINACTV = "YES"
ENDIF
mlbegmn = LITRIM(SIR(begmpnt, 6, 3))
mlendmn = LITRIM(SIR(endmpnt, 6, 3))
mlaneid = laneid
IF PREVSID = 0
 MLPREVSD = "-"
ELSE
 MLPREVSD = LITRIM(SIR(prevsid, 4))
ENDIF
IF NEXTSID = 0
 MLNEXTSD = "-"
ELSE
 MLNEXTSD = LITRIM(SIR(nextsid, 4))
ENDIF
MLFUNCIS = LITRIM(SIR(FUNCIS, 2))
endif
SELECT 1
USE
SELECT 2
USE

* get PAVEMENT INFORMATION FROM geometric and shoulder LAYER FILE

SELECT 1
use \PAVEDB\FILES\geoshp index \PAVEDB\INDEXES\geonidx

SELECT 2
USE \PAVEDB\FILES\PAVETYPE

SELECT 1
LOCATE FOR SID_NO = msid_no .AND. STRUCNUM = 1
if found()
 DO CASE
 CASE WIDENFLG = 0
 MLWIDEN = "NO WIDENING"
 CASE WIDENFLG = 1
 MLWIDEN = "WIDENING"
 CASE WIDENFLG = 2
 MLWIDEN = "UNUSUAL WIDENING"
 ENDCASE
 MPAVEM = PAVETYPE
SELECT 2
LOCATE FOR PAVECODE = MPAVEM
IF FOUND()
 MLBASETYP = LIRIM(BASETYPE)
 MLBASETHK = LIRIM(BASETHK)
 MLBASESEAL = LIRIM(BASESEAL)
ELSE
 MLBASETYP = " "
 MLBASETHK = " "
 MLBASESEAL = " "
ENDIF
ELSE
 MLWIDEN = " "
 MLBASETYP = " "
 MLBASETHK = " "
 MLBASESEAL = " "
ENDIF
* save all location variables to a file
SAVE ALL LIKE ML TO GETLOCT2
RELEASE ALL
SELE 1
USE
SELE 2
USE

* GET LAYER THICKNESS ACROSS THE ROAD INFORMATION

USE \PAVEDB\FILES\LAYTHICK INDEX \PAVEDB\INDEXES\LAYINDX
SEEK STR(MSID_NO,4)
IF FOUND()
 DO WHILE .NOT. EOF() .AND. SID_NO = MSID_NO
 SKIP
 ENDDO
 SKIP -1
DO CASE
 CASE FC3DIS <> 0
 MDIHICK = STR(FC3DIS,4,1)
 CASE FC2DIS <> 0
 MDIHICK = STR(FC2DIS,4,1)
 CASE FC1DIS <> 0
 MDIHICK = STR(FC1DIS,4,1)
 OTHERWISE
 MDIHICK = " "
 ENDCASE
ELSE
 MDIHICK = " "
ENDIF
SAVE ALL LIKE MD* TO GETDISING
RELEASE ALL LIKE MD*

* GET OTHER GEOMETRIC AND SHOULDER INFORMATION

USE \PAVEDB\FILES\geosho INDEX \PAVEDB\INDEXES\geondx
SEEK STR(msid_no,4)
X = 0
DO WHILE X < 16
 IF X < 10
 S = STR(X,1)
 ELSE
 S = STR(X,2)
 ENDIF
 MGLANEDW&S = " "
 MGOUTSH&D&S = " "
 MGSHDSUR&S = " "
 MGSHDSE&S = " "
 MGSHDSFT&S = " "
 MGSHDBST&S = " "
 MGNUMLAN&S = " "
 MGSTARC&S = " "
 MGPAVE&S = " "
 MGWDEN&S = " "
 X = X + 1
ENDDO

IF found()
 X = 0
 DO WHILE .NOT. EOF() .AND. SID_NO = MSID_NO
 IF X > 15
 EXIT
 ENDIF
 IF X < 10
 S = STR(X,1)
 ELSE
 S = STR(X,2)
 ENDIF
 MGLANEDW&S = STR(LANEWID,4,1)
END
MGETLHDS = STR(OUTSHOWD,4,1)
MSGHDSURS = STR(SHOSFTYP,1)
MGSHDBSE&S = STR(SHOBSTYP,2)
MGSHDSFT&S = STR(SHOSFTYP,5,2)
MGSHDBST&S = STR(SHOBSTYP,5,2)
MGSTRUC&S = STR(STRUCNUM,2)
MGPAVE&S = STR(PAVETYP,2)
MGWIDEN&S = STR(WIDENFLG,1)
X = X + 1
SKIP
ENDDO
ELSE
SAVE ALL LIKE MG* TO GETGEOSH
RELEASE ALL LIKE MG*
USE

* GET STRUCTURAL SECTION OF THE REPORT AND SAVE THE DATA IN VARIABLES

* variable mcount is to find out how many layers there are for the SID #.
* This will help determine the layer the subgrade goes on. This is needed
* if layer # 1 is the top most layer and not the subgrade.

@ 8, 5 SAY "Getting data for the Structural Section"
STORE " " TO MTLAST, MITQLIM, MITXTRL
MOUNT = 1

set path to \pavedb\files, \pavedb\indexes
set view to \pavedb\files\strcsec2
seek str(msid_no,4)

* if the sid number is found, get the required data
if found()
do while .NOT. EOF() .AND. sid_no = msid_no
 skip
endo
skip -1
X = 1
do while .NOT. EOF() .AND. sid_no = msid_no
 IF X < 10
 S = STR(X,1)
 ELSE
 S = STR(X,2)
 ENDIF
mtstruc&S = str(structnum,2)
mtlay&S = str(laynum,2)
mlaydes&S = laydesc
MTDATE&S = str(jobcmon,2)+""+str(jobcmpyr,2)
mlaymat&S = laymatcl
IF WIDENIM = 0 .OR. WIDENLYR = 0
 MWIDAT&S = " "
ELSE
 MWIDEYR = STR(WIDENLYR,2)
MWIDEMO = LTRIM(STR(WIDENIMO,2))
MIWIDAT&S = MWIDEMO+"/"+MWIDEYR
ENDIF
IF CENTTHK = 0
 MICTHKS = "
ELSE
 mtcenthk&S = str(centhk,5,2)
ENDIF
IF AGAPPLRT = 0
 MTAGGRAT&S = "
ELSE
 mtaggrat&S = str(agapplrt,3)
ENDIF
mtadmxtp&S = admxtyp
IF ADMXPER = 0
 MTADMXPR&S = "
ELSE
 mtadmxpr&S = str(admxper,5,2)
ENDIF
IF ASAPPLRT = 0
 MTAPPLRT&S = "
ELSE
 mtapplrt&S = str(asapplrt,4,2)
ENDIF
SAVE ALL LIKE MT* TO GETSTC&S
RELEASE ALL LIKE MT*
X = X + 1
MCOUNT = MCOUNT + 1
skip -1
IF BOF()
 SKIP 35
ENDIF
endo
d Sele 1
use
d Sele 2
use
d Sele 3
use
X = MCOUNT
MCOUNT = MCOUNT - 1
* initialize rest of variables
DO WHILE X < 14
 IF X < 10
 S = STR(X,1)
 ELSE
 S = STR(X,2)
 ENDIF
 STORE " " TO MISTRUC&S, MITYAS&S, MIJOBOY&S, MIJOBOYM&S, MICTHKS, MTAGGRAT&S, MTADMXPR&S
 STORE " " TO MTAPPLRT&S, MTDATE&S, MITYDES&S, MITYMAT&S, MIWIDAT&S
 SAVE ALL LIKE MT* TO GEISTC&S
 RELEASE ALL LIKE MT*
 X = X + 1
* get the material type and the layer names from the tables
SELECT 6
 USE \PAVEDB\FILES\MATLIBL
SELECT 7
 USE \PAVEDB\FILES\LAYERBL
SELECT 6
MZCOUNT = MCOUNT
X = 1
DO WHILE X < 14
 IF X < 10
 S = STR(X,1)
 ELSE
 S = STR(X,2)
 ENDIF
SELECT 6
TYPE1 = MLAYMAT&S
TYPE2 = "TYPE1"
TYPE3 = TYPE(TYPE2)
IF TYPE3 = "N"
 LOCATE FOR MATCODE = MLAYMAT&S
 IF FOUND()
 MZMTYP&S = F->MATDESC
 MZLAYDA&S = F->LAYERDES
 ELSE
 MZMTYP&S = " "
 MZLAYDA&S = " "
 ENDIF
ELSE
 MZMTYP&S = " "
 MZLAYDA&S = "
ENDIF
SELECT 7
TYPE1 = MLAYDES&S
TYPE2 = "TYPE1"
TYPE3 = TYPE(TYPE2)
IF TYPE3 = "N"
 LOCATE FOR CODE = MLAYDES&S
 IF FOUND()
 MZLAYDB&S = G->CODE_DESC
 ELSE
 MZLAYDB&S = " "
 ENDIF
ELSE
 MZLAYDB&S = "
ENDIF
X = X + 1
 ENDDO
ELSE
 * initialize all variables
 X = 1
 DO WHILE X < 14
 IF X < 10
S = STR(X, 1)
ELSE
 S = STR(X, 2)
ENDIF
STORE " " TO MISTRUC&S, MTLAY&S, MTCENHK&S, MTAGGRAT&S, MTADMXP&S,
MZMATTYP&S
STORE " " TO MTAAPLAT&S, MTDATE&S, MLAYDES&S, MLAYMAT&S, MIWDAT&S,
MZLAYDS&S, MZLAYDB&S
SAVE ALL LIKE MT* TO GETSTC&S
RELEASE ALL LIKE MT*
X = X + 1
ENDDO
STORE 0 TO MZCOUNT
endif
MCOUNT = MCOUNT - 1
close DATABASES
set path to

* get the subgrade file data

use \PAVEDB\FILES\subgrade index \PAVEDB\INDEXES\subgnidx
seek str(msid_no,4)
if found()
 MZplast = str(plastix,4,1)
 MZliqlim = str(liqlim,4,1)
 MZtxtrl = str(txtriaxl,3,1)
 MZPRPASS = SIR(PPSV200,4,1)
 MZPERM = SIR(PERMIX,5,2)
ELSE
 MZplast = " "
 MZliqlim = " "
 MZtxtrl = " "
 MZPRPASS = " "
 MZPERM = " "
endif
close all

* save all the variables to file
save all like MZ* to getstruc
RELEASE ALL LIKE MZ*
return
* SUBSYSTEM: PRINT SUMMARY REPORT
* PROGRAM NAME: PRREPT2.PRG 02/04/88
* PROJECT 2456 - TEXAS FLEXIBLE PAVEMENT DATABASE CONVERSION
* TAMU/TII
* AUTHOR: TREVOR X. PEREIRA
* PURPOSE: TO PRINT OUT THE INVENTORY UPDATE REPORT USING THE DATA
STORED
* IN MEMORY VARIABLE FILES.

CLEAR
@ 10, 5 SAY "Printing report One (Inventory Update Sheet) for "+str(msid_no)
ON ERROR DO \PAVEDB\REPORTS\ERR_PRINT
SET PRINT TO &IMPORT2
ON ERROR DO \PAVEDB\ERROR

&DVECEON
@ 0, 0 Say ""[&llo"
mdate = dtoc(date())
SET ALITE ON
@ 0, 145 say "Date: " + mdate
@ 1, 0 say ""__
__

@ 2, 0 say "|LOCATION |
|GEOMETRIC AND SHOULDER INFORMATION |

* PRINT LOCATION SECTION

RESTORE FROM GETLOC2 ADDITIVE
@ 3, 0 SAY "|SECTION ID NO: "+LITRIM(STR(MSID_NO,4))
@ 3, 57 SAY "| TYPE OUTSIDE SHOULDER SHOULDER
SHOULDER
OUTSIDE SHOULDER SHOULDER"
@ 3, 161 SAY ""
@ 4, 0 SAY "|DISTRICT NO: "+MLHWYDIST
@ 4, 57 SAY "|STRUCTURE OF LANE SHOULDER SURFACE BASE
SURFACE
BASE WIDENING"
@ 4, 161 SAY ""

RELEASE MLHWYDIST
@ 5, 0 SAY "|COUNTY NO/NAME: "+MLCNTYNM+"/"+MLCNTYNAM
@ 5, 57 SAY "|NUMBER PAVEMENT WIDTH WIDTH TYPE TYPE
THICKNESS THICKNESS FLAG"
@ 5, 161 SAY ""
@ 6, 0 SAY "|CONTROL SECTION: "+MLCONSEC
@ 6, 57 SAY "| "+MLCONSEC

"+MLCONSEC"
@ 6, 161 SAY ""

@ 7, 0 SAY "|HIGHWAY: "+MLHWY

RESTORE FROM GETGEOB ADDITIVE
@ 7, 57 SAY "|"+MGSTRUCO+" "+MGPAVEO+" "+MGLANEWD+"
"+MGOUTSHDO+" "+MGSHSURD+" "+MGSHDSEO+"
@ 17, 57 SAY "| "SGSTRUC10+" "SGPAVE10+" "SGLANEWD10+"
"SGOUTISHD10+" "SGSHDSUR10+" "SGSHDBSE10+"
"SGSHDSFT10+" "SGSHDBST10+" "SGWIDEN10"
@ 17, 161 SAY "|
@ 18, 0 SAY "INACTIVE SID: "MLINACTIV
@ 18, 57 SAY "| "SGSTRUC11+" "SGPAVE11+" "SGLANEWD11+"
"SGOUTISHD11+" "SGSHDSUR11+" "SGSHDBSE11+"
"SGSHDSFT11+" "SGSHDBST11+" "SGWIDEN11"
@ 18, 161 SAY "|
@ 19, 0 SAY "NUMBER OF LANES: "MLNUMIAN
@ 19, 57 SAY "| "SGSTRUC12+" "SGPAVE12+" "SGLANEWD12+"
"SGOUTISHD12+" "SGSHDSUR12+" "SGSHDBSE12+"
"SGSHDSFT12+" "SGSHDBST12+" "SGWIDEN12"
@ 19, 161 SAY "|
@ 20, 0 SAY "|
@ 20, 57 SAY "| "SGSTRUC13+" "SGPAVE13+" "SGLANEWD13+"
"SGOUTISHD13+" "SGSHDSUR13+" "SGSHDBSE13+"
"SGSHDSFT13+" "SGSHDBST13+" "SGWIDEN13"
@ 20, 161 SAY "|
REPLACE ALL LIKE ML*
@ 21, 0 SAY "|
@ 21, 57 SAY "| "SGSTRUC14+" "SGPAVE14+" "SGLANEWD14+"
"SGOUTISHD14+" "SGSHDSUR14+" "SGSHDBSE14+"
"SGSHDSFT14+" "SGSHDBST14+" "SGWIDEN14"
@ 21, 161 SAY "|
@ 22, 0 SAY "|
@ 22, 57 SAY "| "SGSTRUC15+" "SGPAVE15+" "SGLANEWD15+"
"SGOUTISHD15+" "SGSHDSUR15+" "SGSHDBSE15+"
"SGSHDSFT15+" "SGSHDBST15+" "SGWIDEN15"
@ 22, 161 SAY "|
REPLACE ALL LIKE MG*
@ 23, 0 SAY "|__________________________| |______________________|
| | | | |
| | | | |
@ 24, 0 SAY "|__________________________| |______________________|

| | | | |
@ 25, 0 SAY "| "STRUCTURAL SECTION
| "THICK
| "WIDENING AGG. "ADMXITURE "APPL % PASSING
| "PERM."
@ 25, 161 SAY "|
@ 26, 0 SAY "| "STRUCTURE LAYER DESCRIPTION COUNT MATERIAL TYPE
| "DATE DATE RATE TYPE PCNT RATE 200 SIEVE TTC LL PI
| "INDEX"
@ 26, 161 SAY "|
RESTORE FROM GETSTRUC ADDITIVE
X = 1
MROW = 28
DO WHILE X < 14
 IF X < 10
 S = STR(X,1)
 ELSE
 S = STR(X,2)
 ENDF
 RESTORE FROM GETSTC&S ADDI
 @ MROW, 0 SAY "|
 @ MROW, 6 SAY MTRISTRUC&S
 @ MROW, 14 SAY MTLAY&S
 @ MROW, 21 SAY MZLAYDA&S
 @ MROW, 24 SAY MZLAYDB&S
 @ MROW, 31 SAY MTCENTHG&S
 @ MROW, 38 SAY MZMATTP&S
 @ MROW, 60 SAY MTDATE&S
 @ MROW, 70 SAY MTDAT&S
 @ MROW, 76 SAY MTAGGRAT&S
 @ MROW, 94 SAY MTADMXP&S
 @ MROW, 101 SAY MTAPRT&S
 IF MZCOUNT = X
 @ MROW, 108 SAY MZPRPASS
 @ MROW, 116 SAY MZTXTRL
 @ MROW, 121 SAY MZLIQIM
 @ MROW, 127 SAY MZPLAST
 @ MROW, 132 SAY MZPERM
 ENDF
 RELEASE ALL LIKE MT*
 MFILE = "GETSTC" + S + ".MEM"
 DELETE FILE &MFILE
 @ MROW, 161 SAY "|
 X = X + 1
 MROW = MROW + 1
ENDDO
RELEASE ALL LIKE MZ*
X = 1
MROW = 41
DO WHILE X < 4
 IF X < 10
 S = STR(X,1)
 ELSE
 S = STR(X,2)
 ENDF
 @ MROW, 0 SAY "|
 @ MROW, 161 SAY "|
 X = X + 1
 MROW = MROW + 1
ENDDO
RELEASE ALL LIKE MT*
@ 44, 0 SAY
"|"
* AT END DELETE ALL MEM FILES
SET ALITE OFF
SET PRINT OFF
&DEVICEOFF
DELETE FILE GETGEOSH.MEM
DELETE FILE GETSTRUC.MEM
RETURN
SUBSYSTEM: PRINl' SUMMARY REPORT
PROGRAM NAME: PRREPT3.PRG 02/04/88
PROJECT 2456 - TEXAS FLEXIBLE PAVEMENT DATABASE CONVERSION
AUTHOR: TREVOR X. PEREIRA
PURPOSE: TO PRINT OUT THE SECOND PAGE OF THE INVENTORY UPDATE REPORT

@ 15, 10 SAY "Printing report Two (Blank)"
ON ERROR DO \PAVEDB\REPORTS\ERR_PRINT
SET PRINT TO &IMPORT2
ON ERROR DO \PAVEDB\ERROR
&DEVICEON
@ 0, 0 Say "^[#10"
SET ALTE ON
mdate = dtoc(date())
@ 0, 145 say "Date: " + mdate
@ 1, 0 say "

* PRINT LOCATION SECTION

RESTORE FROM GETLOC2 ADDITIVE
@ 3, 0 SAY "| SECTION ID NO: "+LITRIM(STI(MSID_NO,4))
@ 3, 57 SAY "| TYPE OUTSIDE SHOULDER
SHOULDER SHOULDER SHOULDER"
@ 3, 161 SAY ""
@ 4, 0 SAY "| DISTRICT NO: "+MLHWYDST
@ 4, 57 SAY "| STRUCTURE OF LANE SHOULDER SURFACE BASE
SURFACE " + MLCON'SEC SURFACE BASE WIDENING"
@ 4, 161 SAY ""

RELEASE MLHWYDST
@ 5, 0 SAY "| COUNTY NO/NAME: "+MLCNYNM+"/"+MLCNYNM
@ 5, 57 SAY "| NUMBER PAVEMENT WIDIIH WIDIIH TYPE TYPE
THICKNESS THICKNESS FLAG"
@ 5, 161 SAY ""
@ 6, 0 SAY "| CONTROL-SECTION: "+MLCON'SEC
@ 6, 57 SAY "| ------------------ ------------------ ------------------ ------------------

@ 6, 161 SAY ""
@ 7, 0 SAY "| HIGHWAY: "+MLHWY
@ 7, 57 SAY "| ------------------ ------------------

@ 7, 161 SAY ""
@ 8, 0 SAY "| MILE POINTS: "+MLBEGMPN+"-"+MLENDMPN
@ 8, 57 SAY "|"
@ 8, 161 SAY "|

* PRINT GEOMETRIC & SHOULDER SECTION

@ 9, 0 SAY "| IANE: "+MLANEID
@ 9, 57 SAY "| _____ _____ ______
@ 9, 161 SAY "|
@ 10, 0 SAY "| MILE POST: "+MLPOST
@ 10, 57 SAY "|
@ 10, 161 SAY "|
@ 11, 0 SAY "| PREVIOUS SID: "+MLPREVSD
@ 11, 57 SAY "| _____ _____ ______
@ 11, 161 SAY "|
@ 12, 0 SAY "| NEXT SID: "+MLNEXTSD
@ 12, 57 SAY "|
@ 12, 161 SAY "|
@ 13, 0 SAY "| FUNCTIONAL CLASS: "+MLFUNCLS
@ 13, 57 SAY "| _____ _____ ______
@ 13, 161 SAY "|
@ 14, 0 SAY "| TYPE OF PAVEMENT: "+MLBASETY
@ 14, 57 SAY "| _____ _____ _____ _____
@ 15, 0 SAY "| "+MLBASETHK
@ 15, 57 SAY "|

@ 16, 0 SAY "|
@ 16, 22 SAY " "+MLBASESEAL
RESTORE FROM GETDISTIN ADDITIVE
@ 16, 57 SAY "| LAYER THICKNESS ACROSS THE ROAD"
@ 16, 132 SAY "CURRENT SURFACE WIDTH " + MDTHICK
@ 16, 161 SAY "|
@ 17, 0 SAY "|
@ 17, 22 SAY MLWIDEN
@ 17, 57 SAY "| THICKNESS FROM CENTER
THICKNESS DISTANCE FROM CENTER"
@ 17, 161 SAY "|
@ 18, 0 SAY "| INACTIVE SID: "+MLINACTIV
@ 18, 0 SAY "|
@ 18, 57 SAY "| STRUCTURE LAYER ____________ AT

@ 18, 161 SAY "|
@ 19, 0 SAY "| NUMBER OF LANES: "+MINUMLAN
@ 19, 57 SAY "| NUMBER NUMBER 3rd POS 2nd POS 1st POS CENTER
 3rd POS 2nd POS 1st POS"
@ 19, 161 SAY "|
@ 20, 0 SAY "|
@ 20, 57 SAY "| ___________ ___________ ___________ "

180
@ 20, 161 SAY "|
RELEASE ALL LIKE ML*
@ 21, 0 SAY "|
@ 21, 57 SAY "| | | | | | |

@ 21, 161 SAY "|
@ 22, 0 SAY "|
@ 22, 57 SAY "|
@ 23, 0 SAY "|
@ 23, 57 SAY "| | | | | | |

@ 23, 161 SAY "|
@ 24, 0 SAY "|
@ 24, 57 SAY "|
@ 25, 0 SAY "|
@ 25, 57 SAY "| | | | | | |

@ 25, 161 SAY "|
@ 26, 0 SAY "|
@ 26, 57 SAY "|
@ 27, 0 SAY "|
@ 27, 57 SAY "| | | | | | |

@ 27, 161 SAY "|
@ 28, 0 SAY "| | | | | | | | | | | |
|

@ 29, 0 SAY " | | | | | | | | | | | |

@ 30, 0 SAY "| STRUCTURAL SECTION THICK
WIDENING AGG. ------ADMIIXTURE-- APPL % PASSING
PERM."
@ 30, 161 SAY "|
@ 31, 0 SAY "| STRUCTURE LAYER DESCRIPTION CENT MATERIAL TYPE DATE
DATE RATE TYPE FCNT RATE 200 SIEVE TTC LL PI
INDEX"
@ 31, 161 SAY "|
@ 32, 0 SAY "| --------- --- ------- ------- ------- ------- -------
--------- --- ---- ------- --- ------- ---- ------- ----

@ 32, 161 SAY "|

* PRINT STRUCTURAL SECTION

X = 1
NRW = 33
DO WHILE X < 12
 IF X < 10
 S = STR(X,1)
ELSE
S = STR(X, 2)
ENDIF
@ MROW, 0 SAY "|
@ MROW, 3 SAY "_________
@ MROW, 13 SAY "_________
@ MROW, 21 SAY "_________
@ MROW, 31 SAY "_________
@ MROW, 40 SAY "_________
@ MROW, 53 SAY "_________
@ MROW, 61 SAY "_________
@ MROW, 69 SAY "_________
@ MROW, 77 SAY "_________
@ MROW, 88 SAY "_________
@ MROW, 95 SAY "_________
@ MROW, 103 SAY "_________
@ MROW, 112 SAY "_________
@ MROW, 119 SAY "_________
@ MROW, 127 SAY "_________
@ MROW, 135 SAY "_________
@ MROW, 161 SAY "|
X = X + 2
MROW = MROW + 1
@ MROW, 0 SAY "|
@ MROW, 161 SAY "|
MROW = MROW + 1
ENDDO
@ 44, 0 SAY "|___

* AT END DELETE ALL MEM FILES
SET ALTE OFF(168,430)
CLEAR
SET PRINT OFF
&DEVICESOFF
DELETE FILE GETLOCT2.MEM
DELETE FILE GETDISIN.MEM
@ 15, 20 SAY "DONE"
RETURN
CHAPTER 4

EDIT AND UPDATE SUBSYSTEM
GENERAL NARRATIVE

The Edit & Update Menu System allows the user to edit or update the data in the Master files and the 7 tables. This portion is divided into 4 sections. The sections are:

- Edit and Update Driver
- Monitoring Data Update
- Inventory Data Update
- Traffic Data Update.

In addition to driving the edit and update process, EDITUPDT.PRG also updates the table files. The user must be an experienced dBASE programmer because the master tables are modified directly (without edit checks) using the dBASE BROWSE command. The table files can be found in the subdirectory \PAVEDB\FILES while the program EDITUPDT.PRG is in \PAVEDB\EDITUPDT.

The PES data is copied from the Original PES Tape to a disk file by a stand alone batch file (i.e. the batch file is not included in the Flexible Pavement Menu System). The batch file (READPES.BAT) is documented in Section 2 of this Chapter. This data is then converted to 6 comma delimited data files by the program PESMOD.PAS. These delimited files are further converted to dBASE files by PESUP.PRG and are used to update the monitoring files (Skid, Visual, Serviceability Index and Falling Weight). The PES programs can be found in the subdirectory \PAVEDB\EDITUPDT\PES.

Updating the Inventory files is divided into two parts - adding inventory data and changing inventory data. The data is added manually by the user through the program ENTRILAYR.PRG while the data is modified through CHNGLAYR.PRG. The Inventory files modified are Location, Layer Identification, Layer Thickness Across The Road, Geometric and Shoulder Information, Surface and Subgrade. The Add and Change programs can be found in the subdirectory \PAVEDB\EDITUPDT.

The traffic data is copied from the Roadway Inventory (RFILE) Tape File to a disk file by a stand alone batch program (READTRAFF.BAT) The batch file is documented in section 4 of this Chapter. This data is then converted to a comma delimited format to be added to a dBASE file. This dBASE file is then used to update the Traffic File. Other than copying the tape file to disk, TRAFUPD.PRG controls the traffic update process. The traffic programs can be found in the subdirectory \PAVEDB\EDITUPDT\TRAFFIC.

Each Sub-section has the following information:

- Program Narrative
- Program Flow Diagram
- Program Specification
- Menu Screens
- Sample Reports
- Program Listings
Section 1: Edit and Update Driver
The Edit & Update program (EDITUPDT.PRG) produces the main menu screen for the Edit & Update Subsystem. It also produces the menu screen to edit or change the tables. The screens generated are displayed in this section.

The Edit & Update program also calls the programs PESMOD.PAS and PESUP.PRG to add PES data to the monitoring files. To add data to the Traffic file, the program TRAPUPD.PRG is called which obtains traffic data from the Roadway Inventory File. EDITUPDT.PRG also calls the programs to update the data in the Inventory Files. To add inventory data, ENTRIESR.PRG is called and to change inventory data, CHNGJR.PRG is called. To update the tables, EDITUPDT.PRG uses the browse command to let the user change or add data.
Edit and Update Subsystem Program Flow Diagram

- PESMOD.PAS
- PESUP.PRG
- CHNGLAYR.PRG
- FILECHEK.PRG
- ENTRLAYR.PRG
- TRAFUPD.PRG
- TABLFILE.PRG

File Databases:
- CNTYTBBL.DBF
- PAVETYPE.DBF
- WIDENFLG.DBF
- FUNCTBL.DBF
- MATLTBL.DBF
- LAYERTBL.DBF
- DISTTEMP.DBF

FIGURE 10
The following screens are produced by EDITUPDT.PRG except for the Main Menu.

Above is the Main Menu of the Texas Flexible Pavement Database System. When the Edit & Update option is chosen, then screen 3.0 is displayed.
EDIT AND UPDATE
MENU SCREENS (cont.)

TEXAS FLEXIBLE PAVEMENT DATABASE 3.0
Edit & Update

1 - Pavement Condition Data
2 - Inventory Data
3 - Traffic Data
4 - Tables

OPTION ———>

Choice 1 Pavement Condition Data runs the PESMOD.PAS and PESUP.PRG programs which display their own screens and are shown in Section 2 of this chapter.

Choice 2 Inventory Data runs the ENIRLAYR.PRG program if ADD is desired or CHNGLAYR.PRG if CHANGE is desired. These programs have their own screens which are displayed in Section 3 of this chapter.

Choice 3 Traffic Data runs the TRAFUPD.PRG program which has its own screens and are shown in Section 4 of this chapter.

Choice 4 Tables displays screen 3.5 and executes the dBASE BROWSE command for the requested option.

TEXAS FLEXIBLE PAVEMENT DATABASE 3.5
EDIT & UPDATE
Tables

1 - County Name
2 - Material Type
3 - Type of Pavement
4 - District Temperature Constant
5 - Widening Flag
6 - Layer Description
7 - Functional Classification

OPTION ———>

WARNING ! ! ! — These files should only be modified by an experienced dBASE user. To abandon process, press the Esc key. Otherwise, enter option.
PROGRAM SPECIFICATION

Program Name: EDITUPDT.PRG

Purpose: To update the data in the master files and tables.

Procedures/Edits:

Refer to the appropriate sub-section for each program.
1) Convert PES data from tape to comma delimited ASCII files using the program PESMOD.PAS.
2) Add PES data to the Monitoring Files using the program PE.SUP.PRG.
3) Add data to the Inventory Files using the program ENTRIAYR.PRG.
4) Change data in the Inventory Files using the program CHNGIAYR.PRG.
5) Update the Traffic File with data from the Roadway Inventory File using the program TRAFUPD.PRG.
6) Add or Change the data in the Table files using the program EDITUPDT.PRG.

Input/Output Files:

PES Data - refer to the PESMOD.PAS sub-section for PES Modification files and the PESUP.PRG sub-section for PES Update files.

Inventory Data - refer to the CHNGIAYR.PRG sub-section for change files and the ENTRIAYR.PRG sub-section for add files.

Traffic Data - Refer to the TRAFUPD.PRG sub-section for Traffic files.

Tables - County Table (CNYTBL.DBF)
Material Type Table (MATTBL.DBF)
Pavement Type Table (PAVETBL.DBF)
District Temperature (DISTTEMP.DBF)
Widening Table (WIDENFBL.DBF)
Layer Description (LAYERTBL.DBF)
Functional Classification (FUNCTBL.DBF)
Programs Called (See Program Flow Diagram):

PES
- PESMOD.PAS
- NOPESSID.PRG
- NOLOCN.PRG
- PESUP.PRG
- PES_MRM.PRG
- PES_SKID.PRG
- PES_SSI.PRG
- PES_VISL.PRG

INVENTORY
- FILECHEK.PRG

Add
- ENTRIESR.PRG
- ADDLAYR.PRG
- INV_BKUP.PRG
- INV_UPDT.PRG
- LOCNCHEK.PRG
- LAYRCHEK.PRG
- LAYTCHEK.PRG
- GEOSCHEK.PRG
- SURFCHCK.PRG
- SUBGCHCK.PRG

Change
- CHANGEYR.PRG
- CHGENKUP.PRG
- CHEKLOCN.PRG
- CHEKIAYR.PRG
- CHEKIAYT.PRG
- CHEKGEOS.PRG
- CHEKSURF.PRG
- CHEKSUBG.PRG
- COPYLAYR.PRG

TRAFFIC
- TRAFUPD.PRG
- LOGITRAF.PRG
- NEWITRAF.PRG
- SIDLOG.PRG
- SITLOG.PAS

TABLES
- TABLEFILE.PRG
PROGRAM LISTING

* SUBSYSTEM: EDIT & UPDATE MAIN MENU
* PROGRAM NAME: EDITUPDT.PRG 06/03/88
* MODIFIED ON: 10/27/88
* PROJECT 2456 - TEXAS FLEXIBLE PAVEMENT DATABASE CONVERSION
* TAMU/TTI
* AUTHOR: TREVOR X. PEREIRA
* PURPOSE: TO EDIT AND UPDATE DATA FOR THE FOLLOWING:
 - Monitoring data (PES)
 - Inventory data
 - Traffic data
 - Create Graph file
 - Create Model file
 - Tables

* set parameters and initialize variables
STORE 0 TO MSDN_NO
CLOSE DATABASES
* SET PROCEDURE TO \PAVEDB\EDITUPDT\EDITCOLL
MREPEAT2 = .T.
SET STAT OFF
SET ECHO OFF
SET TALK OFF
SET CONFIRM ON

DO WHILE MREPEAT2
STORE " " TO EDITPICK
* set up the EDIT & UPDATE menu screen and do the loop until EDITPICK is 1-4
DO WHILE .NOT. (EDITPICK $ '1234')
 @ 0, 0 CLEAR
 @ 4, 20 SAY "TEXAS FLEXIBLE PAVEMENT DATABASE 3.0"
 @ 5, 29 SAY "Edit & Update"
 @ 10, 16 SAY "1 - Pavement Condition Data"
 @ 11, 16 SAY "2 - Inventory Data"
 @ 12, 16 SAY "3 - Traffic Data"
 @ 13, 16 SAY "4 - Tables"
 @ 16, 41 SAY "OPTION =========> " GET EDITPICK
 @ 3, 9 TO 18, 65 DOUBLE
 READ
 IF READKEY() = 12
 CLEAR
 CLOSE DATABASE
 SET PROC TO
 MREPEAT2 = .F.
 EXIT
 ENDFI
ENDDO
IF MREPEAT2

195
* according to the response received from the EDIT & UPDATE menu, the appropriate commands are executed

DO CASE
 * if choice 1 is chosen, run the PES program to add data to the monitoring files
 CASE EDITPICK = "1"
 CLEAR
 MRUN = ""
 @ 5, 5 SAY "This program is going to update the monitoring database"
 @ 6, 5 SAY "Files. It will take the approximately 20 HOURS to run."
 @ 8, 5 SAY "To run this program, you need to have the PES Data file"
 @ 9, 5 SAY " that is obtained from tape in the subdirectory"
 @ 10, 5 SAY " \PAVEDB\EDITUPDT\PES "
 @ 12, 5 SAY "The data file should be called PES87.DAT for year 1987."
 @ 13, 5 SAY " If the file is for year 1988, the data file should be"
 @ 14, 5 SAY " called PES88.DAT"
 @ 17, 5 SAY "Do you want to continue (Y/N) ? " GET MRUN
 READ
 IF MRUN = "Y"
 RUN \PAVEDB\EDITUPDT\PES\PESMOD
 DO \PAVEDB\EDITUPDT\PES\PESUP
 CLEA TYPE
 ENDIF
 RELEASE MRUN
 @ 196

* If choice 2 is chosen
 CASE EDITPICK = "2"
 CLEAR
 DO \PAVEDB\EDITUPDT\FILECHECK
 GETREPLY = ""
 DO WHILE .NOT. (GETREPLY $ 'AC')
 @ 10, 15 SAY "Do you want to ADD data to the inventory files or"
 @ 11, 15 SAY " CHANGE the data in the inventory files."
 @ 14, 15 SAY " Enter 'A' to ADD, 'C' to CHANGE or Esc to exit"
 @ 16, 15 SAY " OPTION " GETREPLY " !"!
 READ
 IF READKEY() = 12
 CONTINUE = .F.
 EDITCOLL = ""
 GETREPLY = ""
 EXIT
 ENDO
 ENDDO
 IF GETREPLY = "C"
 DO \PAVEDB\EDITUPDT\CHNGLAYR
 ENDIF
 IF GETREPLY = "A"
 DO \PAVEDB\EDITUPDT\ENIRLAYR
 ENDIF
 CLEAR
 SET PROCEDURE TO
* if choice 3 is chosen, run the pascal traffic program
CASE EDITPICK = "3"
MYEAR = 0
* run the program to update traffic file
@15, 30 SAY "DATA YEAR (19XX) = " GET MYEAR PICT "9999"
READ
* Add the data to the traffic file
IF FILE('\PAVEDB\TLOG.DAT')
 DO \PAVEDB\EDITUPD\TRAFFIC\UPDATE
ELSE
 CLEAR
 @10,10 SAY " "
 ? " Cannot find TLOG.DAT file. Please check and place the"
 ? " file in subdirectory \PAVEDB ".
 ? " "
 ? " "
 WAIT
ENDIF
CLEA TYPE
CLEAR

* if choice 4 is chosen, display the tables menu
CASE EDITPICK = "4"
MCONTINUE = .T.
EDITOJLL = " "
DO \PAVEDB\EDITUPD\TABFILE
DO WHILE MCONTINUE
 CLEAR
 EDITOJLL = " "
 DO WHILE .NOT. (EDITOJLL $ '1234567')
 @3, 21 SAY "TEXAS FLEXIBLE PAVEMENT DATABASE 3.5"
 @4, 31 SAY "EDIT & UPDATE"
 @5, 34 SAY "Tables"
 @8, 16 SAY "1 - County Name"
 @9, 16 SAY "2 - Material Type"
 @10, 16 SAY "3 - Type of Pavement"
 @11, 16 SAY "4 - District Temperature Constant"
 @12, 16 SAY "5 - Widening Flag"
 @13, 16 SAY "6 - Layer Description"
 @14, 16 SAY "7 - Functional Classification"
 @17, 42 SAY "OPTION = " GET EDITOJLL
 @2, 9 TO 18, 65 DOUBLE
 * Give warning
 @19, 10 SAY "WARNING ! ! ! - These files should only be modified
by"
 @20, 10 SAY " an experienced dBASE user. To abandon
process,"
 @21, 10 SAY " press the Esc key. Otherwise, enter option."
 CLEA TYPE
 READ
IF READKEY() = 12
 MCONTINUE = .F.
CLEAR
EXIT
ENDIF
ENDDO
IF MCONTINUE
DO CASE
CASE EDITCOLL = "1"
 USE \PAVEDB\FILES\CITYTBL INDEX \PAVEDB\INDEXES\CITYTBL
 BROWSE
CASE EDITCOLL = "2"
 USE \PAVEDB\FILES\MATERIAL
 BROWSE
CASE EDITCOLL = "3"
 USE \PAVEDB\FILES\PAVEETYPE
 BROWSE
CASE EDITCOLL = "4"
 USE \PAVEDB\FILES\DISTTEMP
 BROWSE
CASE EDITCOLL = "5"
 USE \PAVEDB\FILES\WIDENFLG
 BROWSE
CASE EDITCOLL = "6"
 USE \PAVEDB\FILES\LAYERLBL
 BROWSE
CASE EDITCOLL = "7"
 USE \PAVEDB\FILES\FUNCTION
 BROWSE
ENDCASE
ENDIF
ENDDO
ENDCASE
ENDIF
ENDDO

SET PROCEDURE TO
CLOSE DATABASES
CLEAR
RETURN
SUBSYSTEM: EDIT & UPDATE
PROGRAM NAME: TABLFILE.PRG 07/03/88
CALLED FROM: EDITUPDT.PRG
PROJECT 2456 - TEXAS FLEXIBLE PAVEMENT DATABASE CONVERSION
TAMU/TII
AUTHOR: TREVOR X. PEREIRA
PURPOSE: CHECKS TO SEE IF THE TABLE FILES ARE PRESENT

IF .NOT. FILE('PAVEDB\FILES\CNTYBL.DBF')
 ? "COUNTY TABLE FILE (CNTYBL.DBF) not found. Please Check . . ."
 WAIT
 RETURN TO MASTER
ENDIF
IF .NOT. FILE('PAVEDB\INDEXES\CTYBLNO.NDX')
 ? "COUNTY TABLE INDEX (CTYBLNO.NDX) not found. Please Check . . ."
 WAIT
 RETURN TO MASTER
ENDIF
IF .NOT. FILE('PAVEDB\FILES\DISTTEMP.DBF')
 ? "DISTRICT TEMPERATURE FILE (DISTTEMP.DBF) not found. Please Check . . ."
 WAIT
 RETURN TO MASTER
ENDIF
IF .NOT. FILE('PAVEDB\FILES\MATLTLB.DBF')
 ? "MATERIAL TABLE FILE (MATLTLB.DBF) not found. Please Check . . ."
 WAIT
 RETURN TO MASTER
ENDIF
IF .NOT. FILE('PAVEDB\FILES\PAVETYPE.DBF')
 ? "PAVEMENT TYPE FILE (PAVETYPE.DBF) not found. Please Check . . ."
 WAIT
 RETURN TO MASTER
ENDIF
IF .NOT. FILE('PAVEDB\FILES\WIDENFLG.DBF')
 ? "WIDENING FLAG FILE (WIDENFLG.DBF) not found. Please Check . . ."
 WAIT
 RETURN TO MASTER
ENDIF
IF .NOT. FILE('PAVEDB\FILES\LAYERTBL.DBF')
 ? "LAYER TABLE FILE (LAYERTBL.DBF) not found. Please Check . . ."
 WAIT
 RETURN TO MASTER
ENDIF
IF .NOT. FILE('PAVEDB\FILES\FUNCLTLB.DBF')
 ? "FUNCTIONAL CLASSIFICATION TABLE FILE (FUNCLTLB.DBF) not found. "
 ? "Please Check . . ."
WAIT
RETURN TO MASTER
ENDIF
RETURN

200
Section 2: Monitoring Data Update
PROGRAM NARRATIVE

This program is for use with a 6250 BPI Cipher GRC Cache Tape tape drive systems manufactured by Overland Data Incorporated (ODI). It utilize the ODI DEPOT2 program to copy a tape file to a disk file. The DEPOT2 program is documented in Chapter 4 of the ODI manual. PESMOD.PAS uses the disk file as an input file. The diskfile (PES.DAT) is stored in the subdirectory \PAVEDB.
Program Specification

Program Name: READPES.BAT

Purpose: To copy the PES data from a tape to a disk file using the ODI DEPOT2 program.

Input File: Original PES Tape File obtained from the Texas State Department of Highways and Public Transportation. The user can request only those records flagged for the Texas Flexible Pavement Database; thereby, decreasing the amount of disk space needed and decreasing processing time.

Output File: PES.DAT - Original PES Disk File

Programs Called:

DEPOT2
READPES.CMP - command file for DEPOT2
rem readpes.bat issues the depot2 command which calls
rem the cmd file to read the original pes tape obtained from
rem SDHPT
DEPOT2 /c READPES.CMD
RE.ADPFS.CMD, a command file for the ODI program DEPOT2.
Use as: DEPOT2 /c RE.ADPFS.CMD
Instructions on making out this command file are in Chapter 4
of the ODI manual pages 4-26 to 4-28.
Change D:\PAVEDB\PES.DAT to the name of your output disk file;
if needed.
Change "/r nn" record length if needed.
Change "/s mnn" blocksize if needed.
"/m 1" skips past the tape label.
"/tvM" translates from EBCDIC, Verbose explanations, reads till End-
Of-File mark at the end of the data.

/n D:\PAVEDB\PES.DAT /r 1389 /s 1389 /m 1 /tvM
Pavement Evaluation System (PES) record contains monitoring information for several lanes within a segment. The PES Data Modification program, which is written in TURBO Pascal, splits an original PES record into separate monitoring files which contain a separate record for each visual evaluation lane. The original data comes from the PES file which is copied from a tape using READPES.BAT. The output of this program is six comma-delimited files containing different information (general, visual, maysmeter, skid, structural strength index and score information). The key fields are the same for all the output files. The output data is used to update the LOCATION, VISUAL, SI, SKID AND FALLWEIGHT dBASE files in the Texas Flexible Pavement System. The general program flow is shown in Figure 11. The programs and comma delimited files are stored in the subdirectory \PAVEDB\EDITUPDT\PES.
PES MODIFICATION PROGRAM FLOW DIAGRAM

FIGURE 11
PES Modification Program

Program Specification

Program Name: PESMOD.FAS (written in Turbo PASCAL)

Purpose: To split the original PES record into separate records for each Visual Evaluation Lane.

Input File: Original PES File (PES.DAT). The PES Tape File is copied to the PES.DAT disk file using a stand alone routine.

Procedures/Edit: 1. See the Procedure page.
2. See the Original PES File Record Layout and the Modified PES File Record Layouts.

Output Files: Modified PES Files - comma delimited files.
- general information files (PESGEN.DIM)
- visual information file (PESVIS.DIM)
- maysmeter information file (PESMRM.DIM)
- skid information file (PESSKD.DIM)
- structural strength index information file (PESSSI.DIM)
- score information file (PESSCR.DIM)

Report: Missing Data - See the Missing Data Report Layout.

Note: Following the Procedure page, the record layouts are provided in the order they are mentioned above with the Original PES File record layout being first.
Program Specification

PROCEDURE

The original PES record contains general information, visual rating, maysmeter, skid, SSI, and pavement score information for all roadways within a segment. The PESMOD.PAS program reads the PES file and creates six files each of which contain a separate record for each roadway within the segment. A separate file is created for general information, maysmeter information, visual rating information, skid information, SSI information, and for pavement scores, exclusively. Identifying information for the roadway (also called laneset) is the same in all six files.

The program creates a separate record in each output file for each lane found under original PES record Item 18 - Visual Evaluation. The lanes for the visual evaluation are in columns 80, 112, 144, 176, 208, and 240 of the original PES record. For the lane set (i.e. R-V, L-P, A-C, etc.), which includes the visual lane being processed, the program selects the appropriate MRM, Skid, SSI, and Score data. For the applicable lane set, the program identifies the high and low MRM reading, calculates the average MRM reading and the standard deviation for the MRM, and stores the total number of MRM readings (maximum of 15). Also it provides the high, the low, the mean, the standard deviation, and the count of observations for the skid data for the appropriate lane set. The program also determines if there is visual evaluation data without corresponding MRM, SSI, or Score data and vice versa. Records which have missing data are reported. Only records with an 'A' in the Mandatory Sample Selection Flag field (Item 25A) and an 'E', 'F', 'G', 'H', 'I', 'N', 'O', 'P', 'Q' or 'R' in the Other Sample Selection Flag field (Item 25B) processed.
<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>FROM</th>
<th>THRU</th>
<th>SIZE</th>
<th>DEC. FIELD</th>
<th>POS.</th>
<th>TYPE</th>
<th>ITEM NAME</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>01-02</td>
<td></td>
<td>2</td>
<td>N</td>
<td>DISTRICT NO.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>03-04</td>
<td></td>
<td>2</td>
<td>N</td>
<td>MAINTENANCE SECTION NO.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>05-07</td>
<td></td>
<td>3</td>
<td>N</td>
<td>COUNTY NO.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4, A</td>
<td>08-09</td>
<td></td>
<td>4</td>
<td>A</td>
<td>HIGHWAY - SYSTEM</td>
<td></td>
<td>NUMBER</td>
<td></td>
</tr>
<tr>
<td>.B</td>
<td>10-13</td>
<td></td>
<td>1</td>
<td>A</td>
<td>- SYSTEM</td>
<td></td>
<td>SUFFIX</td>
<td></td>
</tr>
<tr>
<td>.C</td>
<td>14</td>
<td></td>
<td>1</td>
<td>A</td>
<td>SEGMENT BEGIN - MILEPOST NO.</td>
<td></td>
<td>- DISPLACEMENT SIGN</td>
<td>VALUE</td>
</tr>
<tr>
<td>5, A</td>
<td>15-17</td>
<td></td>
<td>3</td>
<td>A</td>
<td>- DISPLACEMENT SIGN</td>
<td></td>
<td>- DISPLACEMENT VALUE</td>
<td></td>
</tr>
<tr>
<td>.B</td>
<td>18</td>
<td></td>
<td>1</td>
<td>A</td>
<td>- DISPLACEMENT SIGN</td>
<td></td>
<td>- DISPLACEMENT VALUE</td>
<td></td>
</tr>
<tr>
<td>.C</td>
<td>19-20</td>
<td></td>
<td>2</td>
<td>N</td>
<td>SEGMENT END - MILEPOST NO.</td>
<td></td>
<td>- DISPLACEMENT SIGN</td>
<td>VALUE</td>
</tr>
<tr>
<td>6, A</td>
<td>21-23</td>
<td></td>
<td>3</td>
<td>A</td>
<td>- DISPLACEMENT SIGN</td>
<td></td>
<td>- DISPLACEMENT VALUE</td>
<td></td>
</tr>
<tr>
<td>.C</td>
<td>24</td>
<td></td>
<td>1</td>
<td>A</td>
<td>INTERMEDIATE POST - 1ST POST NO.</td>
<td></td>
<td>- 2ND POST NO.</td>
<td></td>
</tr>
<tr>
<td>7, A, .1</td>
<td>27-29</td>
<td></td>
<td>3</td>
<td>A/N</td>
<td>ROUTE-THRU-COUNTY - BEGIN VALUE</td>
<td></td>
<td>- END VALUE</td>
<td></td>
</tr>
<tr>
<td>.A</td>
<td>37-40</td>
<td></td>
<td>4</td>
<td>N</td>
<td>SEGMENT LENGTH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8, A</td>
<td>41-44</td>
<td></td>
<td>4</td>
<td>N</td>
<td>LAST UPDATE DATE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>45-46</td>
<td></td>
<td>6</td>
<td>N</td>
<td>SEGMENT MAINTENANCE COST</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>47-52</td>
<td></td>
<td>6</td>
<td>N</td>
<td>AVERAGE DAILY TRAFFIC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>53-61</td>
<td></td>
<td>9</td>
<td>N</td>
<td>18-KIP EQUIVALENCY (.000)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>62-67</td>
<td></td>
<td>6</td>
<td>N</td>
<td>FUNCTIONAL CLASSIFICATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>68-72</td>
<td></td>
<td>5</td>
<td>N</td>
<td>NUMBER OF LANES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>73</td>
<td></td>
<td>1</td>
<td>N</td>
<td>SPEED LIMIT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>74-76</td>
<td></td>
<td>2</td>
<td>N</td>
<td>RIS SURFACE TYPE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>76-77</td>
<td></td>
<td>2</td>
<td>N</td>
<td>VIS EVAL.(1ST)</td>
<td></td>
<td>DATE EVALUATED</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>78-79</td>
<td></td>
<td>2</td>
<td>N</td>
<td>LANE</td>
<td></td>
<td>COMMENT</td>
<td></td>
</tr>
<tr>
<td>18, A, .1</td>
<td>80</td>
<td></td>
<td>1</td>
<td>A/N</td>
<td>VIS EVAL.(1ST)</td>
<td></td>
<td>DATE EVALUATED</td>
<td></td>
</tr>
<tr>
<td>.A</td>
<td>81-86</td>
<td></td>
<td>6</td>
<td>N</td>
<td>LANE</td>
<td></td>
<td>COMMENT</td>
<td></td>
</tr>
<tr>
<td>.B</td>
<td>87-88</td>
<td></td>
<td>2</td>
<td>N</td>
<td>LANE</td>
<td></td>
<td>COMMENT</td>
<td></td>
</tr>
<tr>
<td>.C</td>
<td>89-90</td>
<td></td>
<td>2</td>
<td>N</td>
<td>LANE</td>
<td></td>
<td>COMMENT</td>
<td></td>
</tr>
<tr>
<td>.D</td>
<td>91-93</td>
<td></td>
<td>3</td>
<td>N</td>
<td>LANE</td>
<td></td>
<td>COMMENT</td>
<td></td>
</tr>
<tr>
<td>.E</td>
<td>94-96</td>
<td></td>
<td>3</td>
<td>N</td>
<td>LANE</td>
<td></td>
<td>COMMENT</td>
<td></td>
</tr>
<tr>
<td>.F</td>
<td>97-99</td>
<td></td>
<td>3</td>
<td>N</td>
<td>LANE</td>
<td></td>
<td>COMMENT</td>
<td></td>
</tr>
<tr>
<td>.A</td>
<td>100-102</td>
<td></td>
<td>3</td>
<td>N</td>
<td>LANE</td>
<td></td>
<td>COMMENT</td>
<td></td>
</tr>
<tr>
<td>.B</td>
<td>103-105</td>
<td></td>
<td>3</td>
<td>N</td>
<td>LANE</td>
<td></td>
<td>COMMENT</td>
<td></td>
</tr>
<tr>
<td>.C</td>
<td>106-108</td>
<td></td>
<td>3</td>
<td>N</td>
<td>LANE</td>
<td></td>
<td>COMMENT</td>
<td></td>
</tr>
<tr>
<td>.D</td>
<td>109-111</td>
<td></td>
<td>3</td>
<td>N</td>
<td>LANE</td>
<td></td>
<td>COMMENT</td>
<td></td>
</tr>
<tr>
<td>.E</td>
<td>112-143</td>
<td></td>
<td>32</td>
<td>A/N</td>
<td>(2ND)</td>
<td>ALL ITEMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.F</td>
<td>144-175</td>
<td></td>
<td>32</td>
<td>A/N</td>
<td>(3RD)</td>
<td>ALL ITEMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.G</td>
<td>176-207</td>
<td></td>
<td>32</td>
<td>A/N</td>
<td>(4TH)</td>
<td>ALL ITEMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.H</td>
<td>208-239</td>
<td></td>
<td>32</td>
<td>A/N</td>
<td>(5TH)</td>
<td>ALL ITEMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.I</td>
<td>240-271</td>
<td></td>
<td>32</td>
<td>A/N</td>
<td>(6TH)</td>
<td>ALL ITEMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITEM NO.</td>
<td>FROM THRU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.A</td>
<td>272-277</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.A.1.A</td>
<td>280-281</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.A.1.B</td>
<td>281-282</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.A.2</td>
<td>283-324</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.B</td>
<td>325-369</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.C</td>
<td>370-414</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.D</td>
<td>460-465</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.A</td>
<td>460-465</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.A.1</td>
<td>468-470</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.A.1.A</td>
<td>471-512</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.B</td>
<td>513-557</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>653-603</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.A</td>
<td>603-647</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.A</td>
<td>648-650</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.B</td>
<td>651-652</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.A.1</td>
<td>654-659</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.A.1.B</td>
<td>666-677</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.A.1.D</td>
<td>690-701</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.A.1</td>
<td>702-706</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.A.1.A</td>
<td>707-710</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.A.1.B</td>
<td>711-714</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.A.1.C</td>
<td>715-718</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.A.1.D</td>
<td>719-722</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.A.1.E</td>
<td>723-726</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.A.1.F</td>
<td>727-730</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.A.1.G</td>
<td>731-846</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.A.1</td>
<td>847-991</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.A.1.A</td>
<td>992-1136</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.A.2</td>
<td>1282-1284</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.A.2.B</td>
<td>1291-1293</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.A.2.C</td>
<td>1294-1296</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.A.2.D</td>
<td>1297-1299</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.A.2.E</td>
<td>1300-1302</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.A.2.F</td>
<td>1303-1305</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.A.2.G</td>
<td>1306-1308</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.A.2.I</td>
<td>1336-1362</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NO.</th>
<th>SIZE</th>
<th>POS.</th>
<th>TYPE</th>
<th>ITEM NAME</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>6</td>
<td></td>
<td></td>
<td>MRM GENERAL - LAST UPDATE DATE</td>
<td>+ MAIN LANS ONLY. FORMAT = YYMMDD.</td>
</tr>
<tr>
<td>N</td>
<td>6</td>
<td></td>
<td></td>
<td>AVERAGE SI VALUE</td>
<td>+ MAIN LANS ONLY. 0.0 WHEN NONE TO AVERAGE. VALUES 0.1-5.0.</td>
</tr>
<tr>
<td>N</td>
<td>6</td>
<td></td>
<td></td>
<td>LINES R-V - CELL 1 - LANE</td>
<td>+ MAIN LANS WITH POSTS. BLANK WHEN NO SI. (SEE FTNOTE 5).</td>
</tr>
<tr>
<td>N</td>
<td>6</td>
<td></td>
<td></td>
<td>SI VALUE</td>
<td>+ MAIN LANS WITH POSTS. 0.0 WHEN NO SI. VALUES 0.1-5.0.</td>
</tr>
<tr>
<td>N</td>
<td>6</td>
<td></td>
<td></td>
<td>SKID GENERAL - LAST UPDATE DATE</td>
<td>+ MAIN LANS ONLY. FORMAT = YYMMDD. (SKID INFO IS OPTIONAL)</td>
</tr>
<tr>
<td>N</td>
<td>6</td>
<td></td>
<td></td>
<td>AVERAGE SN VALUE</td>
<td>+ MAIN LANS ONLY. ZERO WHEN NONE TO AVERAGE.</td>
</tr>
<tr>
<td>N</td>
<td>6</td>
<td></td>
<td></td>
<td>SKID - LINES R-V - CELL 1 - LANE</td>
<td>+ MAIN LANS WITH POSTS. BLANK WHEN NO SN. (SEE FTNOTE 5).</td>
</tr>
<tr>
<td>N</td>
<td>6</td>
<td></td>
<td></td>
<td>SN VALUE</td>
<td>+ MAIN LANS WITH POSTS. ZERO WHEN NO SN.</td>
</tr>
<tr>
<td>N</td>
<td>3</td>
<td></td>
<td></td>
<td>SURFACE WIDTH</td>
<td>+ MAIN LNS W/ POSTS. OTHER CELLS. (14 OCCURS OF 22.A FORMAT).</td>
</tr>
<tr>
<td>N</td>
<td>1</td>
<td></td>
<td></td>
<td>HIGHWAY DESIGN TYPE</td>
<td>+ MAIN LINES AGAINST POSTS. (SEE 22.A FORMAT).</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td></td>
<td></td>
<td>SAMPLE SELECTION FLAG - MANDATORY</td>
<td>+ FRONTAGE ROAD LINES AGAINST POSTS. (SEE 22.A FORMAT).</td>
</tr>
<tr>
<td>N</td>
<td>1</td>
<td></td>
<td></td>
<td>OTHER</td>
<td>+ MAIN LINES ONLY. MEASURED IN FEET.</td>
</tr>
<tr>
<td>N</td>
<td>9</td>
<td></td>
<td></td>
<td>AVG.ssi</td>
<td>+ VALUE 1-9. HIGHEST VALUE IN SEG. USED. (SEE FTNOTE 6).</td>
</tr>
<tr>
<td>N</td>
<td>9</td>
<td></td>
<td></td>
<td>TEMP.</td>
<td>+ WHEN SET (NONBLANK), INDICATES SEGMENT WHICH MUST BE TESTED.</td>
</tr>
<tr>
<td>N</td>
<td>9</td>
<td></td>
<td></td>
<td>DATE</td>
<td>+ WHEN SET (NONBLANK), INDICATES SOME SPECIAL-PURPOSE SEGMENT.</td>
</tr>
<tr>
<td>N</td>
<td>9</td>
<td></td>
<td></td>
<td>LINES R-V - CELL 1 - LANE</td>
<td>+ FORMAT = YYMMDD.</td>
</tr>
<tr>
<td>N</td>
<td>12</td>
<td></td>
<td></td>
<td>LINES L-P - CELLS 1-3 - ALL</td>
<td>+ MAIN LINES AGAINST POSTS. (SEE 26.A.1 FORMAT).</td>
</tr>
<tr>
<td>N</td>
<td>12</td>
<td></td>
<td></td>
<td>LINES A-C - CELLS 1-3 - ALL</td>
<td>+ MAIN LINES AGAINST POSTS. (SEE 26.A.1 FORMAT).</td>
</tr>
<tr>
<td>N</td>
<td>12</td>
<td></td>
<td></td>
<td>LINES L-P - CELLS 2-5 - ALL</td>
<td>+ MAIN LINES AGAINST POSTS. (SEE 26.A.1 FORMAT).</td>
</tr>
<tr>
<td>A</td>
<td>4</td>
<td></td>
<td></td>
<td>ROWWAY R-V - IDENTIFIER</td>
<td>+ MAIN LINES AGAINST POSTS. (SEE 27.A.1 FORMAT).</td>
</tr>
</tbody>
</table>
| A | 1 | | | ROWWAY WITH POSTS | + MAIN LINES AGAINST POSTS. (SEE 27.A.1 FORMAT).
5. INTERMEDIATE ASPHALTIC CONCRETE (2.5-5.5 IN.)

FOOTNOTE 1 - A CHANGE IN FUNCTIONAL CLASS IS ONE CAUSE OF SEGMENTATION. DECODIFICATION IS FROM D-10 PLATE 25 (REV. 5/84).

1. INTERSTATE
2. OTHER URBAN FREEWAY AND EXPRESSWAY
3. URBAN PRINCIPAL ARTERIAL -OR-
4. MINOR ARTERIAL ROAD OR STREET
5. RURAL MAJOR COLLECTOR -OR-
6. URBAN COLLECTOR STREET
7. URBAN PRINCIPAL ARTERIALS
8. LOCAL ROAD OR STREET

FOOTNOTE 2 - A CHANGE IN SURFACE TYPE GROUP IS ANOTHER CAUSE OF SEGMENTATION. CODE 61 AND 62 HAVE THEIR OWN GROUPS WHILE ALL OTHER CODES FORM A THIRD GROUP. WITHIN THAT 3RD GROUP, THE HIGHEST NON-71 AND -81 CODE IS USED. THE READER SHOULD UNDERSTAND THAT THIS DATA ITEM IS USED DURING INITIAL SEGMENTATION (CONVERSION) ONLY AND IS INCORPORATED IN THE PES RECORD FRAMEWORK SOLELY FOR DOCUMENTATION PURPOSES. PAVEMENT TYPE, FOUND UNDER VISUAL EVALUATION HEADING, IS THE VITAL PAVEMENT ITEM USED IN UTILITY SCORE CALCULATIONS. SURFACE TYPE AGAIN IS DRAWN FROM D-10 PLATE 25.

51. BITUMINOUS SURFACE - TREATED (UNDER 1 IN.)
52. MIXED BIT. SURFACE (BASE & SURF. UNDER 7 IN.)
53. BIT. SURFACE (BASE & SURF. 7 IN. OR MORE)
54. BIT. PENETRATION (BASE & SURF. 7 IN. OR MORE)
55. MIXED BIT. SURFACE (UNDER 1 IN.)
56. BIT. PENETRATION (BASE & SURF. UNDER 7 IN.)
57. CONCRETE (CRCP-W/ W/O ASPH. SURF. UNDER 1 IN)
58. CONCRETE (CRCP-W/ W/O ASPH. SURF. UNDER 1 IN)
59. CONCRETE OR SHEET ASPHALT (1 IN. OR MORE)
60. BLOCK ROAD
61. CONCRETE (JCP- W/ OR W/O ASPH. SURF. UNDER 1 IN)
62. CONCRETE (JCP- W/ OR W/O ASPH. SURF. UNDER 1 IN)

FOOTNOTE 3 - LANE DESIGNATIONS FOLLOW. DESCRIPTION IS FROM OUTSIDE LANE TOWARD CENTERLINE OR MEDIAN. THUS, A TWO-LANE DESIGN TYPE 1 FACILITY WILL SHOW LANES R & L ONLY. A DESIGN TYPE 9 FACILITY WILL HAVE MANY LANES (R,S,...,F,A,...) BUT CANNOT HAVE LANE T, FOR INSTANCE, WITHOUT AN ADJACENT LANE S (TO THE RIGHT) WHICH IS, IN TURN, ADJACENT TO LANE R.

FOOTNOTE 4 - VISUALLY EVALUATED (OBTAINED) PAVEMENT TYPE DECODIFICATION HAS BEEN PULLED FROM FORM 1626.

FOOTNOTE 5 - 15 CELLS FOR EACH OF 4 SETS OF LANES (TOTAL LANE SET REPRESENTS A POTENTIAL ROADWAY) ARE RESERVED. LANE SETS WHICH, DUE TO HIGHWAY DESIGN, DO NOT EXIST, ARE VOID OF DATA. EACH CELL CONSTITUTES 0.2 MILES OF A SEGMENT (THUS, MAXIMUM SEGMENT LENGTH OF 3.0 MILES) WITH THE EXCEPTION THAT THE LAST CELL OF AN ODD MILEAGE SEGMENT (IE, LENGTH = 1.9 MILES) WILL BE UNDERSTOOD TO CONSTITUTE ONLY 0.1 MILE. CELLS OUTSIDE THE RANGE NEEDED TO EXHAUST THE SEGMENT LENGTH ARE VOID OF DATA. REGARDLESS OF DIRECTION-OF-TRAVEL (WITH OR AGAINST POSTS), CELLS WITHIN A 15-MEMBER UNIT ARE TOGETHER END-TO-END FROM LOW NUMBERED CELL TO HIGH NUMBERED CELL (1 TO 15) AND COVER THE MILEAGE TRAVERSED FROM SEGMENT BEGIN POST & DISPLACEMENT TO SEGMENT END POST & DISPLACEMENT. THUS, CELL 1 FOR EACH OF THE 4 LANE SETS CONSTITUTES THE FIRST 0.2 MILES OF A SEGMENT (ROW-LINE TO ROW-LINE).
ORIGINAL PES FILE RECORD LAYOUT (Continued)

FOOTNOTE 6 - HIGHWAY DESIGN CODES ARE PULLED FROM D-10 PLATE 25. NUMBER OF ROADWAYS HAS BEEN PARENTHESELICALLY APPENDED.

1. TWO-WAY TRAFFIC (1 ROADWAY)
2. ONE-WAY TRAFFIC (1 ROADWAY)
3. BOULEVARD (2 ROADWAYS)
4. EXPRESSWAY - NO SERVICE ROADS (2 ROADWAYS)
5. EXPRESSWAY - ONE SERVICE ROAD (3 ROADWAYS)
6. EXPRESSWAY - TWO SERVICE ROADS (4 ROADWAYS)
7. FREEWAY - NO SERVICE ROADS (2 ROADWAYS)
8. FREEWAY - ONE SERVICE ROAD (3 ROADWAYS)
9. FREEWAY - TWO SERVICE ROADS (4 ROADWAYS)

FOOTNOTE 7 - AS MENTIONED IN FOOTNOTE 5, EACH LANE SET REPRESENTS A POTENTIAL ROADWAY. HOWEVER, THE FOLLOWING HANDLING RULES SHOULD BE KEPT IN MIND. UTILITY AND PAVEMENT SCORES MAY / MAY NOT BE CALCULATED FOR EXISTING ROADWAYS DEPENDING UPON THE AVAILABILITY OF REQUIRED DATA ITEMS. FOR PES RELEASE 1.0, EITHER ALL SCORES WILL BE CALCULATED OR NONE WILL BE FOUND.

1. FOR HIGHWAY DESIGN TYPES 1 & 2, ONLY 1 ROADWAY EXISTS. LANE SETS R-V AND L-P DATA ARE MERGED WITH RESULTING SCORE OUTPUT (IF COMPUTATIONS POSSIBLE) AS A ROADWAY IDENTIFIED BY R-L AND OCCUPYING THE ROADWAY R-V AREA.
2. FOR DESIGN TYPES 3, 4, AND 7, THE ROADWAY R-V AND L-P AREAS RECEIVE SCORE CALCULATIONS.
4. FOR DESIGN TYPES 6 AND 9, ALL ROADWAY AREAS ARE POTENTIAL RECEIVERS OF SCORE CALCULATIONS.

FOOTNOTE 8 -- 5 CELLS FOR EACH OF 4 SETS OF LANES (EACH LANE SET REPRESENTS A POTENTIAL ROADWAY) ARE RESERVED. LANE SETS WHICH, DUE TO HIGHWAY DESIGN, DO NOT EXIST, ARE VOID OF DATA. EACH CELL CONSTITUTES ONE-FIFTH OF A SEGMENT AND GEOPHONE READINGS FOR EACH OF THE 5 CELLS ARE MANDATORY.
General Information File Record Layout

<table>
<thead>
<tr>
<th>Field</th>
<th>Size/ Type</th>
<th>PES</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*HWYDIST</td>
<td>2N</td>
<td>1</td>
<td>Highway District Number</td>
</tr>
<tr>
<td>*CNTYNUM</td>
<td>3N</td>
<td>2</td>
<td>Maintenance Section Number</td>
</tr>
<tr>
<td>*HWYPREFIX</td>
<td>2C</td>
<td>3</td>
<td>County Number</td>
</tr>
<tr>
<td>*HWYNUM</td>
<td>4N(C)</td>
<td>4.A</td>
<td>Highway System</td>
</tr>
<tr>
<td>*HWYSUFFIX</td>
<td>1C</td>
<td>4.B</td>
<td>Highway Number</td>
</tr>
<tr>
<td>*BEGINST</td>
<td>3N</td>
<td>4.C</td>
<td>Highway Suffix</td>
</tr>
<tr>
<td>*BDISSIGN</td>
<td>1C</td>
<td>5.A</td>
<td>Segment Begin - Milepost No</td>
</tr>
<tr>
<td>*EMPSTDIS</td>
<td>3.1N</td>
<td>5.B</td>
<td>- Displacement Sign</td>
</tr>
<tr>
<td>*ENDMPST</td>
<td>3N</td>
<td>5.C</td>
<td>Segment End - Milepost No</td>
</tr>
<tr>
<td>*EDISSIGN</td>
<td>1C</td>
<td>6.A</td>
<td>- Displacement Sign</td>
</tr>
<tr>
<td>EMPSTDIS</td>
<td>3.1N</td>
<td>6.B</td>
<td>(9.9) - Displacement Value</td>
</tr>
<tr>
<td>*</td>
<td>3C</td>
<td>7.A.1</td>
<td>Laneset</td>
</tr>
<tr>
<td>ENDPST</td>
<td>3N</td>
<td>7.A.2</td>
<td>Segment End - Milepost No.</td>
</tr>
<tr>
<td>EDISSIGN</td>
<td>1C</td>
<td>7.B.1</td>
<td>- Displacement Sign</td>
</tr>
<tr>
<td>EMPSTDIS</td>
<td>3.1N</td>
<td>7.B.2</td>
<td>(9.9) - Displacement Value</td>
</tr>
<tr>
<td>3C/N</td>
<td>2</td>
<td>8.A</td>
<td>Intermediate Post- 1st Post</td>
</tr>
<tr>
<td>3C/N</td>
<td>2</td>
<td>8.B</td>
<td>- 2nd Post</td>
</tr>
<tr>
<td>3.1N</td>
<td>2</td>
<td></td>
<td>- Distance to 1st</td>
</tr>
<tr>
<td>3.1N</td>
<td>2</td>
<td></td>
<td>- Distance to 2nd</td>
</tr>
<tr>
<td>5.1N</td>
<td>2</td>
<td></td>
<td>Route-Thru-County - Begin Value</td>
</tr>
<tr>
<td>5.1N</td>
<td>2</td>
<td></td>
<td>- End Value</td>
</tr>
<tr>
<td>3.1N</td>
<td>2</td>
<td></td>
<td>Segment Length</td>
</tr>
<tr>
<td>6N</td>
<td>9</td>
<td></td>
<td>Last Update Date (YYMMDD)</td>
</tr>
<tr>
<td>10.2N</td>
<td>10</td>
<td></td>
<td>Segment Maintenance Cost</td>
</tr>
<tr>
<td>6N</td>
<td>11</td>
<td></td>
<td>Average Daily Traffic</td>
</tr>
<tr>
<td>5N</td>
<td>12</td>
<td></td>
<td>18-Kip Equivalency</td>
</tr>
<tr>
<td>FUNCLAS</td>
<td>1N</td>
<td>13</td>
<td>Functional Classification</td>
</tr>
<tr>
<td>NO_LANES</td>
<td>2N</td>
<td>14</td>
<td>Number of lanes</td>
</tr>
</tbody>
</table>

* Key field
General Information File Record Layout

<table>
<thead>
<tr>
<th>Size/Field</th>
<th>Type</th>
<th>Note</th>
<th>Item No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N</td>
<td>16</td>
<td></td>
<td></td>
<td>Speed Limit</td>
</tr>
<tr>
<td>2N</td>
<td>17</td>
<td></td>
<td></td>
<td>RIS Surface Type</td>
</tr>
<tr>
<td>3N</td>
<td>23</td>
<td></td>
<td></td>
<td>Surface Width</td>
</tr>
<tr>
<td>1N</td>
<td>24</td>
<td></td>
<td></td>
<td>Highway Design Type</td>
</tr>
<tr>
<td>1C</td>
<td>6</td>
<td>25.A</td>
<td></td>
<td>Sample Selection Flag</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Mandatory</td>
</tr>
<tr>
<td>1C</td>
<td>6</td>
<td>25.B</td>
<td></td>
<td>- Other</td>
</tr>
</tbody>
</table>

* Key Field
Visual Information File Record Layout

<table>
<thead>
<tr>
<th>Field</th>
<th>Size/ Type</th>
<th>Note</th>
<th>Item No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>* HWYDIST</td>
<td>2N</td>
<td>1</td>
<td>1</td>
<td>Highway District Number</td>
</tr>
<tr>
<td></td>
<td>2N</td>
<td>2</td>
<td></td>
<td>Maintenance Section Number</td>
</tr>
<tr>
<td>* CNTYNUM</td>
<td>3N</td>
<td>3</td>
<td></td>
<td>County Number</td>
</tr>
<tr>
<td>* HWYPREFIX</td>
<td>2C</td>
<td>4.A</td>
<td></td>
<td>Highway System</td>
</tr>
<tr>
<td>* HWYNUM</td>
<td>4N(C)</td>
<td>2</td>
<td>4.B</td>
<td>Highway Number</td>
</tr>
<tr>
<td>* HWYSUFFIX</td>
<td>1C</td>
<td>4.C</td>
<td></td>
<td>Highway Suffix</td>
</tr>
<tr>
<td>* BEGMPST</td>
<td>3N</td>
<td>5.A</td>
<td></td>
<td>Segment Begin - Milepost No</td>
</tr>
<tr>
<td></td>
<td>5.B</td>
<td></td>
<td></td>
<td>- Displacement Sign</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(9.9) - Displacement Value</td>
</tr>
<tr>
<td>* BMPSTDIS</td>
<td>3.1N</td>
<td>5.C</td>
<td>5.C</td>
<td>Laneset</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Longitudinal Cracks</td>
</tr>
<tr>
<td></td>
<td>3C</td>
<td>11</td>
<td></td>
<td>- Rutting</td>
</tr>
<tr>
<td></td>
<td>1C</td>
<td>3</td>
<td>18.A-F.1</td>
<td>Visual Evaluation - Lane</td>
</tr>
<tr>
<td></td>
<td>6N</td>
<td>3</td>
<td>18.A-F.2</td>
<td>(YMMDD) - Date Evaluated</td>
</tr>
<tr>
<td></td>
<td>2N</td>
<td>3</td>
<td>18.A-F.3</td>
<td>- Comment</td>
</tr>
<tr>
<td></td>
<td>2N</td>
<td>3</td>
<td>18.A-F.4</td>
<td>- Pavement Type</td>
</tr>
<tr>
<td>FAILMILE</td>
<td>3N</td>
<td>3</td>
<td>18.A-F.5</td>
<td>- Failures</td>
</tr>
<tr>
<td>TRANCRMD</td>
<td>3N</td>
<td>3</td>
<td>18.A-F.6</td>
<td>- Transverse Cracks</td>
</tr>
<tr>
<td>LONGCRMD</td>
<td>3N</td>
<td>3</td>
<td>18.A-F.7</td>
<td>- Longitudinal Cracks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Rutting</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Alligator Cracks</td>
</tr>
<tr>
<td>ALLGCRMD</td>
<td>3N</td>
<td>3</td>
<td>18.A-F.8</td>
<td>- Block Cracks</td>
</tr>
<tr>
<td>BLKCRMD</td>
<td>3N</td>
<td>3</td>
<td>18.A-F.9</td>
<td>- Maintenance Patching</td>
</tr>
<tr>
<td>PATCHFR</td>
<td>3N</td>
<td>3</td>
<td>18.A-F.10</td>
<td>- Patching</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Maintenance Patching</td>
</tr>
</tbody>
</table>

* Key field
Maysmeter Information File Record Layout

<table>
<thead>
<tr>
<th>Field</th>
<th>Size/Type</th>
<th>Note</th>
<th>Item No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>* HWYDIST</td>
<td>2N</td>
<td>1</td>
<td>1</td>
<td>Highway District Number</td>
</tr>
<tr>
<td></td>
<td>2N</td>
<td>2</td>
<td></td>
<td>Maintenance Section Number</td>
</tr>
<tr>
<td>* CNVNUM</td>
<td>3N</td>
<td>3</td>
<td></td>
<td>County Number</td>
</tr>
<tr>
<td>* HWYPREFIX</td>
<td>2C</td>
<td>4.A</td>
<td></td>
<td>Highway System</td>
</tr>
<tr>
<td>* HWYNUM</td>
<td>4N(C)</td>
<td>4.B</td>
<td></td>
<td>Highway Number</td>
</tr>
<tr>
<td>* HWYSUFFIX</td>
<td>1C</td>
<td>4.C</td>
<td></td>
<td>Highway Suffix</td>
</tr>
<tr>
<td>* BEGMPST</td>
<td>3N</td>
<td>5.A</td>
<td></td>
<td>Segment Begin - Milepost No</td>
</tr>
<tr>
<td>* BDISSIGN</td>
<td>1C</td>
<td>5.B</td>
<td></td>
<td>- Displacement Sign</td>
</tr>
<tr>
<td>* BMPSTDIS</td>
<td>3.1N</td>
<td>1</td>
<td>5.C</td>
<td>(9.9) - Displacement Value</td>
</tr>
<tr>
<td></td>
<td>3C</td>
<td>11</td>
<td></td>
<td>Laneset</td>
</tr>
<tr>
<td></td>
<td>6N</td>
<td>19.A</td>
<td></td>
<td>MRM General - Last Update (YMMDD) Date</td>
</tr>
<tr>
<td></td>
<td>3.1N</td>
<td>19.B</td>
<td></td>
<td>- Average SI Value</td>
</tr>
<tr>
<td></td>
<td>1C</td>
<td>20.A-D.1.A</td>
<td></td>
<td>MRM - Lane</td>
</tr>
<tr>
<td></td>
<td>3.1N</td>
<td>20.A-D.1.B</td>
<td></td>
<td>- Lane SI Value</td>
</tr>
<tr>
<td></td>
<td>56C&N</td>
<td>20.A-D.2</td>
<td></td>
<td>- Lane & SI Values (14 occurrences of 20.A.1)</td>
</tr>
<tr>
<td>SIMEAN</td>
<td>7.5N</td>
<td>12</td>
<td></td>
<td>MRM Mean for the Laneset</td>
</tr>
<tr>
<td>SISD</td>
<td>7.5N</td>
<td>12</td>
<td></td>
<td>MRM Std. Dev. for the Laneset</td>
</tr>
<tr>
<td>SIHI</td>
<td>3.1N</td>
<td>12</td>
<td></td>
<td>MRM High for the Laneset</td>
</tr>
<tr>
<td>SILOWVAL</td>
<td>3.1N</td>
<td>12</td>
<td></td>
<td>MRM Low for the Laneset</td>
</tr>
<tr>
<td>SICOUNT</td>
<td>3N</td>
<td>12</td>
<td></td>
<td>MRM Count of Obs. for the Laneset</td>
</tr>
</tbody>
</table>

* Key field
PES Modification Program
Program Specification (continued)

Skid Information File Record Layout

<table>
<thead>
<tr>
<th>Field</th>
<th>Size/Ty</th>
<th>PES Type</th>
<th>Note</th>
<th>Item No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*HWYDIST</td>
<td>2N</td>
<td>1</td>
<td></td>
<td></td>
<td>Highway District Number</td>
</tr>
<tr>
<td>*CNTNUM</td>
<td>3N</td>
<td>2</td>
<td></td>
<td></td>
<td>Maintenance Section Number</td>
</tr>
<tr>
<td>*HWYPREFIX</td>
<td>2C</td>
<td>3</td>
<td></td>
<td></td>
<td>County Number</td>
</tr>
<tr>
<td>*HWYNUM</td>
<td>4N(C)</td>
<td>4.A</td>
<td></td>
<td></td>
<td>Highway System</td>
</tr>
<tr>
<td>*HWYSUFFIX</td>
<td>1C</td>
<td>4.B</td>
<td></td>
<td></td>
<td>Highway Number</td>
</tr>
<tr>
<td>*BEGMPST</td>
<td>3N</td>
<td>4.C</td>
<td></td>
<td></td>
<td>Highway Suffix</td>
</tr>
<tr>
<td>*DISSIGN</td>
<td>1C</td>
<td>5.A</td>
<td></td>
<td></td>
<td>Segment Begin - Milepost No</td>
</tr>
<tr>
<td></td>
<td>6N</td>
<td>5.B</td>
<td></td>
<td></td>
<td>- Displacement Sign</td>
</tr>
<tr>
<td>*BMPSTDIS</td>
<td>3.1N</td>
<td>5.C</td>
<td></td>
<td></td>
<td>(9.9) - Displacement Value</td>
</tr>
<tr>
<td>*</td>
<td>3C</td>
<td>11</td>
<td></td>
<td></td>
<td>Laneset</td>
</tr>
<tr>
<td>6N</td>
<td>21.A</td>
<td></td>
<td></td>
<td></td>
<td>Skid General - Last Update (YMMDD) Date</td>
</tr>
<tr>
<td>2N</td>
<td>21.B</td>
<td></td>
<td></td>
<td></td>
<td>- Average SN Value</td>
</tr>
<tr>
<td>1C</td>
<td>22.A-D.1.A</td>
<td></td>
<td></td>
<td></td>
<td>Skid - Lane</td>
</tr>
<tr>
<td>2N</td>
<td>22.A-D.1.B</td>
<td></td>
<td></td>
<td></td>
<td>- Lane SN Values</td>
</tr>
<tr>
<td>42 C&N</td>
<td>22.A-D.2</td>
<td></td>
<td></td>
<td></td>
<td>- Lane & SN Value</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(14 occurrences of 22.A.1)</td>
</tr>
<tr>
<td>SKIDNUMN</td>
<td>2N</td>
<td>13</td>
<td></td>
<td></td>
<td>SN Mean for the Laneset</td>
</tr>
<tr>
<td>SNSD</td>
<td>2N</td>
<td>13</td>
<td></td>
<td></td>
<td>SN Std. Dev. for the Laneset</td>
</tr>
<tr>
<td>SKIDNUMH</td>
<td>2N</td>
<td>13</td>
<td></td>
<td></td>
<td>SN High for the Laneset</td>
</tr>
<tr>
<td>SKIDSD</td>
<td>2N</td>
<td>13</td>
<td></td>
<td></td>
<td>SN Low for the Laneset</td>
</tr>
<tr>
<td>SNCOUNT</td>
<td>2N</td>
<td>13</td>
<td></td>
<td></td>
<td>SN Count of Obs. for the Laneset</td>
</tr>
</tbody>
</table>

* Key field
Structural Strength Index Information File Record Layout

<table>
<thead>
<tr>
<th>Field</th>
<th>PES</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HWYDIST</td>
<td>2N 1</td>
<td>Highway District Number</td>
</tr>
<tr>
<td>CNYNUM</td>
<td>3N 2</td>
<td>County Number</td>
</tr>
<tr>
<td>HWYPREFX</td>
<td>2C 3</td>
<td>Highway System</td>
</tr>
<tr>
<td>HWYNUM</td>
<td>4N(C) 4</td>
<td>Highway Number</td>
</tr>
<tr>
<td>HWYSUFFX</td>
<td>4C 5</td>
<td>Highway Suffix</td>
</tr>
<tr>
<td>BCGMPST</td>
<td>3N 6</td>
<td>Segment Begin - Milepost No</td>
</tr>
<tr>
<td>BDISSIGN</td>
<td>1C 7</td>
<td>- Displacement Sign</td>
</tr>
<tr>
<td>BMFSTDIS</td>
<td>3.1N 8</td>
<td>(9.9) - Displacement Value</td>
</tr>
<tr>
<td>RWSSIAVG</td>
<td>6N 9</td>
<td>Lane Set - SSI Date (YMMDD)</td>
</tr>
<tr>
<td>SSITEMPP</td>
<td>3N 10</td>
<td>Average SSI</td>
</tr>
<tr>
<td>SSSIG11</td>
<td>5.2N 11</td>
<td>SSI Lane Station 1</td>
</tr>
<tr>
<td>SSSIG12</td>
<td>5.2N 12</td>
<td>Geophone Reading 1 Station 1</td>
</tr>
<tr>
<td>SSSIG13</td>
<td>5.2N 13</td>
<td>Geophone Reading 2 Station 1</td>
</tr>
<tr>
<td>SSSIG14</td>
<td>5.2N 14</td>
<td>Geophone Reading 3 Station 1</td>
</tr>
<tr>
<td>SSSIG15</td>
<td>5.2N 15</td>
<td>Geophone Reading 4 Station 1</td>
</tr>
<tr>
<td>SSSIG16</td>
<td>5.2N 16</td>
<td>Geophone Reading 5 Station 1</td>
</tr>
<tr>
<td>SSSIG17</td>
<td>5.2N 17</td>
<td>Geophone Reading 6 Station 1</td>
</tr>
<tr>
<td>SSSIG18</td>
<td>5.2N 18</td>
<td>Geophone Reading 7 Station 1</td>
</tr>
<tr>
<td>SSSIG19</td>
<td>5.2N 19</td>
<td>Geophone Reading 8 Station 1</td>
</tr>
<tr>
<td>SSSIG20</td>
<td>5.2N 20</td>
<td>Geophone Reading 9 Station 1</td>
</tr>
<tr>
<td>SSSIG21</td>
<td>5.2N 21</td>
<td>Geophone Reading 10 Station 1</td>
</tr>
<tr>
<td>SSSIG22</td>
<td>5.2N 22</td>
<td>Geophone Reading 11 Station 1</td>
</tr>
<tr>
<td>SSSIG23</td>
<td>5.2N 23</td>
<td>Geophone Reading 12 Station 1</td>
</tr>
<tr>
<td>SSSIG24</td>
<td>5.2N 24</td>
<td>Geophone Reading 13 Station 1</td>
</tr>
<tr>
<td>SSSIG25</td>
<td>5.2N 25</td>
<td>Geophone Reading 14 Station 1</td>
</tr>
<tr>
<td>SSSIG26</td>
<td>5.2N 26</td>
<td>Geophone Reading 15 Station 1</td>
</tr>
<tr>
<td>SSSIG27</td>
<td>5.2N 27</td>
<td>Geophone Reading 16 Station 1</td>
</tr>
<tr>
<td>SSSIG28</td>
<td>5.2N 28</td>
<td>Geophone Reading 17 Station 1</td>
</tr>
<tr>
<td>SSSIG29</td>
<td>5.2N 29</td>
<td>Geophone Reading 18 Station 1</td>
</tr>
<tr>
<td>SSSIG30</td>
<td>5.2N 30</td>
<td>Geophone Reading 19 Station 1</td>
</tr>
<tr>
<td>SSSIG31</td>
<td>5.2N 31</td>
<td>Geophone Reading 20 Station 1</td>
</tr>
<tr>
<td>SSSIG32</td>
<td>5.2N 32</td>
<td>Geophone Reading 21 Station 1</td>
</tr>
<tr>
<td>SSSIG33</td>
<td>5.2N 33</td>
<td>Geophone Reading 22 Station 1</td>
</tr>
<tr>
<td>SSSIG34</td>
<td>5.2N 34</td>
<td>Geophone Reading 23 Station 1</td>
</tr>
<tr>
<td>SSSIG35</td>
<td>5.2N 35</td>
<td>Geophone Reading 24 Station 1</td>
</tr>
<tr>
<td>SSSIG36</td>
<td>5.2N 36</td>
<td>Geophone Reading 25 Station 1</td>
</tr>
</tbody>
</table>

* Key Field
PES Modification Program

Program Specification (continued)

Structural Strength Index Information File Record Layout

<table>
<thead>
<tr>
<th>Field</th>
<th>Size/Type</th>
<th>Note</th>
<th>Item No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSIGPH37</td>
<td>5.2N</td>
<td>8</td>
<td>27.A-D.3.H</td>
<td>Geophone Reading 7 Station 3</td>
</tr>
<tr>
<td></td>
<td>1C</td>
<td></td>
<td></td>
<td>SSI Lane Station 4</td>
</tr>
<tr>
<td>SSIGPH41</td>
<td>5.2N</td>
<td>8</td>
<td>27.A-D.4.A</td>
<td>Geophone Reading 1 Station 4</td>
</tr>
<tr>
<td>SSIGPH42</td>
<td>5.2N</td>
<td>8</td>
<td>27.A-D.4.B</td>
<td>Geophone Reading 2 Station 4</td>
</tr>
<tr>
<td>SSIGPH43</td>
<td>5.2N</td>
<td>8</td>
<td>27.A-D.4.C</td>
<td>Geophone Reading 3 Station 4</td>
</tr>
<tr>
<td>SSIGPH44</td>
<td>5.2N</td>
<td>8</td>
<td>27.A-D.4.D</td>
<td>Geophone Reading 4 Station 4</td>
</tr>
<tr>
<td>SSIGPH45</td>
<td>5.2N</td>
<td>8</td>
<td>27.A-D.4.E</td>
<td>Geophone Reading 5 Station 4</td>
</tr>
<tr>
<td>SSIGPH46</td>
<td>5.2N</td>
<td>8</td>
<td>27.A-D.4.F</td>
<td>Geophone Reading 6 Station 4</td>
</tr>
<tr>
<td>SSIGPH47</td>
<td>5.2N</td>
<td>8</td>
<td>27.A-D.4.G</td>
<td>Geophone Reading 7 Station 4</td>
</tr>
<tr>
<td></td>
<td>1C</td>
<td></td>
<td></td>
<td>SSI Lane Station 5</td>
</tr>
<tr>
<td>SSIGPH51</td>
<td>5.2N</td>
<td>8</td>
<td>27.A-D.5.A</td>
<td>Geophone Reading 1 Station 5</td>
</tr>
<tr>
<td>SSIGPH52</td>
<td>5.2N</td>
<td>8</td>
<td>27.A-D.5.B</td>
<td>Geophone Reading 2 Station 5</td>
</tr>
<tr>
<td>SSIGPH53</td>
<td>5.2N</td>
<td>8</td>
<td>27.A-D.5.C</td>
<td>Geophone Reading 3 Station 5</td>
</tr>
<tr>
<td>SSIGPH54</td>
<td>5.2N</td>
<td>8</td>
<td>27.A-D.5.D</td>
<td>Geophone Reading 4 Station 5</td>
</tr>
<tr>
<td>SSIGPH55</td>
<td>5.2N</td>
<td>8</td>
<td>27.A-D.5.E</td>
<td>Geophone Reading 5 Station 5</td>
</tr>
<tr>
<td>SSIGPH56</td>
<td>5.2N</td>
<td>8</td>
<td>27.A-D.5.F</td>
<td>Geophone Reading 6 Station 5</td>
</tr>
<tr>
<td>SSIGPH57</td>
<td>5.2N</td>
<td>8</td>
<td>27.A-D.5.G</td>
<td>Geophone Reading 7 Station 5</td>
</tr>
</tbody>
</table>
Score Information Program Record Layout

<table>
<thead>
<tr>
<th>Field</th>
<th>Size/Type</th>
<th>Item No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HWYDIST</td>
<td>2N</td>
<td>1</td>
<td>Highway District Number</td>
</tr>
<tr>
<td></td>
<td>2N</td>
<td>2</td>
<td>Maintenance Section Number</td>
</tr>
<tr>
<td>CNTYNUM</td>
<td>3N</td>
<td>3</td>
<td>County Number</td>
</tr>
<tr>
<td>HWYPREFIX</td>
<td>2C</td>
<td>4.A</td>
<td>Highway System</td>
</tr>
<tr>
<td>HWYNUM</td>
<td>4N(C)</td>
<td>4.B</td>
<td>Highway Number</td>
</tr>
<tr>
<td>HWYSUFFIX</td>
<td>1C</td>
<td>4.C</td>
<td>Highway Suffix</td>
</tr>
<tr>
<td>BEGMPST</td>
<td>3N</td>
<td>5.A</td>
<td>Segment Begin - Milepost No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.B</td>
<td>- Displacement Sign</td>
</tr>
<tr>
<td>BMPSTDIS</td>
<td>3.1N</td>
<td>5.C</td>
<td>(9.9) - Displacement Value</td>
</tr>
<tr>
<td></td>
<td>3C</td>
<td>11</td>
<td>Laneset</td>
</tr>
<tr>
<td></td>
<td>3C</td>
<td>9</td>
<td>28.A-D.1 - Scores - Identifier</td>
</tr>
<tr>
<td></td>
<td>4.2N</td>
<td>10</td>
<td>28.A-D.2 - MRU Utility</td>
</tr>
<tr>
<td></td>
<td>4.2N</td>
<td>10</td>
<td>28.A-D.3 - Skid Utility</td>
</tr>
<tr>
<td></td>
<td>4.2N</td>
<td>10</td>
<td>28.A-D.4 - Maintenance Cost</td>
</tr>
<tr>
<td></td>
<td>4.2N</td>
<td>10</td>
<td>28.A-D.5 - Unweighted Visual</td>
</tr>
<tr>
<td></td>
<td>4.2N</td>
<td>10</td>
<td>28.A-D.6 - Adjusted Visual</td>
</tr>
<tr>
<td></td>
<td>4.2N</td>
<td>10</td>
<td>28.A-D.7 - Weighted Visual</td>
</tr>
<tr>
<td></td>
<td>4.2N</td>
<td>10</td>
<td>28.A-D.8 - Unweighted Pavement</td>
</tr>
<tr>
<td></td>
<td>4.2N</td>
<td>10</td>
<td>28.A-D.9 - Pavement Score</td>
</tr>
</tbody>
</table>

* Key Field
Notes on Output Record Layouts

General Notes:

A. All decimal points are implied in the Original PES File. The Size/Type column in the output layouts include 1 extra position for the decimal which physically exists, except for the Beginning and Ending Milepoint Displacements. The Displacements have an implied decimal point in the output files also.

B. All dates are in the format of YYMMDD.

C. Refer to the original PES record layout for an explanation of each PES item.

D. The Visual Evaluation is taken on the worst lane in the roadway. There will be MRM and SSI data for all roadways in which a visual evaluation has been made. However, for a Highway Design Code of 1 or 2, the roadway would be R-L instead of R-V and L-P; hence the visual evaluation could be taken in lane 'L' and the MRM or the SSI could be taken in the 'R' lane. For Highway Design Code 1 or 2, the program only creates one record in each modified PES file (See Specific Note 3). If the Visual evaluation, MRM, SSI and the Score data are not available for all the roadways which exist for the segment (see Highway Design), the program reports the test segment and which roadway and data are missing. Currently, there will only be up to 4 visual evaluation lanes - 1 per roadway.

E. The following formula is used to calculate the standard deviation

\[\sigma = \sqrt{\frac{\sum (x - \bar{x})^2}{n-1}} \]

where \(\bar{x} = \frac{\sum x_i}{n} \)

F. A field name is provided when the field directly corresponds to a field in the dBASE III Texas Flexible Pavement Database. The field name is the same as that used in the database.
Specific Notes:

The record layouts refer to these notes in the Note column of the layout.

1. Stored without the decimal place (eg. 3.0 is stored as 30)

2. See the Original PES File Layout documentation.

3. A separate record should be created for original PES items 18.A.1, 18.B.1, 18.C.1, 18.D.1, 18.E.1, and 18.F.1. See General Note D.

4. If the Visual Evaluation lane is in the R-V laneset, then the program extracts laneset R-V cells 1-15 for the MRM readings. The MRM reading are in the format of lane-SI value (eg. R01 - the SI value has an implied decimal point between the two digits). If the Visual Evaluation lane is in the L-P laneset, the program extracts the L-P laneset, MRM readings, etc. (If the Highway Design Code is 1 or 2, the SI values are in the R-V cells.)

5. If the Visual Evaluation lane is in the R-V laneset, then the program extracts the Skid cells 1-15 for the R-V laneset. If the Visual Evaluation lane is in the L-P laneset, the program extracts the L-P laneset skid values, etc. The skid values are in the format of lane-SN value (eg. L20). (If the Highway Design Code is 1 or 2, the Skid values are in the R-V cells.)

6. The program only extracts PES records with an 'A' in the Mandatory Sample Selection Flag field and an 'E', 'F', 'G', 'H', 'I', 'N', 'O', 'P', 'Q', or 'R' in the Other Sample Selection Flag field.

7. As with the MRM and Skid data, the SSI data is given for 4 possible roadways. If the Visual Evaluation Lane is in the R-V laneset, then the program extracts the R-V laneset SSI data, etc. (If the Highway Design Code is 1 or 2, the SSI values are in the R-V cells.)

8. The actual geophone reading for the lanesets are provided in item 27. There are 5 sets of 7 geophone readings per roadway. The lane in which the reading was taken as well as the 7 readings are given for each of the 5 sets of data. The program extracts the readings for the appropriate roadway based on the Visual Evaluation Lane.

9. See Footnote 7 of the Original PES record layout documentation.
Notes on Output Record Layouts

10. The program picks up the appropriate roadway scores based on the Visual Evaluation Lane and Footnote 7 of the original PES File layout.

11. The laneset field will contain the laneset in which the Visual Evaluation Lane is in (e.g. 'R-V', 'R-L', 'L-P', 'A-C', 'X-Z').

12. The program calculates the MRM Mean, Standard Deviation, High Value, Low Value, and Count of Observations for the laneset.

13. The program calculates the SN (Skid) Mean, High Value, Low Value, Standard Deviation, and Count of Observations in the laneset.
Notes:
1. Highway - Highway System, Number, Suffix
2. Highway Design - Item 24 and Footnote 6 of the Original PES File Record Layout Documentation - Values 1-9
4. Place an 'X' in the column for which data is missing.
PROGRAM LISTING

(* File name: PESMOD.PAS
* Program name: pesmod
* Project 2456: Texas Flexible Pavement Database Conversion
* TAMU/TII
* Written by: Victor Wong
* Written on: Feb 2, 1988
* Last updated: May 13, 1988
* Purpose: This Turbo PASCAL program reads in PES data
* and extract information for the project
* and output it in comma-delimited format
* (suitable for DBASE III + and BASIC).)

{>>> PROGRAM PESMOD <<<}
program pesmod;

{>>> constant declarations <<<}
const
 comma = ' ','
decpt = '.','
blank = ' ',
zero = '0';
item_array_size = 15;

{>>> type declarations <<<}
type
 item_array_range = array[1..item_array_size] of real;
 characters = set of 'A'..'Z';
 file_str = string[30];

 laneset = (rv,lp,ac,xz);
 mnm_rec = record
 lane: array[1..15] of char;
 si: array[1..15] of string[2];
 end;

 skid_rec = record
 lane:array[1..15] of char;
 sn:array[1..15] of string[2];
 end;

{ data**}
end;
ssi_gen_rec = record
 date : string[6];
 avg : string[3];
 temp : string[3];
end;

ssi_rec = record
 lane: array[1..5] of char;
 gph1: array[1..5] of string[4];
 gph2: array[1..5] of string[4];
 gph3: array[1..5] of string[4];
 gph4: array[1..5] of string[4];
 gph5: array[1..5] of string[4];
 gph6: array[1..5] of string[4];
 gph7: array[1..5] of string[4];
end;

score_rec = record
 id : string[3];
 mrm : string[3];
 skid : string[3];
 mncost : string[3];
 uwvis : string[3];
 adjvis : string[3];
 wvis : string[3];
 uwpvmt : string[3];
 pvmt : string[3];
end;

{ >>> variables declarations <<< }

var
 hwydist : string[2];
 hwysect : string[2];
 cntynum : string[3];

 hwprefx : string[2];
 hwnum : string[4];
 hwsuffix : char;

 bmpnum : string[3];
 bmpdispseg : char;
 bmpdispval : string[2];

{ SSI general}
{ 6N - date YYMMDD}
{ 3N - average SSI}
{ 3N - temperature}
{ (1 set for each laneset)}
{ ** NOTE: avg, temp zero if no data}

{ SSI}
{ 1C - Lane}
{ 4.2N - gphn1}
{ 4.2N - gphn2}
{ 4.2N - gphn3}
{ 4.2N - gphn4}
{ 4.2N - gphn5}
{ 4.2N - gphn6}
{ 4.2N - gphn7}
{ (5 such set for each laneset)}
{ ** NOTE: lane blank when no ssi
 gph zero when no data **}

{ scores}
{ 3C - identifier}
{ 3.2N - MRM utility}
{ 3.2N - skid utility}
{ 3.2N - maintenance cost}
{ 3.2N - unweighted visual}
{ 3.2N - adjusted visual}
{ 3.2N - weighted visual}
{ 3.2N - unweighted pavement}
{ 3.2N - Pavement score}
{ (1 such set for each laneset)}
{ ** NOTE: id blank when no score
 others 0.0 when no cal.**}

{ district no.}
{ maintenance section no.}
{ county no.}
{ highway}
{ prefix}
{ number}
{ suffix}
{ segment begin}
{ milepost no.}
{ displacement sign}
{ displacement value}
empnum : string[3]; \{ 3N - milepost no. \}
empdispsgn : char; \{ 1C - displacement sign \}
empdispval : string[2]; \{ 2.1N - displacement value \}

intpst1 : string[3]; \{ 3N - 1st post no. \}
intpst2 : string[3]; \{ 3N - 2nd post no. \}
inttdis1 : string[2]; \{ 2.1N - distance to 1st \}
inttdis2 : string[2]; \{ 2.1N - distance to 2nd \}

rtcntybeg : string[4]; \{ 4.1N - begin value \}
rtcntyend : string[4]; \{ 4.1N - end value \}

seglength : string[2]; \{ 2.1N segment length \}
segupdat : string[6]; \{ 6N last updated date \}
segmncost : string[9]; \{ 9.2N segment maintenance cost \}
adt : string[6]; \{ 6N average daily traffic \}
al8k : string[5]; \{ 5N 18-kip equivalency (x 1000) \}
funclas : char; \{ 1N functional classification \}
numlanes : string[2]; \{ 2N no. of lanes \}
spdlimit : string[2]; \{ 2N speed limit \}
rissurf : string[2]; \{ 2N RIS surface type \}

vislane : array[1..6] of char; \{ 1C - lane \}
visdate : array[1..6] of string[6]; \{ 6N - date evaluated \}
viscomm : array[1..6] of string[2]; \{ 2N - comment \}
vispvmnt : array[1..6] of string[2]; \{ 2N - pavement type \}
visfail : array[1..6] of string[3]; \{ 3N - fail-acp-b \}
vistran : array[1..6] of string[3]; \{ 3N - tran-b-appjntsp \}
vislong : array[1..6] of string[3]; \{ 3N - long-b-pccp \}
visrut : array[1..6] of string[3]; \{ 3N - rut-spall-failjnt \}
visally : array[1..6] of string[3]; \{ 3N - allg-crckspc-lngcrck \}
visblick : array[1..6] of string[3]; \{ 3N - blck-pccp-shatslb \}
visptch : array[1..6] of string[3]; \{ 3N - patch-pnch-failure \}

\{(6 occurrences of vis. eval.)\}

\{(** NOTE: lane blank if no eval. *)\}

mrmupdat : string[6]; \{ 6N - last updated date YWMMD \}
mrmavgsi : string[2]; \{ 2.1N - average SI value \}
\{ 0.0 when none to avg \}

\{ MRM \}

mrm_data : array [laneset] of mrm_rec;

skidupdat : string[6]; \{ 6N - Last updated date YWMMD \}
skidavgsn : string[2]; \{ 2N - average Sn value \}
\{(** NOTE: 0.0 when none to avg *)\}
skid_data : array [laneset] of skid_rec;

surfwidth : string[3]; (3N surface width)
hwydesign : char; (1N highway design type)

smplflgman : char; (1C - mandatory)
smplflgoth : char; (1C - other)

** NOTE: mandatory non-blank
 -> segment must be tested
other non-blank
 -> special-purpose

segment)

ssi_gen_data : array [laneset] of ssi_gen_rec;

ssi_data : array [laneset] of ssi_rec;

score_data : array [laneset] of score_rec;

lane_set : string[3]; (3N laneset)

simean : real; (MRM 6.5N Mean for the laneset)
sisd : real; (6.5N Std. Dev. for the laneset)
sihi : real; (2.1N high value for the laneset)
silo : real; (2.1N low value for the laneset)
sicount : integer; (3N count of obs. for the laneset)

skidmean : real; (skid 2N Mean for the laneset)
skidsd : real; (2N Std. Dev for the laneset)
skidhi : real; (2N High value for the laneset)
skidlo : real; (2N Low value for the laneset)
skidcount : integer; (2N count of obs. for the laneset)

ls,ls1,begin_ls: laneset;
1 : characters;
i,j,
vis_count,visln_pos,
temp_si, temp_sn,
err_code : integer;
mn_stat array,
skid_stat array: item_array_range;
mn_set_flag,
skid_set_flag,
ssi_gen_set_flag,
ssi_set_flag,
score_set_flag,
vis_set_flag,
mnn_in_flag,
skid_in_flag,
ssi_in_flag,
vis_in_flag : boolean;
tempout,
report_file,
report_data_file,
in_file,
gen_file,
vis_file,
mnn_file,
sgd_file,
ssi_file,
scr_file : text;
filename : file_str;
krecords_checked,
records_checked,
record_no,
record_no : integer;
record_no_pos : integer;

--}
{>>> procedure stat: It takes an array of real numbers and <<<}
{>>> find the high and low value, mean, std <<<}
{>>> deviation, and count of non-zero data <<<}

procedure stat (item array: item array_range; array_size: integer;
 var hi, lo, mean, sd: real;
 var count: integer);
(-----variable declaration-----)
var
 sum, sd_sum: real;
 i: integer;
 still_have_data: boolean;

(-----beginning of the procedure-----)
begin
 {---initialize variables---}
 sum := 0.0;
 sd_sum := 0.0;
 count := 1;
 hi := item_array[1];
 lo := item_array[1];
 still_have_data := true;

 {---loop to read data, perform summation and counting---}
 while still_have_data do
 if item_array[count] = 0.0 then
 still_have_data := false
 else
 begin

sum:= sum + item_array[count];
if item_array[count] > hi then hi:= item_array[count];
if item_array[count] < lo then lo:= item_array[count];
count:= count + 1;
if count > array_size then still_have_data:= false
end;
count:= count - 1;

{---calculate the mean---}
if count <> 0 then mean:= sum/count;

{---calculate the std. dev.---}
if count = 1 then
sd:= 0.0
else begin
for i:= 1 to count do
sd:= sd + sqr (item_array[i] - mean);
sd:= sqrt (sd/(count-1));
end;
end;

{---ending of the procedure stat---}

---procedure OpenInFile-----

procedure OpenInFile (var in_file: text; var filename: file_str);
{---variable declaration---}
var
 infilename: string[20];
 ok: boolean;
 yr: string[2];

{---beginning of procedure openinfile---}
begin
 repeat
 filename:= '\PAVEDE\PES';
 infilename:= filename+ '.DAT';
 assign (in file, infilename);
 reset (in file);
 ok:= (IOresult = 0);
 if not ok then
 begin
 clrscr;
 gotoxy (14,14);
 writeln ('Cannot find the file ', infilename);
 end;
 until ok;
 end;
{---ending of the procedure openinfile---}
procedure OpenOutFile (var gen,
vis,
mrm,
skd,
ssi,
scr : text;
filename : file_str);

filename: file_str);

{---beginning of the procedure openoutfile---}
beg
assign (gen, '\PAVEDB\PESGEN.DIM');
rewrite (gen);
assign (vis, '\PAVEDB\PESVIS.DIM');
rewrite (vis);
assign (mrm, '\PAVEDB\PESMRM.DIM');
rewrite (mrm);
assign (skd, '\PAVEDB\PESSKD.DIM');
rewrite (skd);
assign (ssi, '\PAVEDB\PESSSI.DIM');
rewrite (ssi);
assign (scr, '\PAVEDB\PESSCR.DIM');
rewrite (scr);
end;
{---ending of the procedure openoutfile---}

filename: file_str);

{---variable declarations---}
var
reportfilename: string[30];
reportdatafile: string[30];
{---beginning of the procedure openreportfile---}
beg
reportfilename:= filename + '.rep';
assign (report_file, reportfilename);
rewrite (report_file);
reportdatafile:= filename + '.rpd';
assign (report_data_file, reportdatafile);
rewrite (report_data_file);
end;
{---ending of the procedure openreportfile---}

{---
--}

{>>> procedure ProduceReport: This procedure produces the missing data
<<<}
{>>> report using the report data file.
<<<}

procedure ProduceReport (var report_file, report_data_file: text);
var
 record_line: integer;
 data_line: string[132];
begin
 for i:= 1 to 132 do data_line[i] := ' ';
 close (report_data_file);
 reset (report_data_file);
 record_line := 0;
 while not eof (report_data_file) do begin
 if (record_line = 0) or (record_line = 50) then begin
 record_line := 0;
 {>>> write the heading for the report <<<}
 writeln (report_file, 'L);
 writeln (report_file,' Texas Flexible
Pavement Database');
 writeln (report_file,' PES
Modification Program');
 writeln (report_file,' Missing
Data Report');
 writeln(report_file);
 writeln(report_file);
 writeln (report_file, 'Hwy ---Missing data---');
 writeln (report_file, 'Hwy Hwy Cnty Begin
pt. Des Laneset Vis MRM Skd SSI Scr');
 writeln (report_file, 'Dist Sec Num Highway Mile
---');
 end;
 readln (report_data_file, data_line);
 writeln (report_file, data_line);
 record_line := record_line + 1;
 end;
end;
{---
--}

{>>> beginning of the program <<<}
begin
for i:= 1 to 15 do read (in_file, lane[i], si[i]);

(--- read skid data ---)
read (in_file, skidupdat, skidavgsn);
for ls:= rv to xz do
 with skid_data[ls] do
 for i:= 1 to 15 do read (in_file, lane[i], sn[i]);

(--- read some more general data ---)
read (in_file, surfwidth, hwydesign);
read (in_file, smplflgman, smplflgoth);

(--- read ssi data ---)
for ls:= rv to xz do
 with ssi_gen_data[ls] do
 read (in_file, date, avg, temp);

for ls:= rv to xz do
 with ssi_data[ls] do
 for i:= 1 to 5 do
 begin
 read (in_file, lane[i], gph1[i], gph2[i]);
 read (in_file, gph3[i], gph4[i], gph5[i]);
 read (in_file, gph6[i], gph7[i]);
 end;

(--- read score data ---)
for ls:= rv to xz do
 with score_data[ls] do
 begin
 read (in_file, id, mnr, skid, mncost, uwvis);
 read (in_file, adjvis, wvis, wwpvmt, pvmt);
 end;

(--- goto the next line ---)
readln (in_file);
if records_checked = 999 then
 begin
 krecords_checked:= krecords_checked + 1;
 records_checked:= 0;
 end
else
 records_checked:= records_checked + 1;

{>>> only records with an 'A' in the Mandatory Sample Selection<<<}
{>>> Flag field and an 'E', 'F', 'G', 'H', 'I', 'N', 'O', 'P', 'Q' or <<<}
{>>> 'R' in the Other Sample Selection Flag field should be <<<}
{>>> processed. <<<}
if (smplflgman = 'A') and ((smplflgoth='E') or (smplflgoth='F')
or (smplflgoth='G') or (smplflgoth='H') or (smplflgoth='I')
or (smplflgoth='N') or (smplflgoth='O') or (smplflgoth='P')
or (smplflgoth='Q') or (smplflgoth='R')) then
 begin

236
(>>> let user know that the program is running <<<)
crlscr;
gotoxy (15,3);
write ('***');
gotoxy (15,4);
write ('* Program PESMOD is running.*');
gotoxy (15,5);
write ('* This program will modify the PES data tape file. *');
gotoxy (15,6);
write ('***');

(>>> assign input and output files <<<)
crlscr;
OpenInFile(in_file,filename);
OpenOutFile(gen_file,vis_file,mnm_file,skd_file,ssi_file,scr_file,
filename);
OpenReportFile (report_file,report_data_file,filename);

(>>> initialize record counter <<<)

 gotoxy (14,12);
write ('Processing•••');
gotoxy (21,13);
write ('new modified records');
record_no:= 0;
record_no_pos:= 17;
krecords_checked:= 0;
records_checked:= 0;

while not eof (in_file) do
begin

(>>> read in data <<<)
(--- read some general data ---)
read (in_file, hwydist, hwysect, cntynum);
read (in_file, hwprefix, hwynum, hwsuffix);
read (in_file, bmpnum, bmpdispsgn, bmpdispval);
read (in_file, emnum, empdispsgn, empdispval);
read (in_file, intpst1, intpst2, intdis1, intdis2);
read (in_file, rtcntybeg, rtcntyend);
read (in_file, seglngth, segupdat, segmncost);
read (in_file, adt, a18k, funclas, numlanes, spdlimit, rissurf);

(--- read visual data ---)
for i:= 1 to 6 do
begin
read (in_file, vislane[i], visdate[i], viscomm[i], vispvmt[i]);
read (in_file, visfail[i], vistran[i], vislong[i], visrut[i]);
read (in_file, visallg[i], visblck[i], visptch[i]);
end;

(--- read mnm data ---)
read (in_file, mrmupdat, mrmavgsi);
for ls:= rv to xz do
with mnm_data[ls] do
check and see what kind of data is available
for the different lanes in the four lanesets

if highway design number is 1 or 2,
laneset rv and lp is considered the same
if (hwydesign = '1') or (hwydesign='2') then
 begin ls:= lp
else
 begin ls:= rv;

for each laneset, check to see what data is available
for ls:= begin ls to xz do
 begin
 if data is available, assign the set_flag to be true
 mrm_set_flag:= false;
 skid_set_flag:= false;
 ssigen_set_flag:= false;
 ssi_set_flag:= false;
 score_set_flag:= false;
 vis_set_flag:= false;
 if mrm_data[ls].lane[1] <> ' ' then mrm_set_flag:= true;
 if skid_data[ls].lane[1] <> ' ' then skid_set_flag:= true;
 if ssi_gen_data[ls].date<>'000000' then ssigen_set_flag:= true;
 if ssi_data[ls].lane[1] <> ' ' then ssi_set_flag:= true;
 if score_data[ls].id <> I I then score_set_flag:= true;
 vis_count:= 1;
 while (not vis_set_flag) and (vis_count <= 6) do
 begin
 if (vislane[vis_count] <> ' ') then
 vis_set_flag:= true;
 vis_count:= vis_count + 1;
 end;

when there is some data for the laneset, proceed to write
records for the lanes in the laneset that have data
if mrm_set_flag or skid_set_flag or ssigen_set_flag
or ssi_set_flag or score_set_flag or vis_set_flag
then begin
 assign the correct lane range of the present laneset
if (hwydesign='1') or (hwydesign='2') then
 case ls of
 lp: l:= ['R','L'];
 ac: l:= ['A'..'C'];
 xz: l:= ['X'..'Z'];
 end
else
 case ls of
 rv: l:= ['R'..'V'];
 lp: l:= ['L'..'P'];
 ac: l:= ['A'..'C'];
 xz: l:= ['X'..'Z'];
 end;
{ for each laneset, write a record if data exists }

{ if data is available, assign the ln_flag to be true }
mnn ln_flag := false;
skid ln_flag := false;
ssi ln_flag := false;
vis ln_flag := false;

if mnn set flag and (mnn_data[ls].lane[1] in 1)
then mnn ln_flag := true;
if skid set flag and (skid_data[ls].lane[1] in 1)
then skid ln_flag := true;
if ssi set flag and (ssi_data[ls].lane[1] in 1)
then ssi ln_flag := true;
{ This is assuming that there will only be }
{ a set of visual data for one lane per laneset. }
{ Meaning that there should not be data for }
{ lane 'R' and 'S'. Otherwise, only the first one }
{ will be picked up. }
vis count := 1;
visln_pos := 0;
while (visln_pos = 0) and (vis_count <= 6) do
begin
 if (vislane[vis_count] in 1) then
 begin
 visln_pos := vis_count;
 vis_count := vis_count + 1;
 end;
if visln_pos <> 0 then vis ln_flag := true;

{ when there is some data for the laneset, proceed to write }
{ out the record }
if mnn ln_flag or skid ln_flag or ssi ln_flag
or vis ln_flag then
begin
{ check for the laneset }
if (hwydesign = '1') or (hwydesign = '2') then
 case ls of
 lp: lane_set := 'R-L';
 ac: lane_set := 'A-C';
 xz: lane_set := 'X-Z';
 end
else
 case ls of
 rv: lane_set := 'R-V';
 lp: lane_set := 'L-P';
 ac: lane_set := 'A-C';
 xz: lane_set := 'X-Z';
 end;
{ write out some key data }
write (gen file,
hwydist, comma,
cntynum, comma,
hwynum, comma,
hwysect, comma,
hwyprefix, comma,
''', hwyprefix, '''', comma,
''', hwysuffix, '''', comma,
238}
bmpnum,comma, "",bmpdispsgn,"",comma,
bmpdispval,comma); write (gen_file,"",lane_set,"",comma);

write (vis_file,hwysect,comma,
cntynum,comma, "",hwprefx,"",comma,
hwnum,comma, "",hwsuffix,"",comma,
bmpnum,comma, "",bmpdispsgn,"",comma,
bmpdispval,comma); write (vis_file,"",lane_set,"",comma);

write (mmn_file,hwysect,comma,
cntynum,comma, "",hwprefx,"",comma,
hwnum,comma, "",hwsuffix,"",comma,
bmpnum,comma, "",bmpdispsgn,"",comma,
bmpdispval,comma); write (mmn_file,"",lane_set,"",comma);

write (skd_file,hwysect,comma,
cntynum,comma, "",hwprefx,"",comma,
hwnum,comma, "",hwsuffix,"",comma,
bmpnum,comma, "",bmpdispsgn,"",comma,
bmpdispval,comma); write (skd_file,"",lane_set,"",comma);

write (ssi_file,hwysect,comma,
cntynum,comma, "",hwprefx,"",comma,
hwnum,comma, "",hwsuffix,"",comma,
bmpnum,comma, "",bmpdispsgn,"",comma,
bmpdispval,comma); write (ssi_file,"",lane_set,"",comma);

write (scr_file,hwysect,comma,
cntynum,comma, "",hwprefx,"",comma,
hwnum,comma, "",hwsuffix,"",comma,
bmpnum,comma, "",bmpdispsgn,"",comma,
bmpdispval,comma); write (scr_file,"",lane_set,"",comma);

{ write out some general data }
write (gen_file,empnum,comma,
"",empdispsgn,"",comma,empdispval,comma);
if (intpst1 = ' ') then
 write (gen_file,zero:3,comma)
else
 write (gen_file,intpst1,comma);
if (intpst2 = ' ') then
 write (gen_file,zero:3,comma)
else
 write (gen_file, intpst2, comma);
if (intdis1 = '-') then
 write (gen_file, zero, decpt, zero, comma)
else
 write (gen_file, copy(intdis1,1,1), decpt, copy(intdis1,2,1), comma);
if (intdis2 = '-') then
 write (gen_file, zero, decpt, zero, comma)
else
 write (gen_file, copy(intdis2,1,1), decpt, copy(intdis2,2,1), comma);
write (gen_file, copy(rtcntYbeg,1,3), decpt, copy(rtcntYbeg,4,1), comma, copy(rtcntYend,1,3), decpt, copy(rtcntYend,4,1), comma, copy(seglnth,1,1), decpt, copy(seglnth,2,1), comma, segupdat, comma, copy(segmncoast,1,7), decpt, copy(segmncoast,8,2), comma, adt, comma, al8k, comma, funclas, comma, numlanes, comma, spdlimit, comma, rissurf, comma);

{ write out the visual data}
if vis ln flag then
 begin { for existing data }
 write(vis_file, "", vislane[visln_pos], "", comma, visdate[visln_pos], comma, viscomm[visln_pos], comma, vispvmt[visln_pos], comma, visfail[visln_pos], comma, vistran[visln_pos], comma, vislong[visln_pos], comma, visrut[visln_pos], comma, visallg[visln_pos], comma, visbck[visln_pos], comma, visptch[visln_pos]);
 end
else
 begin { for empty fields }
 write(vis_file, "", blank, "");
 for j:= 1 to 10 do write(vis_file, comma, zero);
 end;
writeln (vis_file);

{ write out mnn data }
write(mnn_file, mnnupdat, comma, copy(mnnavgsi,1,1), decpt, copy(mnnavgsi,2,1), comma);
if mnn ln flag then
 for i:= 1 to 15 do { for existing data }
 write (mnn_file, "", mnn_data[ls].lane[i], "", mnn_data[ls].si[i], comma, copy(mnn_data[ls].si[i],1,1), decpt, copy(mnn_data[ls].si[i],2,1), comma)
else
 for j:= 1 to 10 do write(mnn_file, comma, zero);
 end;
writeln (mnn_file);
for i:= 1 to 15 do { for empty fields }
write (mnum_file, "", blank, "", comma,
zero, comma);

{ write out skid data }
write (skd_file, skidupdat, comma, skidavgsn, comma);
if skid ln flag then
for i:= 1 to 15 do { for existing data }
write (skd_file, "", skid_data[l].lane[i], "",
comma, skid_data[l].sn[i], comma)
else
for i:= 1 to 15 do { for empty fields }
write (skd_file, "", blank, "", comma,
zero, comma);

{ write out some more general data }
writeln (gen_file, surfwidth, comma,
hwydesign, comma,
"" , smplflgnman,"", comma,
"" , smplflgoth,"")

{ write out ssi general data }
if ssigen_set_flag then
with ssi_gen_data[l] do { for existing data }
write (ssi_file, date, comma,
avg, comma,
temp)
else { for empty fields }
write (ssi_file, zero, comma, zero, comma, zero);

{ write out ssi data }
if ssi_ln_flag then
with ssi_data[l] do
for i:= 1 to 5 do { for existing data }
begin
write (ssi_file, comma, "", lane[i], "")
write (ssi_file,
comma, copy (gph1[i], 1, 2), decpt, copy (gph1[i], 3, 2),
comma, copy (gph2[i], 1, 2), decpt, copy (gph2[i], 3, 2),
comma, copy (gph3[i], 1, 2), decpt, copy (gph3[i], 3, 2),
comma, copy (gph4[i], 1, 2), decpt, copy (gph4[i], 3, 2),
comma, copy (gph5[i], 1, 2), decpt, copy (gph5[i], 3, 2),
comma, copy (gph6[i], 1, 2), decpt, copy (gph6[i], 3, 2),
comma, copy (gph7[i], 1, 2), decpt, copy (gph7[i], 3, 2));
end
else
for i:= 1 to 5 do { for empty fields }
begin
write (ssi_file, comma, "", blank, "")
for j:= 1 to 7 do
write (ssi_file, comma, zero, decpt, zero);
end;
writeln (ssi_file);

241
{ write out score data }
if score_set_flag then
 with score_data[ls] do { for existing data }
 write(scr_file, "", id, ",", comma,
 copy(mmn,1,1), dect, copy(mmn,2,2), comma,
 copy(skid,1,1), dect, copy(skid,2,2), comma,
 copy(mncost,1,1), dect, copy(mncost,2,2), comma,
 copy(uwvis,1,1), dect, copy(uwvis,2,2), comma,
 copy(adjvis,1,1), dect, copy(adjvis,2,2), comma,
 copy(wvis,1,1), dect, copy(wvis,2,2), comma,
 copy(uwpvmt,1,1), dect, copy(uwpvmt,2,2), comma,
 copy(pvmt,1,1), dect, copy(pvmt,2,2))
else
 begin { for empty fields }
 write (scr_file,"",blank,blank,blank,"");
 for i:= 1 to 8 do
 write (scr_file,comma,zero,dect,zero);
 end;
 writeln (scr_file);

{--- calculate the statistics on si values ---}
sicount := 0;
sihi := 0.0;
silo := 0.0;
simean := 0.0;
sisd := 0.0;
if mnn_ln_flag then begin
 with mnn_data[ls] do
 for i:= 1 to 15 do
 begin
 val (si[i], temp_si, err_code);
 mnn_stat_array[i] := temp_si/10.0;
 end;
 stat(mnn_stat_array, item_array_size, sihi,
 silo, simean, sisd, sicount);
end;

{ write out the mnn stat. }
writeln (mnn_file, simean:7:5, comma, sisd:7:5, comma,
 sihi:3:1, comma,
 silo:3:1, comma, sicount:3);

{--- calculate the statistics on skid values ---}
skidaycount := 0;
skidayhi := 0;
skidlo := 0;
skidmean := 0;
skitsd := 0;
if skid_ln_flag then begin
 with skid_data[ls] do
 for i:= 1 to 15 do
begin
 val (sn[i], temp_sn, err_code);
 skid_stat_array[i]:= temp_sn;
end;

stat (skid_stat_array, item_array_size, skidhi,
skiddlo, skidmean, skidsd, skidcount);
end;

{ write out the skid stat. }
writeln (skd_file, skidmean:2:0, comma, skidsd:2:0, comma,
skidhi:2:0, comma, skiddlo:2:0, comma,
skidcount:2);

{ write out the missing data report for lanes }
write (report data file, ' ');
write (report data file, hwydist, ' ',
hwysect, ' ',
cntynum, ' ',
hwyprefix, ' ', hwynum, ' ', hwysuffix, ' ',
bmpnum, ' ', bmpdispsgn, ' ', bmpdispval, ' ',
hwydesign, ' ',
lane_set, ' ');
if vis_ln_flag then
 write (report data file, ' ')
else
 write (report data file, 'X');
write (report data file, ' ');
if mmn_ln_flag then
 write (report data file, ' ')
else
 write (report data file, 'X');
write (report data file, ' ');
if skid_ln_flag then
 write (report data file, ' ')
else
 write (report data file, 'X');
write (report data file, ' ');
if ssi_ln_flag then
 write (report data file, ' ')
else
 write (report data file, 'X');
write (report data file, ' ');
if score_set_flag then
 write (report data file, ' ')
else
 write (report data file, 'X');
writeln (report data file);

{--- increment the record counter ---}
if (record_no < 999) then
begin
 gotoxy (record_no_pos,15);
 record_no:= record_no+1;
 write (record_no:3);
end;
end
else
 begin
 gotoxy(record_no_pos-3,15);
 krecord_no:=krecord_no+1;
 write(krecord_no:3,'000');
 record_no:=0;
 end;
end; {(then)
end {then}
else
begin
 { write out the missing data report for lanes }
 write (report_data_file, ' ');
 writeln(report_data_file, hwydist, ' ',
 hwysect, ' ',
 cntynum, ' ',
 hwyprefx, ' ',hwnum, ' ',hwysuffx, ' ',
 bmpnum, ' ',bmpdispsgn, ' ',bmpdispval, ' ',
 hwydesign, ' ',
 '___',' ',X X X X X');
end; {(else)
end; {else}
end; {for}
end; {if}
end; {while}

ProduceReport (report_file, report_data_file);

{>>> inform user that the process is done. <<<
gotoxy(45,13);
write (krecords_checked:3, records_checked:3, ' PES records checked');
gotoxy(14,14);
write ('(NOTE: Missing data for PES records is reported in file ');
gotoxy(14,15);
write (' ',filename,'.REP. ');
gotoxy(14,16);
write ('Done.'););

{>>> close input/output files <<<
close (in_file);
close (gen_file);
close (vis_file);
close (mm File);
close (skd_file);
close (ssi_file);
close (scr_file);
close (report_file);
close (report_data_file);
end.
This program is called after PESMOD.PAS is run. PESMOD.PAS creates the six comma delimited files that PESUP.PRG uses. These six files are appended to six dBASE temporary files (PESKDM.DBF, PESMRR.DBF, PESSSI.DBF, PESVISL.DBF, PESSCR.DBF, PESGEN.DBF). The program then checks to see if the same data has been added previously. If the data is already present in the Master Monitoring files, the program terminates itself. Otherwise, it adds data to the Master Monitoring files (Skid, Visual, Serviceability Index and Falling Weight) and the Location File.

The PESUP.PRG program checks to see if all the PES comma delimited files and PES temporary dBASE files are present before continuing further. An error report is produced for those SID numbers that do not have a matching PES record and those that have inconsistent data for Functional Classification, Number of Lanes, Ending Milepost and No Surface Layer. These programs and the temporary dBase files are in the subdirectory \PAVEDB\EDITUPDT\PES.
PES UPDATE - PROGRAM FLOW DIAGRAM

FIGURE 12
Program Name: PESUP.PRG

Purpose: Update the database with monitoring data from the PES File

Input File:
1) Modified PES temporary dBASE Files -
 Skid (PESSKD.DBF)
 Serviceability Index (PESMRM.DBF)
 Falling Weight SSI (PESSSI.DBF)
 Visual (PESVISL.DBF)
 Scores (PESSCR.DBF)
 Other Data (PESGEN.DBF)
2) dBASE III Location File (LOCATION.DBF)
3) dBASE III Layer ID File (LAYER.DBF)

Procedures/Edits:
See the Procedures pages.

Output Files:
Note: The following files are all dBASE III Files
1) SKID.DBF - Skid Measurement File
2) SI.DBF - Serviceability Index File
3) VISUAL.DBF - Visual Rating File
4) FALLIGHT.DBF - Falling Weight SSI File
5) LOCATION.DBF - Location File

dBASE Programs Called:
 PES_VISL.PRG
 PES_MRM.PRG
 PES_SSI.PRG
 PES_SKID.PRG

Report:
Missing and Inconsistent Data - see the Report Layout.

Note: The procedures pages are followed by the modified PES dBASE temporary file layouts and the Missing and Inconsistent Data Report Layout.
1. New records are created for each active test section in the LOCATION File for the SKID, SI, SSI, and VISUAL files.

2. PESUPD.PRG matches the Modified PES File Records with the appropriate SID records using the LOCATION File. The files are matched to the Highway System, Number, Suffix, Beginning Milepoint Number, Beginning Milepoint Displacement Sign, Beginning Milepoint Displacement, and the Lane ID-Laneset.
 A LANEID of 'R' matches the LANESET 'R-L' and 'R-V'.
 A LANEID of 'L' matches the LANESET 'R-L' and 'L-P'.

3. For each type of monitoring data, the monitoring date is checked against the LAYER file to obtain the appropriate Structure Number and Layer Number for the new records. The Layer Number used is the last existing layer at the time of monitoring. The Structure Number corresponding to the chosen Layer Number is used.

4. For the SKID, SSI, and SI data, the information is used as it exists in the Modified PES File (The dates, however, are split into month, day, and year fields).

5. The VISUAL File data requires some mapping according to the following criteria:

<table>
<thead>
<tr>
<th>Texas Flexible Pavement Database</th>
<th>PES Database Update Program Specification (continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failures FAIIMILE</td>
<td></td>
</tr>
<tr>
<td>0 0 0</td>
<td>0</td>
</tr>
<tr>
<td>1 0 0</td>
<td>1</td>
</tr>
<tr>
<td>0 1 0</td>
<td>2</td>
</tr>
<tr>
<td>0 0 1</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transverse Cracks</th>
<th>TRANSRL</th>
<th>TRANCRMD</th>
<th>TRANCRSV</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 0 0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0 1 0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>0 0 1</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Longitudinal Cracks</th>
<th>LONGCRSL</th>
<th>LONCRM</th>
<th>LONCRSV</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 0 0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0 1 0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>0 0 1</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>
5. (cont.)

<table>
<thead>
<tr>
<th>Rutting</th>
<th>RUTTSL</th>
<th>RUTTMD</th>
<th>RUTTSV</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0</td>
<td>--------> 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 0 0</td>
<td>--------> 0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0 1 0</td>
<td>--------> 0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>0 0 1</td>
<td>--------> 0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2 0 0</td>
<td>--------> 0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0 2 0</td>
<td>--------> 0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>0 0 2</td>
<td>--------> 0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alligator Cracks</th>
<th>ALLGCRSL</th>
<th>ALLGCRMD</th>
<th>ALLGCRSV</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0</td>
<td>--------> 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 0 0</td>
<td>--------> 0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0 1 0</td>
<td>--------> 0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>0 0 1</td>
<td>--------> 0</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Block Cracks</th>
<th>BLKCRKMD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0</td>
<td>--------> 0</td>
</tr>
<tr>
<td>1 0 0</td>
<td>1</td>
</tr>
<tr>
<td>0 1 0</td>
<td>2</td>
</tr>
<tr>
<td>0 0 1</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maintenance Patching</th>
<th>PATCHGD</th>
<th>PATCHFR</th>
<th>PATCHFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0</td>
<td>--------> 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 0 0</td>
<td>--------> 0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0 1 0</td>
<td>--------> 0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>0 0 1</td>
<td>--------> 0</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

6. PESUPD.XRG reports:

a) Active test sections which do not have matching PES Records.

b) The SID Number when the number of lanes is not the same on the PES and the Texas Flexible Pavement Database Files.

c) The SID number when the Ending Milepoint, Ending Milepoint Displacement Sign, and Ending Milepoint Displacement are not the same on the PES and the Texas Flexible Pavement Database Files.

d) The SID number if the Functional Classification is not the same on the PES and the Texas Flexible Pavement Database Files.

e) The SID number if the Surface layer is absent in the Layer Identification file.
PES-Skid File Layout

File Name: PESSKD.DBF

<table>
<thead>
<tr>
<th>Field</th>
<th>Key</th>
<th>Size/Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HWYDIST</td>
<td>*</td>
<td>2N</td>
<td>STHPT Highway District</td>
</tr>
<tr>
<td>CNTYNUM</td>
<td>*</td>
<td>2N</td>
<td>County Number</td>
</tr>
<tr>
<td>HWYPREFIX</td>
<td>*</td>
<td>2C</td>
<td>Highway Number Prefix</td>
</tr>
<tr>
<td>HWYNUM</td>
<td>*</td>
<td>4N</td>
<td>Highway Number</td>
</tr>
<tr>
<td>HWYSUFFIX</td>
<td>*</td>
<td>1C</td>
<td>Highway Number Suffix</td>
</tr>
<tr>
<td>BEGINMILE</td>
<td>*</td>
<td>3N</td>
<td>Beginning Milepost</td>
</tr>
<tr>
<td>BDISSIGN</td>
<td>*</td>
<td>1C</td>
<td>Beginning Displacement Sign</td>
</tr>
<tr>
<td>BPMSTDIS</td>
<td>*</td>
<td>2N</td>
<td>Beginning Milepost Displacement</td>
</tr>
<tr>
<td>LANESET</td>
<td>*</td>
<td>3C</td>
<td>Lane Set</td>
</tr>
<tr>
<td>LASTUPD</td>
<td>6N</td>
<td></td>
<td>Last Update (YMD)</td>
</tr>
<tr>
<td>SKIDNUM</td>
<td>2N</td>
<td></td>
<td>Skid - Mean value</td>
</tr>
<tr>
<td>SKIDSTDD</td>
<td>2N</td>
<td></td>
<td>Skid - Standard Deviation</td>
</tr>
<tr>
<td>SKIDNUMH</td>
<td>2N</td>
<td></td>
<td>Skid - High Value</td>
</tr>
<tr>
<td>SKIDNUML</td>
<td>2N</td>
<td></td>
<td>Skid - Low Value</td>
</tr>
<tr>
<td>SKDNOBS</td>
<td>2N</td>
<td></td>
<td>Skid - Count of Observation</td>
</tr>
</tbody>
</table>
PES-Serviceability Index File Layout

File Name: PESMM.MDB

<table>
<thead>
<tr>
<th>Field</th>
<th>Key</th>
<th>Size/Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HWYDIST</td>
<td></td>
<td>2N</td>
<td>SDHPT Highway District</td>
</tr>
<tr>
<td>CNTYNUM</td>
<td></td>
<td>2N</td>
<td>County Number</td>
</tr>
<tr>
<td>HNYPREFIX</td>
<td></td>
<td>2C</td>
<td>Highway Number Prefix</td>
</tr>
<tr>
<td>HWYNUM</td>
<td></td>
<td>4N</td>
<td>Highway Number</td>
</tr>
<tr>
<td>HWYSUFFIX</td>
<td></td>
<td>1C</td>
<td>Highway Number Suffix</td>
</tr>
<tr>
<td>BEMPST</td>
<td></td>
<td>3N</td>
<td>Beginning Milepost</td>
</tr>
<tr>
<td>BDISSIGN</td>
<td></td>
<td>1C</td>
<td>Beginning Displacement Sign</td>
</tr>
<tr>
<td>BEMPSTDIS</td>
<td></td>
<td>2N</td>
<td>Beginning Milepost Displacement</td>
</tr>
<tr>
<td>LANESET</td>
<td></td>
<td>3C</td>
<td>Lane Set</td>
</tr>
<tr>
<td>LASTUPDT</td>
<td></td>
<td>6N</td>
<td>Last Update (YYMMDD)</td>
</tr>
<tr>
<td>SIMEAN</td>
<td></td>
<td>7.5N</td>
<td>Serviceability Index - Mean</td>
</tr>
<tr>
<td>SISTDDEV</td>
<td></td>
<td>7.5N</td>
<td>Serviceability Index - Standard Deviation</td>
</tr>
<tr>
<td>SIIHIVAL</td>
<td></td>
<td>3.1N</td>
<td>Serviceability Index - High Value</td>
</tr>
<tr>
<td>SILOWVAL</td>
<td></td>
<td>3.1N</td>
<td>Serviceability Index - Low Value</td>
</tr>
<tr>
<td>SICOUNT</td>
<td></td>
<td>3N</td>
<td>Serviceability Index - Count of Observation</td>
</tr>
</tbody>
</table>
PES-Falling Weight SSI File Layout

File Name: PESSSI.DBF

<table>
<thead>
<tr>
<th>Field</th>
<th>Key</th>
<th>Size/Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HWYDIST</td>
<td>*</td>
<td>2N</td>
<td>SDHPT Highway District</td>
</tr>
<tr>
<td>CNTRNUM</td>
<td>*</td>
<td>2N</td>
<td>County Number</td>
</tr>
<tr>
<td>HWYPREFIX</td>
<td>*</td>
<td>2C</td>
<td>Highway Number Prefix</td>
</tr>
<tr>
<td>HWYNUM</td>
<td>*</td>
<td>4N</td>
<td>Highway Number</td>
</tr>
<tr>
<td>HWYSUFFIX</td>
<td>*</td>
<td>1C</td>
<td>Highway Number Suffix</td>
</tr>
<tr>
<td>BEGMPST</td>
<td>*</td>
<td>3N</td>
<td>Beginning Milepost</td>
</tr>
<tr>
<td>BDISSIGN</td>
<td>*</td>
<td>1C</td>
<td>Beginning Displacement Sign</td>
</tr>
<tr>
<td>BEMPSTDIS</td>
<td>*</td>
<td>2N</td>
<td>Beginning Milepost Displacement</td>
</tr>
<tr>
<td>LANESET</td>
<td>*</td>
<td>3C</td>
<td>Lane Set</td>
</tr>
<tr>
<td>SSI AVG</td>
<td>4.1N</td>
<td></td>
<td>Average SSI for the Roadway</td>
</tr>
<tr>
<td>SSITEMP</td>
<td>3N</td>
<td></td>
<td>Temperature For the Roadway</td>
</tr>
<tr>
<td>GEOPHON1 1</td>
<td>5.2N</td>
<td></td>
<td>SSI Reading 1 Geophone no. 1</td>
</tr>
<tr>
<td>GEOPHON2 1</td>
<td>5.2N</td>
<td></td>
<td>SSI Reading 1 Geophone no. 2</td>
</tr>
<tr>
<td>GEOPHON3 1</td>
<td>5.2N</td>
<td></td>
<td>SSI Reading 1 Geophone no. 3</td>
</tr>
<tr>
<td>GEOPHON4 1</td>
<td>5.2N</td>
<td></td>
<td>SSI Reading 1 Geophone no. 4</td>
</tr>
<tr>
<td>GEOPHON5 1</td>
<td>5.2N</td>
<td></td>
<td>SSI Reading 1 Geophone no. 5</td>
</tr>
<tr>
<td>GEOPHON6 1</td>
<td>5.2N</td>
<td></td>
<td>SSI Reading 1 Geophone no. 6</td>
</tr>
<tr>
<td>GEOPHON7 1</td>
<td>5.2N</td>
<td></td>
<td>SSI Reading 1 Geophone no. 7</td>
</tr>
<tr>
<td>GEOPHON8 1</td>
<td>5.2N</td>
<td></td>
<td>SSI Reading 2 Geophone no. 1</td>
</tr>
<tr>
<td>GEOPHON9 1</td>
<td>5.2N</td>
<td></td>
<td>SSI Reading 2 Geophone no. 2</td>
</tr>
<tr>
<td>GEOPHON10 1</td>
<td>5.2N</td>
<td></td>
<td>SSI Reading 2 Geophone no. 3</td>
</tr>
<tr>
<td>GEOPHON11 1</td>
<td>5.2N</td>
<td></td>
<td>SSI Reading 2 Geophone no. 4</td>
</tr>
<tr>
<td>GEOPHON12 1</td>
<td>5.2N</td>
<td></td>
<td>SSI Reading 3 Geophone no. 1</td>
</tr>
<tr>
<td>GEOPHON13 1</td>
<td>5.2N</td>
<td></td>
<td>SSI Reading 3 Geophone no. 2</td>
</tr>
<tr>
<td>GEOPHON14 1</td>
<td>5.2N</td>
<td></td>
<td>SSI Reading 3 Geophone no. 3</td>
</tr>
<tr>
<td>GEOPHON15 1</td>
<td>5.2N</td>
<td></td>
<td>SSI Reading 3 Geophone no. 4</td>
</tr>
<tr>
<td>GEOPHON16 1</td>
<td>5.2N</td>
<td></td>
<td>SSI Reading 3 Geophone no. 5</td>
</tr>
<tr>
<td>GEOPHON17 1</td>
<td>5.2N</td>
<td></td>
<td>SSI Reading 3 Geophone no. 6</td>
</tr>
<tr>
<td>GEOPHON18 1</td>
<td>5.2N</td>
<td></td>
<td>SSI Reading 3 Geophone no. 7</td>
</tr>
<tr>
<td>GEOPHON19 1</td>
<td>5.2N</td>
<td></td>
<td>SSI Reading 4 Geophone no. 1</td>
</tr>
</tbody>
</table>
Pes-Visual File Layout

File Name: PESVISL.DBF

<table>
<thead>
<tr>
<th>Field</th>
<th>Key</th>
<th>Size/Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HWYDIST</td>
<td>*</td>
<td>2N</td>
<td>SDHTP Highway District</td>
</tr>
<tr>
<td>CNTYNUM</td>
<td>*</td>
<td>2N</td>
<td>County Number</td>
</tr>
<tr>
<td>HNYPREFX</td>
<td>*</td>
<td>2C</td>
<td>Highway Number Prefix</td>
</tr>
<tr>
<td>HWYNUM</td>
<td>*</td>
<td>4N</td>
<td>Highway Number</td>
</tr>
<tr>
<td>HWYSUFFX</td>
<td>*</td>
<td>1C</td>
<td>Highway Number Suffix</td>
</tr>
<tr>
<td>BEGMPS</td>
<td>*</td>
<td>3N</td>
<td>Beginning Milepost</td>
</tr>
<tr>
<td>BDISSIGN</td>
<td>*</td>
<td>1C</td>
<td>Beginning Displacement Sign</td>
</tr>
<tr>
<td>BPMSTDIS</td>
<td>*</td>
<td>2N</td>
<td>Beginning Milepost Displacement</td>
</tr>
<tr>
<td>LANSET</td>
<td>*</td>
<td>3C</td>
<td>Lane Set</td>
</tr>
<tr>
<td>DATE</td>
<td></td>
<td>6N</td>
<td>Date (YMMDD)</td>
</tr>
<tr>
<td>FAILMILE</td>
<td></td>
<td>3N</td>
<td>Failures per Mile Occurance Rating</td>
</tr>
<tr>
<td>TRANCRR</td>
<td></td>
<td>3N</td>
<td>Transverse Crack Area Rating</td>
</tr>
<tr>
<td>LONCR</td>
<td></td>
<td>3N</td>
<td>Longitudinal Crack Area Rating</td>
</tr>
<tr>
<td>RUIT</td>
<td></td>
<td>3N</td>
<td>Rutting Area Rating</td>
</tr>
<tr>
<td>ALLGCR</td>
<td></td>
<td>3N</td>
<td>Alligator Crack Area Rating</td>
</tr>
<tr>
<td>BLKCR</td>
<td></td>
<td>3N</td>
<td>Block Crack Area Rating</td>
</tr>
<tr>
<td>PATCH</td>
<td></td>
<td>3N</td>
<td>Patching Area Rating</td>
</tr>
<tr>
<td>Field</td>
<td>Key</td>
<td>Size/Type</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td>-----------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>GEOPHONE42</td>
<td>5.2N</td>
<td>SSI Reading 4 Geophone no. 2</td>
<td></td>
</tr>
<tr>
<td>GEOPHONE43</td>
<td>5.2N</td>
<td>SSI Reading 4 Geophone no. 3</td>
<td></td>
</tr>
<tr>
<td>GEOPHONE44</td>
<td>5.2N</td>
<td>SSI Reading 4 Geophone no. 4</td>
<td></td>
</tr>
<tr>
<td>GEOPHONE45</td>
<td>5.2N</td>
<td>SSI Reading 4 Geophone no. 5</td>
<td></td>
</tr>
<tr>
<td>GEOPHONE46</td>
<td>5.2N</td>
<td>SSI Reading 4 Geophone no. 6</td>
<td></td>
</tr>
<tr>
<td>GEOPHONE47</td>
<td>5.2N</td>
<td>SSI Reading 4 Geophone no. 7</td>
<td></td>
</tr>
<tr>
<td>GEOPHONE51</td>
<td>5.2N</td>
<td>SSI Reading 5 Geophone no. 1</td>
<td></td>
</tr>
<tr>
<td>GEOPHONE52</td>
<td>5.2N</td>
<td>SSI Reading 5 Geophone no. 2</td>
<td></td>
</tr>
<tr>
<td>GEOPHONE53</td>
<td>5.2N</td>
<td>SSI Reading 5 Geophone no. 3</td>
<td></td>
</tr>
<tr>
<td>GEOPHONE54</td>
<td>5.2N</td>
<td>SSI Reading 5 Geophone no. 4</td>
<td></td>
</tr>
<tr>
<td>GEOPHONE55</td>
<td>5.2N</td>
<td>SSI Reading 5 Geophone no. 5</td>
<td></td>
</tr>
<tr>
<td>GEOPHONE56</td>
<td>5.2N</td>
<td>SSI Reading 5 Geophone no. 6</td>
<td></td>
</tr>
<tr>
<td>GEOPHONE57</td>
<td>5.2N</td>
<td>SSI Reading 5 Geophone no. 7</td>
<td></td>
</tr>
</tbody>
</table>
PES Update Program
Score Information File Record Layout

File Name: PESSCR.DBF

<table>
<thead>
<tr>
<th>Field</th>
<th>Key</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HWYDIST</td>
<td>*</td>
<td>2N</td>
<td>Highway District Number</td>
</tr>
<tr>
<td>MAINTSEC</td>
<td>*</td>
<td>2N</td>
<td>Maintenance Section Number</td>
</tr>
<tr>
<td>CNTYNUM</td>
<td>*</td>
<td>3N</td>
<td>County Number</td>
</tr>
<tr>
<td>HWYPREFIX</td>
<td>*</td>
<td>2C</td>
<td>Highway System</td>
</tr>
<tr>
<td>HWYNUM</td>
<td>*</td>
<td>4N</td>
<td>Highway Number</td>
</tr>
<tr>
<td>HWYSUFFIX</td>
<td>*</td>
<td>1C</td>
<td>Highway Suffix</td>
</tr>
<tr>
<td>BEGMPST</td>
<td>*</td>
<td>3N</td>
<td>Beginning Milepost Number</td>
</tr>
<tr>
<td>BDISSIGN</td>
<td>*</td>
<td>1C</td>
<td>Beginning Milepost Displacement Sign</td>
</tr>
<tr>
<td>BMPSTDIS</td>
<td>*</td>
<td>3.1N</td>
<td>Beginning Milepost Displacement Value</td>
</tr>
<tr>
<td>LANESET</td>
<td>*</td>
<td>3C</td>
<td>Laneset</td>
</tr>
<tr>
<td>SCRIDENT</td>
<td></td>
<td>3C</td>
<td>Identifier Score</td>
</tr>
<tr>
<td>SSIUTIL</td>
<td></td>
<td>4.2N</td>
<td>MRM Utility Score</td>
</tr>
<tr>
<td>SKIDUTIL</td>
<td></td>
<td>4.2N</td>
<td>Skid Utility Score</td>
</tr>
<tr>
<td>MAINTCOST</td>
<td></td>
<td>4.2N</td>
<td>Maintenance Cost Score</td>
</tr>
<tr>
<td>UVARS</td>
<td></td>
<td>4.2N</td>
<td>Unweighted Visual Score</td>
</tr>
<tr>
<td>ADJSVISL</td>
<td></td>
<td>4.2N</td>
<td>Adjusted Visual Score</td>
</tr>
<tr>
<td>WGTVISL</td>
<td></td>
<td>4.2N</td>
<td>Weighted Visual Score</td>
</tr>
<tr>
<td>UNWGHTPM</td>
<td></td>
<td>4.2N</td>
<td>Unweighted Pavement Score</td>
</tr>
<tr>
<td>PVMSCR</td>
<td></td>
<td>4.2N</td>
<td>Pavement Score</td>
</tr>
</tbody>
</table>

* Key Field
PES Update Program

General Information File Record Layout (PESGEN.DBF)

File Name: PESGEN.DBF

<table>
<thead>
<tr>
<th>Field</th>
<th>Key</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HWYDIST</td>
<td>*</td>
<td>2N</td>
<td>Highway District Number</td>
</tr>
<tr>
<td>MAINTSEC</td>
<td>*</td>
<td>2N</td>
<td>Maintenance Section Number</td>
</tr>
<tr>
<td>CNTYNUM</td>
<td>*</td>
<td>3N</td>
<td>County Number</td>
</tr>
<tr>
<td>HWYPREFIX</td>
<td>*</td>
<td>2C</td>
<td>Highway System</td>
</tr>
<tr>
<td>HWYNUM</td>
<td>*</td>
<td>4N(C)</td>
<td>Highway Number</td>
</tr>
<tr>
<td>HWYSUFFIX</td>
<td>*</td>
<td>1C</td>
<td>Highway Suffix</td>
</tr>
<tr>
<td>BEGMPOST</td>
<td>*</td>
<td>3N</td>
<td>Segment Begin - Milepost No</td>
</tr>
<tr>
<td>EDISSIGN</td>
<td>*</td>
<td>1C</td>
<td>- Displacement Sign</td>
</tr>
<tr>
<td>EMPSTDIS</td>
<td>*</td>
<td>3.1N</td>
<td>- Displacement Value</td>
</tr>
<tr>
<td>LANESET</td>
<td>*</td>
<td>3C</td>
<td>Laneset</td>
</tr>
<tr>
<td>ENDMPOST</td>
<td>3N</td>
<td></td>
<td>Segment End - Milepost No.</td>
</tr>
<tr>
<td>DISTT01</td>
<td>3C/N</td>
<td></td>
<td>- Distance to 1st Post</td>
</tr>
<tr>
<td>DISTT02</td>
<td>3.1N</td>
<td></td>
<td>- Distance to 2nd</td>
</tr>
<tr>
<td>BEGVAL</td>
<td>5.1N</td>
<td></td>
<td>Route-Thru-County - Begin Value</td>
</tr>
<tr>
<td>ENDVAL</td>
<td>5.1N</td>
<td></td>
<td>- End Value</td>
</tr>
<tr>
<td>SEGLENTH</td>
<td>3.1N</td>
<td></td>
<td>Segment Length</td>
</tr>
<tr>
<td>SGLSTUP</td>
<td>6N</td>
<td></td>
<td>Last Update Date (YMMDD)</td>
</tr>
<tr>
<td>SEGMAINT</td>
<td>10.2N</td>
<td></td>
<td>Segment Maintenance Cost</td>
</tr>
<tr>
<td>AVGDLTRF</td>
<td>6N</td>
<td></td>
<td>Average Daily Traffic</td>
</tr>
<tr>
<td>KIP18EQ</td>
<td>5N</td>
<td></td>
<td>18-Kip Equivalency</td>
</tr>
<tr>
<td>FUCNCLAS</td>
<td>1N</td>
<td></td>
<td>Functional Classification</td>
</tr>
<tr>
<td>NOLANES</td>
<td>2N</td>
<td></td>
<td>Number of lanes</td>
</tr>
<tr>
<td>SPEEDLMT</td>
<td>2N</td>
<td></td>
<td>Speed Limit</td>
</tr>
<tr>
<td>RISURFTY</td>
<td>2N</td>
<td></td>
<td>RIS Surface Type</td>
</tr>
<tr>
<td>SEGSURWD</td>
<td>3N</td>
<td></td>
<td>Surface Width</td>
</tr>
<tr>
<td>HWYDSTY</td>
<td>1N</td>
<td></td>
<td>Highway Design Type</td>
</tr>
<tr>
<td>SMPSEIM</td>
<td>1C</td>
<td></td>
<td>Sample Selection Flag - Mandatory</td>
</tr>
<tr>
<td>SMPSELO</td>
<td>1C</td>
<td></td>
<td>- Other</td>
</tr>
</tbody>
</table>

* Key Field
Texas Flexible Pavement Database

PES Database Update Program
Missing and Inconsistent Data Report Layout

Note: An 'X' is placed in the appropriate column(s) depending on whether or not there is a matching PES File record, or the Number of Lanes, the Ending Milepoint information, or the Functional Classification do not agree between the PES and Texas Flexible Pavement Database File.

<table>
<thead>
<tr>
<th>SID Number</th>
<th>No PES Record</th>
<th>Number Of Lanes</th>
<th>Ending Milepoint</th>
<th>Functional Classification</th>
<th>No Surface Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>XXXX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
* SUBSYSTEM: EDIT & UPDATE MONITORING DATA
* PROGRAM NAME: PESUP.PRG 07/08/88
* PROJECT 2456 - TEXAS FLEXIBLE PAVEMENT DATABASE CONVERSION
* TAMU/TII
* AUTHOR: TREVOR X. PEREIRA
* PURPOSE: CALL THE RESPECTIVE PROGRAMS TO ADD DATA TO THE
* MONITORING FILES
*
CLEAR
* checks to see if all the files are present
? "Checking files . . ."
IF .NOT. FILE('PAVEDB\FILES\PESSKD.DBF')
 ? "PES SKID FILE (PESSKD.DBF) not found. Please Check . . ."
 WAIT
 RETURN
ENDIF
IF .NOT. FILE('PAVEDB\INDEXES\PESSKD.NDX')
 ? "PES SKID INDEX (PESSKD.NDX) not found. Please Check . . ."
 WAIT
 RETURN
ENDIF
IF .NOT. FILE('PAVEDB\FILES\PESMRM.DBF')
 ? "PES SI FILE (PESMRM.DBF) not found. Please Check . . ."
 WAIT
 RETURN
ENDIF
IF .NOT. FILE('PAVEDB\INDEXES\PESMRM.NDX')
 ? "PES SI INDEX (PESMRM.NDX) not found. Please Check . . ."
 WAIT
 RETURN
ENDIF
IF .NOT. FILE('PAVEDB\FILES\PESSSI.DBF')
 ? "PES SSI FILE (PESSSI.DBF) not found. Please Check . . ."
 WAIT
 RETURN
ENDIF
IF .NOT. FILE('PAVEDB\INDEXES\PESSSI.NDX')
 ? "PES SSI INDEX (PESSSI.NDX) not found. Please Check . . ."
 WAIT
 RETURN
ENDIF
IF .NOT. FILE('PAVEDB\FILES\PESVISL.DBF')
 ? "PES VISUAL FILE (PESVISL.DBF) not found. Please Check . . ."
 WAIT
 RETURN
ENDIF
IF .NOT. FILE('PAVEDB\INDEXES\PESVISL.NDX')
? "PES VISUAL INDEX (PESVISL.NDX) not found. Please Check . . ."
WAIT
RETURN ENDIF IF .NOT. FILE('PAVEDB\EDITUPDT\PES\PESTEMP1.DBF')
? "PES TEMPORARY FILE (PESTEMP1.DBF) not found. Please Check . . ."
WAIT
RETURN ENDIF IF .NOT. FILE('PAVEDB\EDITUPDT\PES\PESTEMP2.DBF')
? "PES TEMPORARY FILE (PESTEMP2.DBF) not found. Please Check . . ."
WAIT
RETURN ENDIF IF .NOT. FILE('PAVEDB\EDITUPDT\PES\PESTEMP3.DBF')
? "PES TEMPORARY FILE (PESTEMP3.DBF) not found. Please Check . . ."
WAIT
RETURN ENDIF IF .NOT. FILE('PAVEDB\EDITUPDT\PES\PESTEMP4.DBF')
? "PES TEMPORARY FILE (PESTEMP4.DBF) not found. Please Check . . ."
WAIT
RETURN ENDIF @ 10, 10 SAY "Please wait. Setting up files . . ."
SET SAFETY OFF
USE \PAVEDB\FILES\PESSKD INDE \PAVEDB\INDEXES\PESSKD
ZAP
APPEND FROM \PAVEDB\EDITUPDT\PES\PESSKD.DLM DELIMITED
USE \PAVEDB\FILES\PESSGEN INDE \PAVEDB\INDEXES\PESSGEN
ZAP
APPEND FROM \PAVEDB\EDITUPDT\PES\PESSGEN.DLM DELIMITED
USE \PAVEDB\FILES\PESVISL INDE \PAVEDB\INDEXES\PESVISL
ZAP
APPEND FROM \PAVEDB\EDITUPDT\PES\PESVISL.DLM DELIMITED
USE \PAVEDB\FILES\PESSMRM INDE \PAVEDB\INDEXES\PESSMRM
ZAP
APPEND FROM \PAVEDB\EDITUPDT\PES\PESSMRM.DLM DELIMITED
USE \PAVEDB\FILES\PESSSI INDE \PAVEDB\INDEXES\PESSSI
ZAP
APPEND FROM \PAVEDB\EDITUPDT\PES\PESSSI.DLM DELIMITED
USE \PAVEDB\FILES\PESSCR INDE \PAVEDB\INDEXES\PESSCR
ZAP
APPEND FROM \PAVEDB\EDITUPDT\PES\PESSCR.DLM DELIMITED
CLEAR
SET STAT ON
SET SAFETY OFF @ 10, 10 SAY "Adding data to SKID file . . ."
* add data to the skid file
DO \PAVEDB\EDITUPDT\PES\PES_SKID
@ 12, 10 SAY "Adding data to VISUAL file . . ."
* add data to the visual file
DO \PAVEDB\EDITUPDT\PES\PES_VISL

@ 14, 10 SAY "Adding data to FALLING WEIGHT file . . ."
* add data to the Falling Weight SSI file
DO \PAVEDB\EDITUPDT\PES\PES_SSI

@ 16, 10 SAY "Adding data to SERVICEABILITY INDEX file . . ."
* add data to the Serviceability Index (SI) File
DO \PAVEDB\EDITUPDT\PES\PES_MRM

* Print out Inconsistent Data Report
USE \PAVEDB\EDITUPDT\PES\PESTEMP1
IF RECCOUNT() <> 0
 SORT ON SID NO TO TEMP1
 USE TEMP1
 REPORT FORM \PAVEDB\REPORTS\PES_SKID TO PRINT
 EJECT
 USE
ENDIF
USE \PAVEDB\EDITUPDT\PES\PESTEMP2
IF RECCOUNT() <> 0
 SORT ON SID NO TO TEMP1
 USE TEMP1
 REPORT FORM \PAVEDB\REPORTS\PES_MRM TO PRINT
 EJECT
 USE
ENDIF
USE \PAVEDB\EDITUPDT\PES\PESTEMP3
IF RECCOUNT() <> 0
 SORT ON SID NO TO TEMP1
 USE TEMP1
 REPORT FORM \PAVEDB\REPORTS\PES_VISL TO PRINT
 EJECT
 USE TEMP1
ENDIF
USE \PAVEDB\EDITUPDT\PES\PESTEMP4
IF RECCOUNT() <> 0
 SORT ON SID NO TO TEMP1
 USE TEMP1
 REPORT FORM \PAVEDB\REPORTS\PES_SSI TO PRINT
 EJECT
 USE
ENDIF

SET STAT OFF
close database
RETURN
* SUBSYSTEM: EDIT & UPDATE SKID dBASE III FILE
* PROGRAM NAME: PES SKID.PRG 04/14/88
* MODIFIED ON: 09/19/88
* PROJECT 2456 - TEXAS FLEXIBLE PAVEMENT DATABASE CONVERSION
* AUTHOR: TREVOR X. PEREIRA
* PURPOSE: ADD THE PES DATA TO THE SKID FILE
*
* THE FOLLOWING FILES ARE USED BY THIS PROGRAM
* LOCATION.DBF
* LOCSID .NDX
* PESTEMP1.DBF (A temporary PES file to print out the Missing)
* (and Inconsistent Data Report)
* SKID.DBF
* SKID.NDX
* LAYER .DBF
* LAYNDX .NDX
* PESSKD .DBF
* PESSKD .NDX
* PESGEN .DBF
* PESGEN .NDX
*
SELECT 1
USE \\PAVEDB\FILES\LOCATION
SELE 2
USE \\PAVEDB\FILES\PESSKD INDEX \\PAVEDB\INDEXES\PESSKD
SELE 3
USE \\PAVEDB\EDITUPDT\PES\PESTEMP1
DELE ALL
PACK
SELE 4
USE \\PAVEDB\FILES\SKID INDEX \\PAVEDB\INDEXES\SKID
SELE 5
USE \\PAVEDB\FILES\PESGEN INDEX \\PAVEDB\INDEXES\PESGEN
sele 6
USE \\PAVEDB\FILES\LAYER INDEX \\PAVEDB\INDEXES\LAYNDX
MSID_ADDED = 0

SELE 1
DO WHILE .NOT. EOF()
 * check if record is active
 IF .NOT. ACTVFLAG
 SKIP
 LOOP
ENDIF
 * assign to memory variables
MSID = SID NO
MHWYDIST = STR(HWYDIST, 2)
MCNTRNUM = STR(CNTRNUM, 3)
MHWYPREFIX = HWYPREFIX
MHWYNUM = STR(HWYNUM, 4)
MHWYSUFFIX = HWYSUFFIX
MBEGMPST = STR(BEGMPST, 3)
MBDISSIGN = BDISSIGN
MBEMPSTDIS = STR(MEMPSTDIS, 2)
MLANEID = LANEID
MENDMPST = ENDMnPST
MEDISSIGN = EDISSIGN
MEMPSTDIS = EMPSTDIS
MFND1 = .F.
MFND2 = .F.
MERRORS = 0
MLANESET = 'R-L'

* find the record in PES SKID file
SELECT 5
seek MHWYDIST+MCNTRNUM+MHWYPREFIX+MHWYNUM+MHWYSUFFIX+MBEGMPST+MBDISSIGN+
+MEMPSTDIS+MLANESET
IF FOUND()
 MFND1 = .T.
ELSE
 IF MLANEID = 'R'
 MLANESET = 'R-V'
 ELSE
 MLANESET = 'L-P'
 ENDIF
seek MHWYDIST+MCNTRNUM+MHWYPREFIX+MHWYNUM+MHWYSUFFIX+MBEGMPST+MBDISSIGN+
+MEMPSTDIS+MLANESET
IF FOUND()
 MFND1 = .T.
ENDIF
ENDIF
SELECT 2
seek MHWYDIST+MCNTRNUM+MHWYPREFIX+MHWYNUM+MHWYSUFFIX+MBEGMPST+MBDISSIGN+
+MEMPSTDIS+MLANESET
IF FOUND()
 MFND2 = .T.
ENDIF
IF MFND1 .AND. MFND2
SELECT 5
IF ENDMnPST <> MENDMPST .OR. EDISSIGN <> MEDISSIGN .OR. MEMPSTDIS <>
EMPSSTDIS
SELECT 3
IF MERRORS = 0
 APPEND BLANK
ENDIF
REPLACE SID NO WITH MSID
REPLACE ENDMnPST WITH 'X'
MERRORS = MERRORS + 1
SELECT 5
ENDIF
IF A->NUMIANES <> (NOLANES/2)
 SEIE 3
 IF MERRORS = 0
 APPEND BLANK
 ENDIF
 REPLACE SID NO WITH MSID
 REPLACE NO IANES WITH 'X'
 MERRORS = MERRORS + 1
 SEIE 5
ENDIF
IF A->FUNCLAS = 0
 REPL A->FUNCLAS WITH FUNCLAS
ELSE
 IF A->FUNCLAS <> FUNCLAS
 IF MERRORS = 0
 APPEND BLANK
 ENDIF
 REPLACE SID NO WITH MSID
 REPLACE NO FUNCL WITH 'X'
 MERRORS = MERRORS + 1
 ENDIF
ENDIF
SEIE 2
IF LASTUPDT = 0
 * Adds to inconsistent report because key is 0
 SEIE 3
 IF MERRORS = 0
 APPEND BLANK
 ENDIF
 REPLACE SID NO WITH MSID
 REPLACE NO PES WITH 'X'
 REPLACE NO FUNCL WITH '
 REPLACE NO IANES WITH '
 REPLACE END MPST WITH '
 MERRORS = MERRORS + 1
ENDIF
ELSE
 SEIE 3
 APPEND BLANK
 REPLACE SID NO WITH MSID
 REPLACE NO PES WITH 'X'
ENDIF
IF MERRORS = 0 .AND. MFOUND1 .AND. MFOUND2
 * get the structure number and the layer number for the record
 * Assign to memory variables
 SEIE 2
 MDATE = STR(LASTUPDT,6)
 MYEAR = VAL(LEFT(MDATE,2))
 MMONTH = VAL(SUBSTR(MDATE,3,2))
SEIE 6
 * find the sid # in layer file
seek str(MSID,4)
IF FOUND()
 DO WHILE MSID = SID_NO
 SKIP
 ENDDO
 SKIP -1
 * find the layer # which corresponds to the skid year
 do while jobcmpyr > myear
 skip -1
 enddo
 * if the layer year and skid year are the same, need to
 * check the month to get the right layer number
 DO WHILE JOBCMPYR = MYEAR .AND. JOBCMPYR > MMONIH
 SKIP -1
 IF SID NO <> MSID
 SKIP
 MERRORS = MERRORS + 1
 EXIT
 ENDF
 ENDDO
* check to avoid if layer is a base, subbase or subgrade
* if not, then replace the structure and layer # from layer file
IF IAYDESC=5 .OR. IAYDESC=6 .OR. IAYDESC=7 .OR. IAYDESC=11
 * Print out on report because layer is a base
 SELE 3
 APPEND BLANK
 REPLACE SID NO WITH MSID
 REPLACE NO SURF WITH 'X'
 MERRORS = MERRORS + 1
ELSE
 MSTRUCNUM = F->STRUCNUM
 MLAYNUM = F->IAYNUM
ENDIF
ELSE
 SELE 3
 APPEND BLANK
 REPLACE SID NO WITH MSID
 REPLACE NO SURF WITH 'X'
 MERRORS = MERRORS + 1
ENDIF
IF MERRORS = 0
 SELE 4
 * check to see if data is already present
 SEEK
 STR(MSID,4)+STR(MSTRUCNUM,2)+STR(MLAYNUM,2)+STR(MYEAR,2)+STR(MMONIH,2)
 IF FOUND()
 CLEAR
 ? "This program has already been run previously. "
 ? "Terminating process and Returning to main menu"
 ?
 ? "
 ? "
 WAIT
CLOSE ALL
RETURN TO MASTER
ENDIF
* add the data to the skid file
MSID_ADDED = MSID_ADDED + 1
APPEND BLANK
REPLACE SID NO WITH MSID
REPLACE STUCNUM WITH MSTRUCNUM
REPLACE LAYNUM WITH MLAYNUM
REPLACE YEAR WITH MYEAR
REPLACE MONTH WITH MMONTH
REPLACE SKIDNUMM WITH B->SKIDNUM
REPLACE SKIDNUMH WITH B->SKIDNUMH
REPLACE SKIDNUML WITH B->SKIDNUML
ENDIF
ENDIF
SEIE 1
SKIP
STORE 0 TO MSTRUCNUM, MLAYNUM, MSID, MYEAR, MMONTH
ENDDO

close database
RETURN
* SUBSYSTEM: EDIT & UPDATE VISUAL FILE
* PROGRAM NAME: PES VISL.PRG 05/16/88
* PROJECT 2456 - TEXAS FLEXIBLE PAVEMENT DATABASE CONVERSION
* TAMU/TTI
* AUTHOR: TREVOR X. PEREIRA
* PURPOSE: ADD THE PES DATA TO THE VISUAL FILE
*
* THE FOLLOWING FILES ARE USED BY THIS PROGRAM
* LOCATION.DBF
* LOCID .NDX
* PESTEMP3.DBF (A temporary PES file to print out the Missing)
* (and Inconsistent Data Report for VISUAL file)
* VISUAL .DBF
* VISUAL .NDX
* LAYER .DBF
* LAYNDX .NDX
* PESVISL .DBF
* PESVISL .NDX
* PESSCR .DBF
* PESSCR .NDX
*
SELE 1
USE \PAVED\FILES\LOCATION
SELE 2
USE \PAVED\FILES\PESVISL INDEX \PAVED\INDEXES\PESVISL
SELE 3
USE \PAVED\EDITUPDT\PES\PESTEMP3
DELE ALL
PACK
SELE 5
USE \PAVED\FILES\PESGEN INDE \PAVED\INDEXES\PESGEN
SELE 6
USE \PAVED\FILES\LAYER INDEX \PAVED\INDEXES\LAYNDX
SELE 7
USE \PAVED\FILES\PESSCR INDEX \PAVED\INDEXES\PESSCR
MSID_ADDED = 0
SELE 1
DO WHILE .NOT. EOF()
 * check if record is active
 IF .NOT. ACTVFLAG
 SKIP
 LOOP
ENDIF
 * assign to memory variables
 MSID = SID NO
 MHWYDIST = STR(HWYDIST,2)
 MONTYNUM = STR(CNTYNUM,3)
MHWYPREFX = HWYPREFX
MHWYNUM = STR(HWYNUM,4)
MHWYSUFFX = HWYSUFFX
MBEGMST = STR(BEGMST,3)
MBDISSIGN = BDISSIGN
MBMPSTDIS = STR(BMPSTDIS,2)
MIANEID = IANEID
MENDMST = ENDMST
MBDISSIGN = EDISSIGN
MBMPSTDIS = EMPSTDIS
MFOUND1 = .F.
MFOUND2 = .F.
MFOUND3 = .F.
MERRORS = 0
MLANESET = 'R-L'

* find the record in PERF SI file
SELE 2
 seek MHWYDIST+MCNTYNUM+MHWYPREFX+HWYNUM+HWYSUFFX+MBEGMPST+MBDISSIGN+
 +MBMPSTDIS+MLANESET
 IF FOUND()
 MFOUND1 = .T.
 ELSE
 IF MIANEID = 'R'
 MLANESET = 'R-V'
 ELSE
 MLANESET = 'L-P'
 ENDIF
 seek MHWYDIST+MCNTYNUM+MHWYPREFX+HWYNUM+HWYSUFFX+MBEGMPST+MBDISSIGN+
 +MBMPSTDIS+MLANESET
 IF FOUND()
 MFOUND1 = .T.
 ENDIF
 ENDIF
SELE 7
 seek MHWYDIST+MCNTYNUM+MHWYPREFX+HWYNUM+HWYSUFFX+MBEGMPST+MBDISSIGN+
 +MBMPSTDIS+MLANESET
 IF FOUND()
 MFOUND2 = .T.
 ENDIF
SELE 5
 seek MHWYDIST+MCNTYNUM+MHWYPREFX+HWYNUM+HWYSUFFX+MBEGMPST+MBDISSIGN+
 +MBMPSTDIS+MLANESET
 IF FOUND()
 MFOUND3 = .T.
 ENDIF

 IF MFOUND1 .AND. MFOUND2 .AND. MFOUND3
 SELE 5
 IF ENDMST <> MENDMST .OR. EDISSIGN <> MEDISSIGN .OR. EMPSTDIS <>
 EMPSTDIS
 SELE 3
 IF MERRORS = 0
 APPEND BLANK

267
ENDIF
REPLACE SID NO WITH MSID
REPLACE END MPST WITH 'X'
MERRORS = MERRORS + 1
SELE 5
ENDIF
IF A->NUMIANES <> (NOLANES/2)
SELE 3
IF MERRORS = 0
 APPEND BLANK
ENDIF
REPLACE SID NO WITH MSID
REPLACE NO LANES WITH 'X'
MERRORS = MERRORS + 1
SELE 5
ENDIF
IF A->FUNCIAS = 0
 REPL A->FUNCIAS WITH FUNCIAS
ELSE
 IF A->FUNCIAS <> FUNCIAS
 IF MERRORS = 0
 APPEND BLANK
 ENDIF
 REPLACE SID NO WITH MSID
 REPLACE NO FUNCL WITH 'X'
 MERRORS = MERRORS + 1
 ENDIF
ENDIF
SELE 2
IF DATE = 0
 * Adds to inconsistent report because key is 0
 SELE 3
 IF MERRORS = 0
 APPEND BLANK
 ENDIF
 REPLACE SID NO WITH MSID
 REPLACE NO PES WITH 'X'
 REPLACE NO FUNCL WITH ' '
 REPLACE NO LANES WITH ' '
 REPLACE END MPST WITH ' '
 MERRORS = MERRORS + 1
ENDIF
ELSE
 SELE 3
 APPEND BLANK
 REPLACE SID NO WITH MSID
 REPLACE NO PES WITH 'X'
ENDIF
IF MFOUND1 .AND. MFOUND2 .AND. MFOUND3 .AND. MERRORS = 0
 * get the structure number and the layer number for the record
 * Assign to memory variables
 SELE 2
 MDATE = STR(DATE,6)
 MYEAR = VAL(LEFT(MDATE,2))
YMOMTH = VAL(SUBSTR(MDATE, 3, 2))
MDAY = VAL(SUBSTR(MDATE, 5, 2))

SELECT 6
* find the sid # in layer file
seek str(MSID, 4)
IF FOUND()
 DO WHILE MSID = SID_NO
 SKIP
 ENDDO
 SKIP -1
 * find the layer # which corresponds to the skid year
 do while jobcmypr > myear
 skip -1
 enddo
 * if the layer year and skid year are the same, need to
 * check the month to get the right layer number
 DO WHILE JOBCMPYR = MYEAR .AND. JOBCMPNO > YMOMTH
 SKIP -1
 IF SID NO <> MSID
 SKIP
 MERRORS = MERRORS + 1
 EXIT
 ENDIF
 ENDDO
 * check to avoid if layer is a base, subbase or subgrade
 * if not, then replace the structure and layer # from layer file
 IF LAYDESC=5 .OR. LAYDESC=6 .OR. LAYDESC=7 .OR. LAYDESC=11
 SEIE 3
 APPEND BLANK
 REPLACE SID NO WITH MSID
 REPLACE NO SURF WITH 'X'
 MERRORS = MERRORS + 1
 ELSE
 MSTUCNUM = F->STRUCNUM
 MLAYNUM = F->LAYNUM
 ENDIF
 ELSE
 SEIE 3
 APPEND BLANK
 REPLACE SID NO WITH MSID
 REPLACE NO SURF WITH 'X'
 MERRORS = MERRORS + 1
 ENDIF
 IF MERRORS = 0
 * add the data to the skid file
 SEIE 5
 USE
 SEIE 6
 USE
 SEIE 4
 USE \PAVEDB\FILES\VISUAL INDEX \PAVEDB\INDEXES\VISUAL
 APPEND BLANK
 REPLACE SID_NO WITH MSID
REPLACE STRUCNUM WITH MSTRUCTNUM
REPLACE LAYNUM WITH MLYNUM
REPLACE YEAR WITH MYEAR
REPLACE ACTYEAR WITH MYEAR
REPLACE ACIMONTH WITH MMONTH
DO CASE
CASE B->RJMT = 000
 REPL RUTTL SL WITH 0
 REPL RUTTD MD WITH 0
 REPL RUTTS V WITH 0
CASE B->RJMT = 100
 REPL RUTTL SL WITH 0
 REPL RUTTD MD WITH 1
 REPL RUTTS V WITH 0
CASE B->RJMT = 010
 REPL RUTTL SL WITH 0
 REPL RUTTD MD WITH 0
 REPL RUTTS V WITH 0
CASE B->RJMT = 001
 REPL RUTTL SL WITH 0
 REPL RUTTD MD WITH 3
 REPL RUTTS V WITH 0
CASE B->RJMT = 200
 REPL RUTTL SL WITH 0
 REPL RUTTD MD WITH 0
 REPL RUTTS V WITH 1
CASE B->RJMT = 020
 REPL RUTTL SL WITH 0
 REPL RUTTD MD WITH 0
 REPL RUTTS V WITH 2
CASE B->RJMT = 002
 REPL RUTTL SL WITH 0
 REPL RUTTD MD WITH 0
 REPL RUTTS V WITH 3
ENDCASE
DO CASE
CASE B->BLKCR = 000
 REPL BLKCRKSL WITH 0
 REPL BLKCRKMD WITH 0
 REPL BLKCRKSV WITH 0
CASE B->BLKCR = 100
 REPL BLKCRKSL WITH 0
 REPL BLKCRKMD WITH 1
 REPL BLKCRKSV WITH 0
CASE B->BLKCR = 010
 REPL BLKCRKSL WITH 0
 REPL BLKCRKMD WITH 0
 REPL BLKCRKSV WITH 0
CASE B->BLKCR = 001
 REPL BLKCRKSL WITH 0
 REPL BLKCRKMD WITH 3
 REPL BLKCRKSV WITH 0
ENDCASE
DO CASE

270
CASE B->ALIGCR = 000
REPL ALIGCRSL WITH 0
REPL ALIGCRMD WITH 0
REPL ALIGCRSV WITH 0
CASE B->ALIGCR = 100
REPL ALIGCRSL WITH 0
REPL ALIGCRMD WITH 1
REPL ALIGCRSV WITH 0
CASE B->ALIGCR = 010
REPL ALIGCRSL WITH 0
REPL ALIGCRMD WITH 2
REPL ALIGCRSV WITH 0
CASE B->ALIGCR = 001
REPL ALIGCRSL WITH 0
REPL ALIGCRMD WITH 3
REPL ALIGCRSV WITH 0
ENDCASE
DO CASE
CASE B->LONGCR = 000
REPL LONGCRSL WITH 0
REPL LONGCRMD WITH 0
REPL LONGCRSV WITH 0
CASE B->LONGCR = 100
REPL LONGCRSL WITH 0
REPL LONGCRMD WITH 1
REPL LONGCRSV WITH 0
CASE B->LONGCR = 010
REPL LONGCRSL WITH 0
REPL LONGCRMD WITH 2
REPL LONGCRSV WITH 0
CASE B->LONGCR = 001
REPL LONGCRSL WITH 0
REPL LONGCRMD WITH 3
REPL LONGCRSV WITH 0
ENDCASE
DO CASE
CASE B->TRANCR = 000
REPL TRANCRSL WITH 0
REPL TRANCRMD WITH 0
REPL TRANCRSV WITH 0
CASE B->TRANCR = 100
REPL TRANCRSL WITH 0
REPL TRANCRMD WITH 1
REPL TRANCRSV WITH 0
CASE B->TRANCR = 010
REPL TRANCRSL WITH 0
REPL TRANCRMD WITH 2
REPL TRANCRSV WITH 0
CASE B->TRANCR = 001
REPL TRANCRSL WITH 0
REPL TRANCRMD WITH 3
REPL TRANCRSV WITH 0
ENDCASE
DO CASE
CASE B->PATCH = 000
 REPL PATCHGD WITH 0
 REPL PATCHFR WITH 0
CASE B->PATCH = 100
 REPL PATCHGD WITH 0
 REPL PATCHFR WITH 1
 REPL PATCHPR WITH 0
CASE B->PATCH = 010
 REPL PATCHGD WITH 0
 REPL PATCHFR WITH 2
 REPL PATCHPR WITH 0
CASE B->PATCH = 001
 REPL PATCHGD WITH 0
 REPL PATCHFR WITH 3
 REPL PATCHPR WITH 0
ENDCASE
DO CASE
 CASE B->FAILMILE = 000
 REPL FAILMILE WITH 0
 CASE B->FAILMILE = 100
 REPL FAILMILE WITH 1
 CASE B->FAILMILE = 010
 REPL FAILMILE WITH 2
 CASE B->FAILMILE = 001
 REPL FAILMILE WITH 3
ENDCASE
REPL PESPVTRS WITH G->PVMSCR
REPL UVURS WITH G->UNWGTVVL
 sele 4
 USE
 SELECT
 USE \PAVEDB\FILES\PESGEN INDE \PAVEDB\INDEXES\PESGEN
 sele 6
 USE \PAVEDB\FILES\LAYER INDEX \PAVEDB\INDEXES\LAYNDX
ENDIF
ELSE
 SELECT
 APPEND BLANK
 REPL SID NO WITH MSID
 REPL NO FES WITH 'X'
ENDIF
SELECT
SKIP
ENDDO
CLOSE DATABASES
RETURN
EDIT & UPDATE FALING WEIGHT SSI FILE

* PROGRAM NAME: PES_SSI.PRG 05/16/88
* PROJECT 2456 - TEXAS FLEXIBLE PAVEMENT DATABASE CONVERSION
* TAMU/TII
* AUTHOR: TREVOR X. PEREIRA
* PURPOSE: ADD THE PES DATA TO THE SSI FILE

* THE FOLLOWING FILES ARE USED BY THIS PROGRAM
 * LOCATION.DBF
 * LOC$ID .NDX
 * PESTEMP4.DBF (A temporary PES file to print out the Missing)
 * (and Inconsistent Data Report for SI file)
 * FALLIGHT.DBF
 * FALLIGHT.NDX
 * LAYERN .DBF
 * LAYNDX .NDX
 * PESSSI .DBF
 * PESSSI .NDX

SELECT 1
USE \PAVEDB\FILES\LOCATION
SELE 2
USE \PAVEDB\FILES\PESSSI INDEX \PAVEDB\INDEXES\PESSSI
SELE 3
USE \PAVEDB\EDITUPD1\PES\PESTEMP4
DELE ALL
PACK
SELE 4
USE \PAVEDB\FILES\FALLIGHT INDEX \PAVEDB\INDEXES\FALLIGHT
SELE 5
USE \PAVEDB\FILES\PESGEN INDE \PAVEDB\INDEXES\PESGEN
SELE 6
USE \PAVEDB\FILES\LAYER INDEX \PAVEDB\INDEXES\LAYNDX

MSID_ADDED = 0

SELE 1
DO WHILE .NOT. EOF()
 * check if record is active
 IF .NOT. ACTVFLAG
 SKIP
 ENDIF
 * assign to memory variables
 MSID = SID NO
 HWYDIST = STR(HWYDIST,2)
 CNTYNUM = STR(CNTYNUM,3)
MHWYPREFX = HWYPREFX
MHWYNUM = STR(HWYNUM,4)
MHWYSUFFX = HWYSUFFX
MEGMPST = STR(BEGMPST,3)
MBDISSIGN = EDISSIGN
MEMPSDIS = STR(EMPSTDIS,2)
MIANEID = LANEID
MNEMST = ENDMPST
MEDISSIGN = EDISSIGN
MEMPSDIS = EMPSTDIS
MFOOND1 = .F.
MFOOND2 = .F.
MERRORS = 0
MLANSET = 'R-L'

* find the record in PES SSI file
SELECT 5
SEEK MHWYDIST+MCNTYNUM+MHWYPREFX+HWYNUM+HWYSUFFX+MEGMPST+MBDISSIGN-
+MEMPSDIS+MLANSET
IF FOUND()
 MFOOND1 = .T.
ELSE
 IF MLANEID = 'R'
 MLANSET = 'R-V'
 ELSE
 MLANSET = 'L-P'
 ENDIF
 SEEK MHWYDIST+MCNTYNUM+MHWYPREFX+HWYNUM+HWYSUFFX+MEGMPST+MBDISSIGN-
+MEMPSDIS+MLANSET
 IF FOUND()
 MFOOND1 = .T.
 ENDIF
ENDIF
SEEK 2
SEEK MHWYDIST+MCNTYNUM+MHWYPREFX+HWYNUM+HWYSUFFX+MEGMPST+MBDISSIGN-
+MEMPSDIS+MLANSET
IF FOUND()
 MFOOND2 = .T.
ENDIF
IF MFOOND1 .AND. MFOOND2
 SELECT 5
 IF ENDMPST <> MENDMPST .OR. EDISSIGN <> MEDISSIGN .OR. MEMPSDIS <>
 EMPSTDIS
 SELECT 3
 IF MERRORS = 0
 APPEND BLANK
 ENDIF
 REPLACE SID NO WITH MSID
 REPLACE END MPST WITH 'X'
 MERRORS = MERRORS + 1
 SELECT 5
 ENDIF
 IF A->NUMIANES <> (NOLIANES/2)
 SELECT 3
 END
IF MERRORS = 0
 APPEND BLANK
ENDIF
REPLACE SID NO WITH MSID
REPLACE NO LANES WITH 'X'
MERRORS = MERRORS + 1
SELE 5
ENDIF
IF A->FUNCAS = 0
 REPL A->FUNCAS WITH FUNCAS
ELSE
 IF A->FUNCAS <> FUNCAS
 IF MERRORS = 0
 APPEND BLANK
 ENDIF
 REPLACE SID NO WITH MSID
 REPLACE NO FUNCAL WITH 'X'
 MERRORS = MERRORS + 1
 ENDIF
ENDIF
SELE 2
IF SSDATE = 0
 * Adds to inconsistent report because key is 0
 SELE 3
 IF MERRORS = 0
 APPEND BLANK
 ENDIF
 REPLACE SID NO WITH MSID
 REPLACE NO PES WITH 'X'
 REPLACE NO FUNCAL WITH ' '
 REPLACE NO LANES WITH ' '
 REPLACE END MPST WITH ' '
 MERRORS = MERRORS + 1
ENDIF
ELSE
 SELE 3
 APPEND BLANK
 REPLACE SID NO WITH MSID
 REPLACE NO PES WITH 'X'
ENDIF
IF MFOUND1 .AND. MFOUND2 .AND. MERRORS = 0
 * get the structure number and the layer number for the record
 * Assign to memory variables
 SELE 2
 MDATE = STR(SSDATE,6)
 MYEAR = VAL(LEFT(MDATE,2))
 MMONTH = VAL(SUBSTR(MDATE,3,2))
 MDAY = VAL(SUBSTR(MDATE,5,2))
 SELE 6
 SELECT 6
 * find the sid # in layer file
 seek str(MSID,4)
 IF FOUND()
DO WHILE MSID = SID_NO
 SKIP
ENDDO
SKIP -1
* find the layer # which corresponds to the skid year
DO WHILE jobcmpyr > myear
 SKIP -1
ENDDO
* if the layer year and skid year are the same, need to
* check the month to get the right layer number
DO WHILE JOBMPAYR = MYEAR .AND. JOBMPAYR > MMMONTH
 SKIP -1
 IF SID_NO <> MSID
 SKIP
 MERRORS = MERRORS + 1
 EXIT
 ENDDO
END IF
* check to avoid if layer is a base, subbase or subgrade
* if not, then replace the structure and layer # from layer file
IF LAYDESC=5 .OR. LAYDESC=6 .OR. LAYDESC=7 .OR. LAYDESC=11
 SEALE 3
 APPEND BLANK
 REPLACE SID NO WITH MSID
 REPLACE NO SURF WITH 'X'
 MERRORS = MERRORS + 1
ELSE
 MSISTRUCNUM = F->ISTRUCNUM
 MIAYNUM = F->IAYNUM
END IF
ELSE
 SEALE 3
 APPEND BLANK
 REPLACE SID NO WITH MSID
 REPLACE NO SURF WITH 'X'
 MERRORS = MERRORS + 1
ENDIF
IF MERRORS = 0
* add the data to the skid file
MSID_ADDED = MSID_ADDED + 1
SEALE 4
 APPEND BLANK
 REPLACE SID NO WITH MSID
 REPLACE STRUCNUM WITH MSISTRUCNUM
 REPLACE LAYNUM WITH MIAYNUM
 REPLACE YEAR WITH MYEAR
 REPLACE MONTH WITH MMMONTH
 REPLACE DAY WITH MDAY
 REPL SSSIAVG WITH B->SSIAVG
 REPL SSITEMP WITH B->SSITEMP
 * Lane 1
 REPL SSIGP11 WITH B->GEOPHON11
 REPL SSIGP12 WITH B->GEOPHON12
REPL SSIGP13 WITH B->GEOPHON13
REPL SSIGP14 WITH B->GEOPHON14
REPL SSIGP15 WITH B->GEOPHON15
REPL SSIGP16 WITH B->GEOPHON16
REPL SSIGP17 WITH B->GEOPHON17
* Lane 2
REPL SSIGP21 WITH B->GEOPHON21
REPL SSIGP22 WITH B->GEOPHON22
REPL SSIGP23 WITH B->GEOPHON23
REPL SSIGP24 WITH B->GEOPHON24
REPL SSIGP25 WITH B->GEOPHON25
REPL SSIGP26 WITH B->GEOPHON26
REPL SSIGP27 WITH B->GEOPHON27
* Lane 3
REPL SSIGP31 WITH B->GEOPHON31
REPL SSIGP32 WITH B->GEOPHON32
REPL SSIGP33 WITH B->GEOPHON33
REPL SSIGP34 WITH B->GEOPHON34
REPL SSIGP35 WITH B->GEOPHON35
REPL SSIGP36 WITH B->GEOPHON36
REPL SSIGP37 WITH B->GEOPHON37
* Lane 4
REPL SSIGP41 WITH B->GEOPHON41
REPL SSIGP42 WITH B->GEOPHON42
REPL SSIGP43 WITH B->GEOPHON43
REPL SSIGP44 WITH B->GEOPHON44
REPL SSIGP45 WITH B->GEOPHON45
REPL SSIGP46 WITH B->GEOPHON46
REPL SSIGP47 WITH B->GEOPHON47
* Lane 5
REPL SSIGP51 WITH B->GEOPHON51
REPL SSIGP52 WITH B->GEOPHON52
REPL SSIGP53 WITH B->GEOPHON53
REPL SSIGP54 WITH B->GEOPHON54
REPL SSIGP55 WITH B->GEOPHON55
REPL SSIGP56 WITH B->GEOPHON56
REPL SSIGP57 WITH B->GEOPHON57
ENDIF
ELSE
SELE 3
APPEND BLANK
REPL SID_NO WITH MSID
REPL NO_PES WITH 'X'
ENDIF
SELE 1
SKIP
ENDDO
CLOSE DATABASE
RETURN
Edit & Update Subsystem
Program Listing

* SUBSYSTEM: EDIT & UPDATE SERVICEABILITY INDEX FILE
* PROGRAM NAME: PES_MRM.PRG 05/13/88
* PROJECT 2456 - TEXAS FLEXIBLE PAVEMENT DATABASE CONVERSION
* TAMU/TTI
* AUTHOR: TREVOR X. PEREIRA
* PURPOSE: ADD THE PES DATA TO THE SI FILE
*
* THE FOLLOWING FILES ARE USED BY THIS PROGRAM
* LOCATION.DBF
* LOCSD .NDX
* PESTEMP2.DBF (A temporary PES file to print out the Missing)
* (and Inconsistent Data Report for SI file)
* SI .DBF
* SI .NDX
* LAYER .DBF
* LAYNDX .NDX
* PESMRM .DBF
* PESMRM .NDX
*

SELECT 1
USE \PAVEDB\FILES\LOCATION
SELE 2
USE \PAVEDB\FILES\PESMRM INDEX \PAVEDB\INDEXES\PESMRM
SELE 3
USE \PAVEDB\EDITUPDT\PES\PESTEMP2
DELE ALL
PACK
SELE 4
USE \PAVEDB\FILES\SI INDEX \PAVEDB\INDEXES\SI
SELE 5
USE \PAVEDB\FILES\PESGEN INDE \PAVEDB\INDEXES\PESGEN
sele 6
USE \PAVEDB\FILES\LAYER INDEX \PAVEDB\INDEXES\LAYNDX

MSID_ADDED = 0

SELE 1
DO WHILE .NOT. EOF()
 * check if record is active
 IF .NOT. ACTVFLAG
 SKIP
 LOOP
ENDIF
 * assign to memory variables
 MSID = SID_NO
 MHWYDIST = STR(HWYDIST,2)
 MONYNUM = STR(CNTYNUM,3)
 MHWYPREFIX = HWYPREFIX

278
MHWYNUM = STR(HWYNUM,4)
MHWYSUFFIX = HWYSUFFIX
MBEGMPST = STR(BEGMPST,3)
MBDISSIGN = BDISSIGN
MBMPSTDIS = STR(EMPSTDIS,2)
MLANEID = LANEID
MENDMPST = ENDPST
MEDISSIGN = EDISSIGN
MEMPSIDIS = EMPSIDIS
MFOUND1 = .F.
MFOUND2 = .F.
MERRORS = 0
MLANESET = 'R-L'

* find the record in PES SI file
SELECT 5
seek MHWYDIST+MONTYNUM+MHYPREFIX+MHWYNUM+MHWYSUFFIX+MBEGMPST+MBDISSIGN+
+MBMPSTDIS+MLANESET
IF FOUND()
 MFOUND1 = .T.
ELSE
 IF MLANEID = 'R'
 MLANESET = 'R-V'
 ELSE
 MLANESET = 'L-P'
 ENDIF
seek MHWYDIST+MONTYNUM+MHYPREFIX+MHWYNUM+MHWYSUFFIX+MBEGMPST+MBDISSIGN+
+MBMPSTDIS+MLANESET
IF FOUND()
 MFOUND1 = .T.
ENDIF
ELSE
SEIE 2
seek MHWYDIST+MONTYNUM+MHYPREFIX+MHWYNUM+MHWYSUFFIX+MBEGMPST+MBDISSIGN+
+MBMPSTDIS+MLANESET
IF FOUND()
 MFOUND2 = .T.
ENDIF
IF MFOUND1 .AND. MFOUND2
SEIE 5
IF ENDPST <> MENDMPST .OR. EDISSIGN <> MEDISSIGN .OR. MEMPSTDIS <>
EMPSTDIS
SEIE 3
IF MERRORS = 0
 APPEND BLANK
ENDIF
REPLACE SID NO WITH MSID
REPLACE END MPST WITH 'X'
MERRORS = MERRORS + 1
SEIE 5
ENDIF
IF A->NUMLANES <> (NOLANES/2)
SEIE 3
IF MERRORS = 0
APPEND BLANK
ENDIF
REPLACE SID NO WITH MSID
REPLACE NO LANCES WITH 'X'
MERRORS = MERRORS + 1
SELE 5
ENDIF
IF A->FUNCIAS = 0
 REPL A->FUNCIAS WITH FUNCIAS
ELSE
 IF A->FUNCIAS < 0 FUNCIAS
 IF MERRORS = 0
 APPEND BLANK
 ENDIF
 REPLACE SID NO WITH MSID
 REPLACE NO_PES WITH 'X'
 REPLACE NO FUNCL WITH 'X'
 REPLACE NO LANCES WITH 'X'
 REPLACE END MPST WITH 'X'
 MERRORS = MERRORS + 1
 ENDIF
ENDIF
SELE 2
IF IASTUPDT = 0
 * Adds to inconsistent report because key is 0
 SELE 3
 IF MERRORS = 0
 APPEND BLANK
 ENDIF
 REPLACE SID NO WITH MSID
 REPLACE NO_PES WITH 'X'
 REPLACE NO FUNCL WITH 'X'
 REPLACE NO LANCES WITH 'X'
 REPLACE END MPST WITH 'X'
 MERRORS = MERRORS + 1
ENDIF
ELSE
 SELE 3
 APPEND BLANK
 REPLACE SID NO WITH MSID
 REPLACE NO_PES WITH 'X'
ENDIF
IF MFOUND1 .AND. MFOUND2 .AND. MERRORS = 0
 * get the structure number and the layer number for the record
 * Assign to memory variables
 SELE 2
 MDATE = STR(LASTUPDT,6)
 MYEAR = VAL(LEFT(MDATE,2))
 MMONTH = VAL(SUBSTR(MDATE,3,2))
 MDAY = VAL(SUBSTR(MDATE,5,2))
 SELECT 6
 * find the sid # in layer file
 seek str(MSID,4)
 IF FOUND()
 DO WHILE MSID = SID No
* find the layer # which corresponds to the skid year
 DO WHILE jobcmpyr > myear
 skip -1
 enddo
 * if the layer year and skid year are the same, need to
 * check the month to get the right layer number
 DO WHILE JOBCMPYR = MYEAR .AND. JOBCMIMO > MMONIHI
 SKIP -1
 IF SID_NO <> MSID
 SKIP
 MERRORS = MERRORS + 1
 EXIT
 ENDIF
 ENDDO

* check to avoid if layer is a base, subbase or subgrade
* if not, then replace the structure and layer # from layer file
 IF IAYDESC=5 .OR. IAYDESC=6 .OR. IAYDESC=7 .OR. IAYDESC=11
 SELE 3
 APPEND BLANK
 REPLACE SID_NO WITH MSID
 REPLACE NO_SURF WITH 'X'
 MERRORS = MERRORS + 1
 ELSE
 MSTRUCNUM = F->STRUCNUM
 MIAYNUM = F->IAYNUM
 ENDIF
 ELSE
 SELE 3
 APPEND BLANK
 REPLACE SID_NO WITH MSID
 REPLACE NO_SURF WITH 'X'
 MERRORS = MERRORS + 1
 ENDF
 IF MERRORS = 0
 * add the data to the skid file
 SELE 4
 APPEND BLANK
 REPLACE SID_NO WITH MSID
 REPLACE STRUCNUM WITH MSTRUCNUM
 REPLACE IAYNUM WITH MIAYNUM
 REPLACE YEAR WITH MYEAR
 REPLACE ACITYEAR WITH MYEAR
 REPLACE ACIMONTH WITH MMONIHI
 REPLACE ACIDAY WITH MDAY
 REPLACE SICOOUNT WITH B->SICOOUNT
 REPLACE SIMEAN WITH B->SIMEAN
 REPLACE SISD WITH B->SISTDDEV
 REPLACE SILOWVAL WITH B->SILOWVAL
 REPLACE SIHIVAL WITH B->SIHIVAL
 ENDF

281
ELSE
 SELE 3
 APPEND BLANK
 REPL SID_NO WITH MSID
 REPL NO_PES WITH 'X'
ENDIF
SELE 1
SKIP
ENDDO
CLOSE DATABASES
RETURN
Section 3: Inventory Data Update
Narrative on Adding Data Inventory Data

The ENTRILAYR.PRG program displays the ADD Inventory Data Menu. The program uses the procedure ADDILAYR.PRG to add data to the Inventory Files (Location, Layer Identification, Geometric and Shoulder, Surface, Subgrade and Layer Thickness Across The Road). Procedure ADDILAYR.PRG consists of the following five programs: LOCATION to add data to Location File, LAYER for Layer Identification File, GEOSHO for Geometric and Shoulder File, SURFACE for Surface File, SUBGRADE for Subgrade file.

Each of these five programs within ADDILAYR.PRG draws the screen forms to allow the user to enter data for a particular file. This data is stored in temporary dBASE files (LOCN_NEW.DBF, LAYR_NEW.DBF, LAYT_NEW.DBF, GEOS_NEW.DBF, SURF_NEW.DBF and SUBG_NEW.DBF).

After the user has entered all the data, he must backup the temporary dBASE files and run the Edit/Check programs to check the data entered. To accomplish this, ENTRILAYR.PRG calls INV_BRUP.PRG to backup up the newly entered data. After backup of the temporary files, INV_BRUP.PRG calls INV_UPDT.PRG which in turn calls the six Edit/Check procedures (LOCNCHEK.PRG, LAYRCHEK.PRG, LAYTCHEK.PRG, GEOSCHEK.PRG, SURFCHEK.PRG, SUBGCHEK.PRG). If there are no errors in the newly entered data, INV_UPDT.PRG updates the master files. If errors are present, an error listing is printed out.

The programs and the temporary dBASE files for this section (ADD Inventory Data) are stored in the subdirectory PAVEDB\EDITUPDT.

The inventory add process is illustrated in Figures 13 through 15. Figure 13 depicts the add process on a global level, Figure 14 illustrates the high level program flow, logic, and Figure 15 charts the programs procedures, and input and output files used in the inventory add process.
Inventory Data - Add Process

FIGURE 13
Inventory Data - Add Process
Program Flow Chart

Inventory Additions

Change Files Exist? Y → Stop
N

Append New Data To Add Files

Data With Errors? Y → Error Report
N

Update Master Database

Clear Add Files

Stop

FIGURE 14
INVENTORY DATA - ADD PROCESS
PROGRAM FLOW DIAGRAM

FIGURE 15
INVENTORY DATA - ADD PROCESS
PROGRAM FLOW DIAGRAM (Continued)

Figure 15 (Continued)
INVENTORY DATA - ADD PROCESS
PROGRAM FLOW DIAGRAM (Continued)

FIGURE 15 (Continued)
FIGURE 15 (Continued)
INVENTORY DATA - ADD PROCESS
PROGRAM FLOW DIAGRAM (Continued)

FIGURE 15 (Continued)
INVENTORY DATA - ADD PROCESS
PROGRAM FLOW DIAGRAM (Continued)

FIGURE 15 (Continued)
Program Specification

Program Name: ENIRLAYR.PRG

Purpose: To display the ADD Inventory data menu and to call the programs that add data to the Inventory master files.

Procedures/Edits:

The following are the procedures:

1) Add data to the files using procedure ADDLAYR.PRG (includes programs LOCATION, LAYER, LAYTHICK, GEOSSH, SURFACE and SUBGRADE).

2) Run the Edit/Check procedures to flag errors in the newly entered data (LOCNCHEK.PRG, LAYRCHEK.PRG, LAYTCHEK.PRG, GEOCSCHKEK.PRG, SURFCHKEK.PRG and SUBGCHEK.PRG). Each of these programs have a number of dBASE procedures within them - refer to dBASE Programs Called.

Input/Output Files:

Files

Temporary files -
LOCN NEW.DBF
LAYR NEW.DBF
LAYT NEW.DBF
GEOS NEW.DBF
SURF NEW.DBF
SUBG NEW.DBF

Master Files -
LOCATION.DBF
LAYER.DBF
LAYTHICK.DBF
GEOSSH.DBF
SURFACE.DBF
SUBGRADE.DBF

Indexes

LOCN NEW.NDX
LAYR NEW.NDX
LAYT NEW.NDX
GEOS NEW.NDX
SURF NEW.NDX
SUBG NEW.NDX
LOCSD.NDX
LAYNDX.NDX
LAYTNDX.NDX
GEONDX.NDX
SURFNDX.NDX
SUBGNDX.NDX
dBASE Programs Called (See Program Flow Diagram):

- ADDLAYR.PRG
 - LOCATION
 - LAYER
 - LAYTHICK
 - GEOSHO
 - SURFACE
 - SUBGRADE
- INV_BKUP.PRG
- INV_UPDT.PRG
- LOCCHK.PRG
- LAYRCHK.PRG
 - SICHEK1
 - LAYRSVER
 - LAYDESC
 - LAYRCHK3
 - LOCCHK1
- LAYTCHK.PRG
 - LAYTCHK1
 - LAYTCHK3
 - SICHEK2
- GEOSCHK.PRG
 - GEOSCHK1
 - GEOSCHK3
 - SICHEK3
- SURFCHK.PRG
 - SURFCHK1
 - SURFCHK3
 - SICHEK4
- SUGBCHEK.PRG
 - SUGBCHK1
 - SUGBCHK3
 - SICHEK5
ADD INVENTORY SCREENS

The following screens are produced by ENRIAYR.PRG and its subprograms except for the next menu (Edit & Update menu 3.0) which is produced by EDITUPDT.PRG.

Choice 2 Inventory Data asks the user if he wants to ADD or CHANGE data to the inventory files. If he wants to ADD, ENRIAYR.PRG program is run which produces the next screen (ADD Inventory Data 3.2.A).
ADD INVENTORY SCREENS (continued)

Choice 1 Location displays the first screen on this page to let the user add location data.
Choice 2 Layer ID displays the second screen on this page to let the user add layer data.

TEXAS FLEXIBLE PAVEMENT DATABASE
EDIT & UPDATE - ADD Inventory
Location File

<table>
<thead>
<tr>
<th>SID Number</th>
<th>District</th>
<th>County</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Highway Ident.</th>
<th>Control/Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0/ 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mile Post</th>
<th>Lane Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 TO 0 0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mile Point</th>
<th>Mile Point Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000 TO 0.000</td>
<td>0/ 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HPMS Sample Number</th>
<th>HPMS Section Subdivision</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Functional Classification</th>
<th>Number of Lanes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Active</th>
<th>Inactive Date</th>
<th>Previous SID</th>
<th>Next SID</th>
</tr>
</thead>
<tbody>
<tr>
<td>? T</td>
<td>0/ 0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

TEXAS FLEXIBLE PAVEMENT DATABASE
EDIT & UPDATE - ADD Inventory
Layer Identification

<table>
<thead>
<tr>
<th>Sid Number</th>
<th>0</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Structure Number</th>
<th>Layer No.</th>
<th>Layer Desc.</th>
<th>Center Thick</th>
<th>Material</th>
<th>Job Compltd Date</th>
<th>Widened Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0/ 0</td>
<td>0/ 0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>0/ 0</td>
<td>0/ 0</td>
</tr>
</tbody>
</table>

297
Choice 3 Geometric & Shoulder displays the first screen on this page to enter data into.
Choice 4 Surface displays the second screen on this page to enter data into.

TEXAS FLEXIBLE PAVEMENT DATABASE
EDIT & UPDATE - ADD Inventory
Geometric & Shoulder Information

<table>
<thead>
<tr>
<th>Sid Number</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure Number</td>
<td>0</td>
</tr>
<tr>
<td>Type of Pavement (See TTI Codes)</td>
<td>0</td>
</tr>
<tr>
<td>Lane Width (Feet)</td>
<td>0</td>
</tr>
<tr>
<td>Outside Shoulder Width (Feet)</td>
<td>0</td>
</tr>
<tr>
<td>Shoulder Surface Type</td>
<td>0</td>
</tr>
<tr>
<td>Shoulder Base Type (See Base Type Code, Table A.6)</td>
<td>0</td>
</tr>
<tr>
<td>Shoulder Surface Thickness (Inches)</td>
<td>0.0</td>
</tr>
<tr>
<td>Shoulder Base Thickness (Inches)</td>
<td>0.00</td>
</tr>
<tr>
<td>Widened Flag (0-2)</td>
<td>0</td>
</tr>
</tbody>
</table>

TEXT FLEXIBLE PAVEMENT DATABASE
EDIT & UPDATE - ADD Inventory
Surface Layer

| SID NUMBER | 0 |

<table>
<thead>
<tr>
<th>Structure Number</th>
<th>Layer Number</th>
<th>Aggregate Application Rate</th>
<th>Type Admixture</th>
<th>Percent Admixture (Mean Asphalt Content)</th>
<th>Asphalt Application Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Choice 3 Subgrade displays the first screen on this page to enter data into.
Choice 4 Layer Thickness Across The Road displays the second screen on this page to enter data into.

TEXAS FLEXIBLE PAVEMENT DATABASE
EDIT & UPDATE - ADD Inventory
Subgrade File

<table>
<thead>
<tr>
<th>SID NUMBER</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent Passing No. 200 Sieve</td>
<td>0.0</td>
</tr>
<tr>
<td>Texas Triaxial Class</td>
<td>0.0</td>
</tr>
<tr>
<td>Liquid Limit</td>
<td>0.0</td>
</tr>
<tr>
<td>Plasticity Index</td>
<td>0.0</td>
</tr>
<tr>
<td>Permeability Index</td>
<td>0.00</td>
</tr>
</tbody>
</table>

TEXAS FLEXIBLE PAVEMENT DATABASE
EDIT & UPDATE - ADD Inventory
Layer Thickness Across The Road

<table>
<thead>
<tr>
<th>SID NUMBER</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure Number</td>
<td>0</td>
</tr>
<tr>
<td>Layer Number</td>
<td>0</td>
</tr>
<tr>
<td>Thickness - From Center</td>
<td>0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0</td>
</tr>
<tr>
<td>Distance From Center</td>
<td>0.0 0.0 0.0 0.0</td>
</tr>
</tbody>
</table>

299
PROGRAM LISTING

* SUBSYSTEM: EDIT & UPDATE INVENTORY dBASE III FILES
* PROGRAM NAME: ENTRIAYR.PRG 06/06/88
* CALLED FROM: EDITUPDT.PRG
* PROJECT 2456 - TEXAS FLEXIBLE PAVEMENT DATABASE CONVERSION
* TAMU/TTI
* AUTHOR: TREVOR X. PEREIRA
* PURPOSE: THIS PROGRAM DISPLAYS THE ADD INVENTORY DATA MENU
*

* checks to see if there are any inventory files in the process of
* being changed
*
MCOUNT = 0
IF FILE('\PAVEDB\EDITUPDT\LOCNCHNG.DBF')
 MCOUNT = MCOUNT + 1
ENDIF
IF FILE('\PAVEDB\EDITUPDT\LAYRCHNG.DBF')
 MCOUNT = MCOUNT + 1
ENDIF
IF FILE('\PAVEDB\EDITUPDT\LAYTECHNG.DBF')
 MCOUNT = MCOUNT + 1
ENDIF
IF FILE('\PAVEDB\EDITUPDT\GEOCHNG.DBF')
 MCOUNT = MCOUNT + 1
ENDIF
IF FILE('\PAVEDB\EDITUPDT\SURFCHNG.DBF')
 MCOUNT = MCOUNT + 1
ENDIF
IF FILE('\PAVEDB\EDITUPDT\SUBGCHNG.DBF')
 MCOUNT = MCOUNT + 1
ENDIF
IF MCOUNT <> 0
 CLEAR
 @ 2, 7 SAY " ! ! ! WARNING ! ! !"
 @ 5, 7 SAY "You were in the process of changing data in the inventory"
 @ 6, 7 SAY " files. Therefore you cannot add data until you finish."
 @ 7, 7 SAY " the Change process."
 @ 9, 7 SAY "To complete the change process, "
 @ 10, 7 SAY " 1) Choose choice '3' from the Edit & Update Menu."
 @ 11, 7 SAY " 2) Type 'C' to the next question to Change Data"
 @ 12, 7 SAY " 3) Now you can either"
 @ 13, 7 SAY " A) Change the data"
 @ 14, 7 SAY " OR"
 @ 15, 7 SAY " B) Correct the Data and run the Edit/Check programs"
 @ 16, 7 SAY " i.e. Choice 'K'."
 @ 19, 7 SAY " Press any key to continue"
 CLEAR TYPE
 WAIT " "
 CLEAR
DO SURFACE
CASE EDITCOLL = "$5"
@ 19, 23 SAY "Please enter SID Number =>" " GET MSID_NO PICTURE "9999"
READ
CLEAR
DO SUBGRADE
CASE EDITCOLL = "$6"
@ 19, 23 SAY "Please enter SID Number =>" " GET MSID_NO PICTURE "9999"
READ
CLEAR
DO LAYTHICK
CASE EDITCOLL = "$K"
SET PROC TO
DO \PAVEDB\EDITUPDT\INV_BRUP
CLEA TYPE
SET PROC TO \PAVEDB\EDITUPDT\ADDLAYR
CASE EDITCOLL = "$F"
SET PROC TO
USE \PAVEDB\EDITUPDT\LON_NEW
IF RECOUNT() <> 0
SET FORMAT TO \PAVEDB\EDITUPDT\LOCATION.FMT
CHANGE
USE \PAVEDB\EDITUPDT\LON_NEW INDE \PAVEDB\EDITUPDT\LON_NEW
PACK
ENDIF
USE \PAVEDB\EDITUPDT\LAYR_NEW
IF RECOUNT() <> 0
SET FORMAT TO \PAVEDB\EDITUPDT\LAYER.FMT
CHANGE
USE \PAVEDB\EDITUPDT\LAYR_NEW INDE \PAVEDB\EDITUPDT\LAYR_NEW
PACK
ENDIF
USE \PAVEDB\EDITUPDT\LAYT_NEW
IF RECOUNT() <> 0
SET FORMAT TO \PAVEDB\EDITUPDT\LAYTHICK.FMT
CHANGE
USE \PAVEDB\EDITUPDT\LAYT_NEW INDE \PAVEDB\EDITUPDT\LAYT_NEW
PACK
ENDIF
USE \PAVEDB\EDITUPDT\GEOS_NEW
IF RECOUNT() <> 0
SET FORMAT TO \PAVEDB\EDITUPDT\GEOSHO.FMT
CHANGE
USE \PAVEDB\EDITUPDT\GEOS_NEW INDE \PAVEDB\EDITUPDT\GEOS_NEW
PACK
ENDIF
USE \PAVEDB\EDITUPDT\SURF_NEW
IF RECOUNT() <> 0
SET FORMAT TO \PAVEDB\EDITUPDT\SURFACE.FMT
CHANGE
USE \PAVEDB\EDITUPDT\SURF_NEW INDE \PAVEDB\EDITUPDT\SURF_NEW
PACK
ENDIF
USE \PAVEDB\EDITUPDT\SUBG_NEW

302
RETURN
ENDIF

* Inventory Enter data menu

CLEAR
GETREPLY = ""
* Display the Inventory data menu on the screen
MCONTINUE = .T.
DO WHILE MCONTINUE
STORE " " TO EDITCOLL
MSID_NO = 0
DO WHILE .NOT. (EDITCOLL $ '123456KE')
 @ 3, 21 SAY "TEXAS FLEXIBLE PAVEMENT DATABASE 3.3.A"
 @ 4, 21 SAY "EDIT & UPDATE"
 @ 5, 21 SAY "ADD Inventory Data"
 @ 8, 15 SAY "1 - Location"
 @ 9, 15 SAY "2 - Layer ID"
 @ 10, 15 SAY "3 - Geometric & Shoulder"
 @ 11, 15 SAY "4 - Surface"
 @ 12, 15 SAY "5 - Subgrade"
 @ 13, 15 SAY "6 - Layer Thickness Across The Road"
 @ 15, 15 SAY "K - Check New Data Entered and ADD to Files"
 @ 16, 15 SAY "E - Edit New Data Entered"
 @ 18, 40 SAY "OPTION ———> " GET EDITCOLL
 @ 2, 9 TO 20, 65 DOUBLE
READ
IF READKEY() = 12
 MCONTINUE = .F.
 SET PROC TO
 EXIT
ENDIF
ENDDO
IF MCONTINUE
SET PROCEDURE TO \PAVEDB\EDITUPDT\ADDLAYR
DO CASE
 CASE EDITCOLL = "1"
 CLEAR
 DO LOCATION
 CASE EDITCOLL = "2"
 @ 19, 23 SAY "Please enter SID Number ———> " GET MSID_NO PICTURE "9999"
 READ
 CLEAR
 DO LAYER
 CASE EDITCOLL = "3"
 @ 19, 23 SAY "Please enter SID Number ———> " GET MSID_NO PICTURE "9999"
 READ
 CLEAR
 DO GEOSHO
 CASE EDITCOLL = "4"
 @ 19, 23 SAY "Please enter SID Number ———> " GET MSID_NO PICTURE "9999"
 READ
 CLEAR
 CASE EDITCOLL = "5"
 @ 19, 23 SAY "Please enter SID Number ———> " GET MSID_NO PICTURE "9999"
 READ
 CLEAR
 DO SUBGRADE
 CASE EDITCOLL = "6"
 @ 19, 23 SAY "Please enter SID Number ———> " GET MSID_NO PICTURE "9999"
 READ
 CLEAR
 DO TACROSS
 CASE EDITCOLL = "7"
 @ 19, 23 SAY "Please enter SID Number ———> " GET MSID_NO PICTURE "9999"
 READ
 CLEAR
 DO KCHECK
 CASE EDITCOLL = "8"
 @ 19, 23 SAY "Please enter SID Number ———> " GET MSID_NO PICTURE "9999"
 READ
 CLEAR
 DO EEDIT
 CASE EDITCOLL = "9"
 @ 19, 23 SAY "Please enter SID Number ———> " GET MSID_NO PICTURE "9999"
 READ
 CLEAR
 DO EXIT
IF RECCOUNT() <> 0
 SET FORMAT TO \\PAVEDB\\EDITUPDT\\SUBGRADE.FMT
 CHANGE
 USE \\PAVEDB\\EDITUPDT\\SUBG_NEW INDE \\PAVEDB\\EDITUPDT\\SUBG_NEW
 PACK
ENDIF
 SET FORMAT TO
 ENDCASE
 CLEAR
ENDIF
 CLEAR
 SET PROCEDURE TO
ENDDO
RETURN
SUBSYSTEM: EDIT & UPDATE INVENTORY dBASE III FILES
* PROGRAM NAME: ADDLAYR.PRG 06/06/88
* CALLED FROM: ENTRILAYR.PRG
* PROJECT 2456 - TEXAS FLEXIBLE PAVEMENT DATABASE CONVERSION
* TAMU/TTI
* AUTHOR: TREVOR X. PEREIRA
* PURPOSE: THIS PROCEDURE CALLS UP THE RESPECTIVE INVENTORY
* DATA FILES TO ENTER DATA INTO. THE FOLLOWING PROCEDURES
* CAN BE FOUND HERE:
* - LAYER
* - LAYTHICK
* - GEOSHO
* - SURFACE
* - SUBGRADE
* - LOCATION

* PROCEDURE LAYER

PROC LAYER
*
* To enter data into the layer identification file
*
STORE .T. TO MAGAIN
STORE 0 TO MSTRUCTNUM1, MLAYNUM1, MLAYDESC1, MLAYMATC1, MJOBCMPM1
STORE 0.0 TO MCENTHKL1
STORE 0 TO MJOBCMPY1, MWIDENIM1, MWIDENLY1

USE "PAVEDB\EDITUPDT\LAYR NEW INDEX \PAVEDB\EDITUPDT\LAYR NEW
STORE 0 TO MSTRUCTNUM, MLAYNUM, MLAYDESC, MLAYMATC
STORE 0.0 TO MCENTHKL
STORE 0 TO MJOBCMPY, MJOBCMPM, MWIDENLY, MWIDENIM, MWIDEN

DO WHILE .NOT. (MSURE $ 'Yy')
* initialize all variables
CLEAR
MSURE = ""
DO WHILE .NOT. (MSURE $ 'Yy')
* set up entry screen and get data
 @ 3, 23 SAY "TEXAS FLEXIBLE PAVEMENT DATABASE"
 @ 4, 23 SAY "EDIT & UPDATE - ADD Inventory"
 @ 5, 23 SAY " Layer Identification"
 @ 7, 55 SAY "Sid Number "
 @ 7, 66 SAY MSID NO PICTURE "9999"
 @ 10, 54 SAY "Date"
 @ 11, 4 SAY " Material Job Compltd
Widened"
 @ 12, 4 SAY "Structure Layr Layer Center Type --------
* set up the escape key if want to abort
IF READKEY() = 12
 CLEAR
 USE
 RETURN
ENDIF
@ 20, 23 SAY "IS THE DATA CORRECT?" GET MSURE PICTURE "!"
READ

* if data is said to be not correct, the flags (sure and required) are set to true so that the do loop will be executed again.
IF MSURE = "Y"
 MSTRUCNUM1 = MSTRUCNUM
 MIAYNUM1 = MIAYNUM
 MIAYDESC1 = MIAYDESC
 MCENTH1K1 = MCENTH1K
 MIAYMATCH1 = MIAYMATCH
 MJOBFMPM1 = MJOBFMPM
 MJOBFCPY1 = MJOBFCPY
 MWIDENLM1 = MWIDENLM
 MWIDENLY1 = MWIDENLY
 APPEND BLANK
 REPLACE S1D NO WITH MS1D NO
 REPLACE STRUCNUM WITH MSTRUCNUM
 REPLACE IAYNUM WITH MIAYNUM
 REPLACE IAYDESC WITH MIAYDESC
 REPLACE CENTH1K WITH MCENTH1K
 REPLACE IAYMATCH WITH MIAYMATCH

REPLACE JOBCMYP WITH MJOCMPY
REPLACE JOBCMPO WITH MJOCMPM
REPLACE WIDENLYR WITH MWIDENLY
REPLACE WIDENIMO WITH MWIDENIM
REPLACE ERROR.CHAR WITH .F.

STORE 0 TO MSTRUCNUM, MLAYNUM, MLAYDESC, MLAYMATC
STORE 0.0 TO MCENTIHK
STORE 0 TO MJOCMPY, MJOCMPM, MWIDENLY, MWIDENIM, MWIDEN
ELSE
 @ 20, 0 CLEAR
ENDIF
ENDDO
ENDDO
USE
CLEAR
RETURN

* PROCEDURE LAYTHICK

PROC LAYTHICK

*
* To enter data into the layer thickness across the road file
*
CLEAR
STORE 0 TO MSTRUCNUM, MLAYNUM
STORE 0.0 TO MFC3THK, MFC2THK, MFC1THK
STORE 0.0 TO MCENTIHK, MFC3DIS, MFC2DIS, MFC1DIS
STORE 0 TO MSTRUCNUM2, MLAYNUM2
STORE 0.0 TO MFC3THK2, MFC2THK2, MFC1THK2
STORE 0.0 TO MCENTIHK2, MFC3DIS2, MFC2DIS2, MFC1DIS2
USE \PAVEDB\EDITUPDT\LAYT_NEW INDEX \PAVEDB\EDITUPDT\LAYT_NEW
STORE .T. TO MAGAIN
DO WHILE MAGAIN
 CLEAR
 MSURE = ""
 DO WHILE .NOT. (MSURE $ 'Y')
 * set up entry screen and get data
 @ 3, 23 SAY "TEXAS FLEXIBLE PAVEMENT DATABASE"
 @ 4, 23 SAY "EDIT & UPDATE - ADD Inventory"
 @ 5, 23 SAY "Layer Thickness Across The Road"
 @ 7, 56 SAY "SID NUMBER"
 @ 7, 67 SAY MSID NO PICTURE "9999"
 @ 10, 25 SAY "Thickness - From Center Distance From Center"
 @ 11, 3 SAY "Structure Layer "
 @ 12, 4 SAY "Number Number 3rd Pos 2nd Pos 1st Pos Center 3rd Pos"
 @ 13, 3 SAY "--------- ------- ------- ------- ------- ------- -------"

306
SET RFADKEY() TO 12
CLEAR
USE
RETURN
ENDIF

READ

* set up the escape key if want to abort
IF READKEY() = 12
CLEAR
USE
RETURN
ENDIF

READ

* if data is not correct, redraw the entry screen; otherwise add
* the data to the file
IF MSURE = "$Y"
* data is added to the Layer Thickness Across the Road File
MISTRUCNUM2 = MISTRUCNUM
MLAYNUM2 = MLAYNUM
MFC3THK2 = MFC3THK
MFC2THK2 = MFC2THK
MFC1THK2 = MFC1THK
MCENTTHK2 = MCENTTHK
MFC3DIS2 = MFC3DIS
MFC2DIS2 = MFC2DIS
MFC1DIS2 = MFC1DIS

APPEND BLANK
REPLACE SID NO WITH MSID NO
REPLACE STRUCNUM WITH MISTRUCNUM
REPLACE LAYNUM WITH MLAYNUM
REPLACE FC3THK WITH MFC3THK
REPLACE FC2THK WITH MFC2THK
REPLACE FC1THK WITH MFC1THK
REPLACE CENTTHK WITH MCENTTHK
REPLACE FC3DIS WITH MFC3DIS
REPLACE FC2DIS WITH MFC2DIS
REPLACE FC1DIS WITH MFC1DIS
REPLACE ERRORCHAR WITH .F.
STORE 0 TO MSTRUCTNUM, MLAYNUM
STORE 0.0 TO MFC3THK, MFC2THK, MFC1THK
STORE 0.0 TO MCENTTHK, MFC3DIS, MFC2DIS, MFC1DIS
ELSE
 @ 20, 0 CLEAR
ENDIF
ENDDO
USE
CLEAR
RETURN

* PROCEDURE GEOMETRIC & SHOULDER

PROC GEOSHO
*
* TO ENTER DATA INTO THE GEOMETRIC AND SHOULDER
* INFORMATION FILE
*
* set parameters and initialize variables
STORE .T. TO MAGAIN
CLEAR
USE \PAVEDB\EDITUPDT\GEOS_NEW INDEX \PAVEDB\EDITUPDT\GEOS_NEW
DO WHILE MAGAIN
 CLEAR
 MSURE = "
 STORE 0 TO MCON5INU, MPAVEITP, MLANEWID, MMONLANE, MOUTSHOW
 STORE 0 TO MSHQSFY, MSHOBSTY, MWIDEN
 STORE 0.0 TO MSHOSFS, MSHOBSTH
 DO WHILE .NOT. (MSURE $ 'Yy')
 * set up data entry screen
 @ 3, 23 SAY "TEXAS FLEXIBLE PAVEMENT DATABASE"
 @ 4, 23 SAY "EDIT & UPDATE - ADD Inventory"
 @ 5, 23 SAY "Geometric & Shoulder Information"
 @ 7, 56 SAY "Sid Number "
 @ 7, 67 SAY MSID NO PICTURE "9999"
 @ 8, 50 SAY "Structure Number"
 @ 8, 69 GET MCON5INU PICTURE "99" RANGE 1,9
 @ 10, 8 SAY "Type of Pavement (See TIT Codes)"
 @ 10, 61 GET MPAVEITP PICTURE "99" RANGE 1,27
 @ 11, 8 SAY "Lane Width (Feet)"
 @ 11, 61 GET MLANEWID PICTURE "99" RANGE 8,15
 @ 12, 8 SAY "Outside Shoulder Width (Feet)"
 @ 12, 61 GET MOUTSHOW PICTURE "99" RANGE 0,15
 @ 13, 8 SAY "Shoulder Surface Type"
 @ 13, 61 GET MSHQSFY PICTURE "99" RANGE 1,6
@ 14, 8 SAY "Shoulder Base Type (See Base Type Code, Table A.6)"
@ 14, 61 GET MSHOBSTY PICTURE "99" RANGE 0.33
@ 15, 8 SAY "Shoulder Surface Thickness (Inches)"
@ 15, 59 GET MSOSFTH PICTURE "99.9" RANGE 0.0,10.1
@ 16, 8 SAY "Shoulder Base Thickness (Inches)"
@ 16, 58 GET MSHOBSTH PICTURE "99.99" RANGE 0.0,21.0
@ 17, 8 SAY "Widened Flag (0-2)"
@ 17, 62 GET MWIDEN PICTURE "9" RANGE 0,2
@ 1, 3 TO 19, 74 DOUBLE
* get data
READ
* set up the escape key if want to abort
IF READKEY() = 12
 CLEAR
 USE
 RETURN
ENDIF
@ 20, 23 SAY "Is The Data Entered Correct? " GET MSURE PICTURE "!"
READ

* If the data is not correct, the inventory screen is displayed again
* Otherwise, add data to the Geometric And Shoulder Information File
IF MSURE = "Y"
 APPEND BLANK
 REPLACE SID NO WITH MSID NO
 REPLACE STRUCNUM WITH MHOONSNO
 REPLACE PAVETYP WITH MPAVETYP
 REPLACE LANEWID WITH MLANEWID
 REPLACE QUISHOWD WITH MQOUSHOWD
 REPLACE SHOSFTYP WITH MSHOSFTYP
 REPLACE SHOBSTYP WITH MSHOBSTYP
 REPLACE SHOSFIHK WITH MSHOSFIHK
 REPLACE SHOBSTHK WITH MSHOBSTHK
 REPLACE WIDENFLG WITH MWIDEN
 REPLACE ERRORCHAR WITH .F.
ELSE
 @ 20, 0 CLEAR
ENDIF
ENDDO
ENDDO
USE
CLEAR
RETURN

* PROCEDURE SURFACE

PROC SURFACE

* * TO ENTER DATA INTO SURFACE DBASE III FILE * *
* set parameters and initialize variables
STORE .T. TO MAGAIN
CLEAR
STORE 0 TO MOCONINU, MLAYNUM, MAGAPPILR
STORE " " TO MADMTXYP
STORE 0.0 TO MASAPPLR, MADXMPER
USE \PAVEDB\EDITUPDT\SURF_NEW INDEX \PAVEDB\EDITUPDT\SURF_NEW

DO WHILE MAGAIN
 CLEAR
 MSURE = " "
 DO WHILE .NOT. (MSURE $ 'Y')
 * set up menu and get data
 @ 4, 20 SAY " TEXAS FLEXIBLE PAVEMENT DATABASE"
 @ 5, 20 SAY " EDIT & UPDATE - Inventory Data"
 @ 6, 20 SAY " ADD Surface Layer"
 @ 8, 57 SAY "SID NUMBER "
 @ 8, 68 SAY MSID NO PICTURE "9999"
 @ 10, 3 SAY " Aggregate"
 @ 11, 3 SAY " Asphalt"
 @ 12, 3 SAY "Structure Layer Application Type (Mean"
 @ 13, 3 SAY "Number Number Rate Admixture Content)"
 % 14, 3 SAY "--------- ------- -------- "
 @ 15, 6 GET MOCONINU PICTURE "99" RANGE 1,9
 @ 15, 16 GET MLAYNUM PICTURE "99" RANGE 1,13
 @ 15, 26 GET MAGAPPILR PICTURE "99" RANGE 0,200
 @ 15, 36 GET MADMTXYP PICTURE "XXXXXXXXXXXXXXX"
 @ 15, 56 GET MADXMPER PICTURE "9.99" RANGE 0.0,8.0
 @ 15, 71 GET MASAPPLR PICTURE "9.99" RANGE 0,.6
 @ 2, 1 TO 17, 78 DOUBLE
 READ
 * set up escape key if want to abort
 IF READKEY() = 12
 CLEAR
 USE
 RETURN
 ENDIF
 @ 20, 23 SAY "Is The Data Entered Correct ? " GET MSURE PICT ":!"
 READ

 IF MSURE = "Y"
 * if data so far is correct, add it to the surface file
 APPEND BLANK
 REPLACE SID NO WITH MSID NO
 REPLACE STRUCNUM WITH MOCONINU
 REPLACE IAYNUM WITH MLAYNUM
 REPLACE AGAPPILR WITH MAGAPPILR
 REPLACE ADMXTYP WITH MADMTXYP

310
REPLACE ADMXPER WITH MADMXPER
REPLACE ASAPPIRT WITH MASAPPIR
REPLACE ERRORCHAR WITH .F.
STORE 0 TO MCONSNU, MLAYNUM, MAGAPPLR
STORE " " TO MADMXTP
STORE 0.0 TO MASAPPIR, MADMXPER
ELSE
 @ 20, 0 CLEAR
ENDIF
ENDDO
ENDDO

* clear all memory variables
USE
CLEAR
RETURN

* PROCEDURE SUBGRADE

PROC SUBGRADE
*
* TO ENTER DATA INTO THE SUBGRADE FILE
*

* set parameters and initialize all variables
CLEAR
STORE 0.0 TO MPPSV200, MPLASTIX, MLIQLIM, MIXTRIAx, MPERMIX
USE \PAVEDB\EDITUPDT\SUBG_NEW INDEX \PAVEDB\EDITUPDT\SUBG_NEW
STORE .T. TO MAGAIN

MSURE = " "
CLEAR
DO WHILE .NOT. (MSURE $ 'Y')
 * set up data entry screen
 @ 3, 20 SAY "TEXAS FLEXIBLE PAVEMENT DATABASE"
 @ 4, 20 SAY "EDIT & UPDATE - ADD Inventory"
 @ 5, 20 SAY "Subgrade File"
 @ 7, 55 SAY "MSID NUMBER"
 @ 7, 66 SAY MSID NO PICTURE "9999"
 @ 10, 15 SAY "Percent Passing No. 200 Sieve"
 @ 10, 47 GET MPPSV200 PICTURE "99.9"
 @ 11, 15 SAY "Texas Triaxial Class"
 @ 11, 48 GET MIXTRIAx PICTURE "9.9" RANGE 0.0,6.0
 @ 12, 15 SAY "Liquid Limit"
 @ 12, 47 GET MLIQLIM PICTURE "99.9" RANGE 0.0,80.0
 @ 13, 15 SAY "Plasticity Index"
 @ 13, 47 GET MPLASTIX PICTURE "99.9" RANGE 0.0,70.0
 @ 14, 15 SAY "Permeability Index"
 @ 14, 46 GET MPERMIX PICTURE "99.99" RANGE 0.00,10.00
 @ 1, 8 TO 17, 75 DOUBLE

311
* get data
READ
* set up the escape key if want to abort
IF READKEY() = 12
 CLEAR
 USE
 MSURE = " "
 MAGAIN = .F.
 EXIT
ENDIF

* verify if data is correct
@ 18, 23 SAY "Is The Data Correct ? " GET MSURE PICT "!"
READ
IF MSURE = "Y"

* add data to the subgrade file
APPEND BLANK
REPLACE SID_NO WITH MSID_NO
REPLACE STRUCNUM WITH 1
REPLACE LAYNUM WITH 1
REPLACE PPSV200 WITH MPPSV200
REPLACE PLASTIX WITH MPLASTIX
REPLACE LIQLIM WITH MLIQLIM
REPLACE TXTRIAIX WITH MTXTRIAIX
REPLACE PERMIX WITH MPERMIX
REPLACE ERRORCHAR WITH .F.
STORE 0.0 TO MPPSV200, MPLASTIX, MLIQLIM, MTXTRIAIX, MPERMIX
ELSE
 @ 20, 0 CLEAR
ENDIF
ENDDO
USE
CLEAR
RETURN

* PROCEDURE ADD LOCATION RECORD

PROCEDURE LOCATION
CLEAR

* To enter data into the transaction LOCATION identification file
*
STORE .T. TO MAGAIN
STORE 0 TO MHWYDIST, MONTYNUM, MCONTROL, MSECTION, MHWYNUM, MBEAGMENT, MENDMENT, MMPNIMO
STORE 0 TO MMNTRYR, MBEAGMENT, MEMPSTDIS, MENDMENT, MEMPSTDIS, MFUNCIAS, MLPMSSEC
STORE 0 TO MINACIMO, MINACTYR, MPREVSID, MNEXTSID, MNUMLANES, MSID_NO
STORE " " TO MHWYPREFIX
STORE " " TO MHWYSUFFIX, MLANEID, MBDISSIGN, MEDISSIGN
STORE " " TO MHPMSAM
STORE " " TO MCOMMENT
STORE .T. TO MACTIVEFLAG

USE \PAVEDB\EDITUPDT\LOCN_NEW INDEX \PAVEDB\EDITUPDT\LOCN_NEW
DO WHILE MAGAIN
 CLEAR
 MSURE = ""
DO WHILE .NOT. (MSURE $ 'Yy')
 * set up entry screen and get data
 @ 2, 23 SAY "TEXAS FLEXIBLE PAVEMENT DATABASE"
 @ 3, 23 SAY "EDIT & UPDATE - ADD Inventory"
 @ 4, 23 SAY "Location File"
 @ 6, 6 SAY "SID Number"
 @ 6, 18 GET MSID NO PICTURE "9999"
 @ 6, 44 SAY "District"
 @ 6, 53 GET MHWYDIST PICTURE "99" RANGE 0, 25
 @ 6, 59 SAY "County"
 @ 6, 66 GET MONTNUM PICTURE "999" RANGE 0, 500
 @ 8, 6 SAY "Highway Ident."
 @ 8, 21 GET MHWYPREFIX
 @ 8, 24 GET MHWYNUM PICTURE "9999"
 @ 8, 29 GET MHWYSUFFIX
 @ 8, 44 SAY "Control/Section"
 @ 8, 60 GET MCONTROL PICTURE "9999"
 @ 8, 64 SAY "/"
 @ 8, 65 GET MSECTION PICTURE "99"
 @ 10, 6 SAY "Mile Post"
 @ 10, 17 GET MBEGMPST PICTURE "999"
 @ 10, 21 GET MBEGISSIGN
 @ 10, 23 GET MENDPSTDIS PICTURE "99"
 @ 10, 26 SAY "TO"
 @ 10, 29 GET MENDPST PICTURE "999"
 @ 10, 33 GET MEDISSIGN
 @ 10, 35 GET MENDPSTDIS PICTURE "99"
 @ 10, 44 SAY "Lane Identification"
 @ 10, 64 GET MLANEID
 @ 12, 6 SAY "Mile Point"
 @ 12, 17 GET MBEGMPNT PICTURE "99.999"
 @ 12, 24 SAY "TO"
 @ 12, 27 GET MENDMPNT PICTURE "99.999"
 @ 12, 44 SAY "Mile Point Date"
 @ 12, 61 GET MMPTNMO PICTURE "99" RANGE 0, 12
 @ 12, 63 SAY "/"
 @ 12, 64 GET MMPTNYR PICTURE "99"
 @ 14, 6 SAY "HIMS Sample Number"
 @ 14, 25 GET MHIMSSAM
 @ 14, 44 SAY "HIMS Section Subdivision"
 @ 14, 69 GET MHIMSSSEC PICTURE "9"
 @ 16, 6 SAY "Functional Classification"
 @ 16, 32 GET MFUNCIAS PICTURE "99"
 @ 16, 44 SAY "Number of Lanes"
 @ 16, 61 GET MNUMLANES PICTURE "99"
 @ 18, 6 SAY "Active ?"
 @ 18, 15 GET MACTVFLAG PICTURE "L"
 @ 18, 19 SAY "Inactive Date"
 @ 18, 33 GET MINACTIMO PICTURE "99" RANGE 0, 12
 @ 18, 35 SAY "/"
 @ 18, 36 GET MINACTYR PICTURE "99"
@ 18, 41 SAY "Previous SID"
@ 18, 54 GET MPREVSID PICTURE "9999"
@ 18, 61 SAY "Next SID"
@ 18, 70 GET MNEXTSID PICTURE "9999"
@ 20, 6 SAY "Comment"
@ 20, 15 GET MCOMMENT PICTURE "XXX"
@ 1, 2 TO 21, 77 DOUBLE READ
 * set up the escape key if want to abort
 IF READKEY() = 12
 CLEAR
 USE
 RETURN
ENDIF
@ 22, 23 SAY "IS THE DATA CORRECT ? " GET MSURE PICTURE "+" READ
 * if data is said to be not correct, the flags (sure and required) are
 * set to true so that the do loop will be executed again.
 IF MSURE = "Y"
 APPEND BLANK
 REPLACE SID NO WITH MSID NO
 REPLACE HWYDIST WITH MHWYDIST
 REPLACE QNTYNUM WITH MQNTYNUM
 REPLACE CONTROL WITH MCONTROL
 REPLACE SECTION WITH MSECTION
 REPLACE HWYPREFIX WITH MHWYPREFIX
 REPLACE HWYNUM WITH MHWYNUM
 REPLACE HWYSUFFIX WITH MHWYSUFFIX
 REPLACE BEGIN WITH MBEGIN
 REPLACE ENDWITH MEND
 REPLACE MPNIMO WITH MMPNIMO
 REPLACE MPNYR WITH MMNYR
 REPLACE LANEID WITH MLANEID
 REPLACE BEGINWITH MBEGIN
 REPLACE EDISSIGN WITH MEDISSIGN
 REPLACE MPSTDIS WITH MMPSTDIS
 REPLACE FUNCIAS WITH MFUNCIAS
 REPLACE HPMSSAM WITH MPHMESSAM
 REPLACE HPMSSSEC WITH MPHMESSSEC
 REPLACE INACIMO WITH MINACIMO
 REPLACE INACTYR WITH MINACTYR
 REPLACE PREVSID WITH MPREVSID
 REPLACE NEXTSID WITH MNEXTSID
 REPLACE ACTIVFLAG WITH MACCTVFLAG
 REPLACE NUMLANES WITH MNULANES
 REPLACE COMMENT WITH MCOMMENT
 REPLACE ERRORCHAR WITH .F.
STORE 0 TO
MHWYDIST, MQNTYNUM, MCONTROL, MSECTION, MHWYNUM, MBEGIN, MEND, MMPNIMO
STORE 0 TO
MMENIVR,MBEGMPST,MMEPSTDIS,MDNEMST,MEISPSTDIS,MFUNCIAS,MHFMSSSEC
STORE 0 TO MINACIMO,MINACTYR,MPREVSID,MMEXISID, MNUMLANES,MSID_NO
STORE " " TO MHWYPREFX
STORE " " TO MHWYSUFFX,MLANEID,MBDISSIGN, MEDISSIGN
STORE " " TO MHPMSSAM
STORE " " " TO MCOMMENT
STORE .T. TO MACIVFLAG
ELSE
 @ 20, 0 CLEAR
ENDIF
ENDDO
ENDDO
USE
CLEAR
RETURN
SET TALK OFF
SET ECHO OFF
SET ESCAPE OFF
CLEAR
CLEAR TYPE
STORE 0 TO MSIZE, MNUMFIELDS, MHEADER, MTOTALSIZE, MCOUNT
STORE "" TO MNULL
MBACKDRV = MDRI VE2 + ":"
@ 5,5 SAY "The new data you entered is about to be checked for errors."
@ 8,5 SAY "First, the Inventory files will be backed up. For this,"
@ 9,5 SAY "place a FORMATTED DISKETTE in drive " + MBACKDRV + " and close the drive."
@ 12,5 SAY "If you DO NOT want to continue, press the ESC key."
@ 13,5 SAY "Otherwise press any other key to continue."
READ
IF READKEY() = 12
 CLEAR
 RETURN
ENDIF
CLEAR
SET TYPE TO 0

* backing up LOCATION files
USE \PAVEDB\EDITUPDT\LOCN_NEW INDEX \PAVEDB\EDITUPDT\LOCN_NEW
MOUNT = RECCOUNT()
USE
IF MOUNT <> 0
 CLEAR
 @ 9,5 SAY "Please wait. Backing up LOCATION files . . ."
 SET DEFAUL TO &MBACKDRV
 IF FILE('LOCATION.DBF')
 DELE FILE LOCATION.DBF
 ENDIF

 SET DEFAUL TO &MDRI VE
 * Checking disk space on backup drive and backing up LOCATION master files
 USE \PAVEDB\FILES\LOCATION
 STORE RECCOUNT() * RECSIZE() TO MSIZE

316
MNULL = ""
DO WHILE MNULL < FIELD(MNUMFIELDS + 1)
 MNUMFIELDS = MNUMFIELDS + 1
ENDDO
MHEADER = (32 * MNUMFIELDS) + 34
MIOTALSIZE = MSIZE + MHEADER + 20
SET DEFAULT TO &MBACKDRV
MDISKSPACE = DISKSPACE()
SET DEFAULT TO &MDF
DO WHILE MDISKSPACE < MIOTALSIZE
? "Not enough space on diskette in drive " + MBACKDRV
? "Please replace with another diskette and press any key to continue"
WAIT ""
IF READKEY() = 12
 "PROCESS ABORTED"
 RETURN
ENDIF
SET DEFAULT TO &MBACKDRV
MDISKSPACE = DISKSPACE()
SET DEFAULT TO &MDF
ENDDO
USE
IF FILE('\pavedb\files\backup\LOCATION.DBF')
 DELE FILE 'PAVEDB\FILES\BACKUP\LOCATION.DBF'
 SET TALK ON
ENDIF
COPY FILE 'PAVEDB\FILES\LOCATION.DBF TO &MBACKDRV\LOCATION.DBF'
COPY FILE 'PAVEDB\FILES\LOCATION.DBF TO 'PAVEDB\FILES\BACKUP\LOCATION.DBF'

* Backing up LOCATION transaction files i.e. newly entered data
* to drive Backup directory
IF FILE('\pavedb\EDITUPDT\BACKUP\LOCN_OLD.DBF')
 SET TALK OFF
 DELE FILE 'PAVEDB\EDITUPDT\BACKUP\LOCN_OLD.DBF'
 SET TALK ON
ENDIF
IF FILE('\pavedb\EDITUPDT\BACKUP\LOCN.NEW.DBF')
 RENA 'PAVEDB\EDITUPDT\BACKUP\LOCN.NEW.DBF TO
\PAVEDB\EDITUPDT\BACKUP\LOCN_OLD.DBF'
ENDIF
COPY FILE 'PAVEDB\EDITUPDT\LOCN.NEW.DBF TO
\PAVEDB\EDITUPDT\BACKUP\LOCN.NEW.DBF'
CLEAR
SET TALK OFF
ENDIF

* backing up layer id files
USE 'PAVEDB\EDITUPDT\LAYR_NEW INDEX 'PAVEDB\EDITUPDT\LAYR_NEW
MOUNT = RECCOUNT()
USE
IF MOUNT <> 0
 CLEAR
 @ 9,5 SAY "Please wait. Backing up Layer ID . . ."
 SET DEFAULT TO &MBACKDRV

317
IF FILE('LAYER.DBF')
 DELETE FILE LAYER.DBF
ENDIF

* Checking disk space on Backup drive and backing up Layer ID master files
SET DEFAULT TO &MDRIVE
USE \PAVEDB\FILES\LAYER
STORE RECCOUNT() * RECSIZE() TO MSIZE
MNULL = ""
DO WHILE MNULL < FIELD(MNUMFIELDS + 1)
 MNUMFIELDS = MNUMFIELDS + 1
ENDDO
MHEADER = (32 * MNUMFIELDS) + 34
MIOTALSIZE = MSIZE + MHEADER + 20
SET DEFAULT TO &MBACKDRV
MDISKSPACE = DISKSPACE()
SET DEFAULT TO &MDRIVE
DO WHILE MDISKSPACE < MIOTALSIZE
 ? "Not enough space on diskette in drive " + MBACKDRV
 ? "Please replace with another diskette and press any key to continue"
 WAIT ""
 IF READKEY() = 12
 ? "PROCESS ABORTED"
 RETURN
 ENDIF
 SET DEFAULT TO &MBACKDRV
 MDISKSPACE = DISKSPACE()
 SET DEFAULT TO &MDRIVE
ENDDO
USE
IF FILE('pavedb\files\backup\LAYER.DBF')
 DELETE FILE \PAVEDB\FILES\BACKUP\LAYER.DBF
ENDIF
SET TALK ON
COPY FILE \PAVEDB\FILES\LAYER.DBF TO &MBACKDRV\LAYER.DBF
COPY FILE \PAVEDB\FILES\LAYER.DBF TO \PAVEDB\FILES\BACKUP\LAYER.DBF

* Backing up Layer ID transaction files i.e. newly entered data
* to Backup directory
IF FILE('\PAVEDB\EDITUPD\BACKUP\LAYR_OLD.DBF')
 SET TALK OFF
 DELETE FILE \PAVEDB\EDITUPD\BACKUP\LAYR_OLD.DBF
 SET TALK ON
ENDIF
IF FILE('\PAVEDB\EDITUPD\BACKUP\LAYR_NEW.DBF')
 RENAME \PAVEDB\EDITUPD\BACKUP\LAYR_NEW.DBF TO \PAVEDB\EDITUPD\BACKUP\LAYR_OLD.DBF
ENDIF
COPY FILE \PAVEDB\EDITUPD\LAYR_NEW.DBF TO \PAVEDB\EDITUPD\BACKUP\LAYR_NEW.DBF
CLEAR
SET TALK OFF
ENDIF
* backing up LAYTHICK THICKNESS files
USE \\PAVEDB\EDITUPDT\LAYT_NEW INDEX \PAVEDB\EDITUPDT\LAYT_NEW
MOUNT = RECOCOUNT()
USE
IF MOUNT <> 0
CLEAR
@ 9,5 SAY "Please wait. Backing up LAYER THICKNESS Across the Road files ..
.
.
SET DEFAU TO &MBACKDRV
IF FILE('LAYTHICK.DBF')
 DELE FILE LAYTHICK.DBF
ENDIF

* Checking disk space on Backup drive and backing up LAYTHICK ID master files
SET DEFAU TO &MDRIVE
USE \\PAVEDB\FILES\LAYTHICK
STORE RECOCOUNT() * RECSIZE() TO MSIZE
MNULL = ""
DO WHILE MNULL < FIELD(MNUMFIELDS + 1)
 MNUMFIELDS = MNUMFIELDS + 1
ENDDO
MHEADER = (32 * MNUMFIELDS) + 34
MIOTALSIZE = MSIZE + MHEADER + 20
SET DEFAULT TO &MBACKDRV
MDISKSPACE = DISKSPACE()
SET DEFAULT TO &MDRIVE
DO WHILE MDISKSPACE < MIOTALSIZE
 ? "Not enough space on diskette in drive " + MBACKDRV
 ? "Please replace with another diskette and press any key to continue"
WAIT ""
IF READKEY() = 12
 ? "PROCESS ABORTED"
 RETURN
ENDIF
SET DEFAULT TO &MBACKDRV
MDISKSPACE = DISKSPACE()
SET DEFAULT TO &MDRIVE
ENDDO
USE
IF FILE('\\pavedb\files\backup\LAYTHICK.DBF')
 DELE FILE \PAVEDB\FILES\BACKUP\LAYTHICK.DBF
ENDIF
SET TALK ON
COPY FILE \PAVEDB\FILES\LAYTHICK.DBF TO &MBACKDRV\LAYTHICK.DBF
COPY FILE \PAVEDB\FILES\LAYTHICK.DBF TO \PAVEDB\FILES\BACKUP\LAYTHICK.DBF

* Backing up LAYTHICK transaction files i.e. newly entered data
* to Backup directory
IF FILE('\\PAVEDB\EDITUPDT\BACKUP\LAYT_OLD.DBF')
 SET TALK OFF
 DELE FILE \PAVEDB\EDITUPDT\BACKUP\LAYT_OLD.DBF
 SET TALK ON
ENDIF
IF FILE('\\PAVEDB\EDITUPDT\BACKUP\LAYT_NEW.DBF')
RENAV\PAVEDB\EDITUPDT\BACKUP\LAYT_NEW.DBF TO
\PAVEDB\EDITUPDT\BACKUP\LAYT_OLD.DBF
ENDIF
COPY FILE \PAVEDB\EDITUPDT\LAYT_NEW.DBF TO
\PAVEDB\EDITUPDT\BACKUP\LAYT_NEW.DBF
CLEAR
SET TALK OFF
ENDIF

* backing up GEOMETRIC & SHOULDER files
USE \PAVEDB\EDITUPDT\GEOS_NEW INDEX \PAVEDB\EDITUPDT\GEOS_NEW
MOUNT = RECCOUNT()
USE
IF MOUNT <> 0
 CLEAR
 @ 9,5 SAY "Please wait. Backing up GEOMETRIC & SHOULDER files . . ."
 SET DEFAULT TO &MBACKDRV
 IF FILE('GEOSHO.DBF')
 DELE FILE GEOSHO.DBF
 ENDIF

* Checking disk space on Backup drive and backing up GEOMETRIC & SHOULDER
master files
SET DEFAULT TO &MDRV
USE \PAVEDB\FILES\GEOSH
STORE RECCOUNT() * RECSIZE() TO MSIZE
MNULL = ""
DO WHILE MNULL < FIELD(MNUMFIELDS + 1)
 MNUMFIELDS = MNUMFIELDS + 1
ENDDO
MHEADER = (32 * MNUMFIELDS) + 34
MTOTALSIZE = MSIZE + MHEADER + 20
SET DEFAULT TO &MBACKDRV
MDISKSPACE = DISKSPACE()
SET DEFAULT TO &MDRV
DO WHILE MDISKSPACE < MTOTALSIZE
 ? "Not enough space on diskette in drive " + MBACKDRV
 ? "Please replace with another diskette and press any key to continue"
 WAIT ""
 IF READKEY() = 12
 ? "PROCESS ABORTED"
 RETURN
 ENDF
 SET DEFAULT TO &MBACKDRV
 MDISKSPACE = DISKSPACE()
 SET DEFAULT TO &MDRV
ENDDO
USE
IF FILE('\pavedb\files\backup\GEOSHO.DBF')
 DELE FILE \PAVEDB\FILES\BACKUP\GEOSHO.DBF
 SET TALK ON
ENDF
COPY FILE \PAVEDB\FILES\GEOSHO.DBF TO &MBACKDRV\GEOSHO.DBF
COPY FILE \PAVEDB\FILES\GEOSHO.DBF TO \PAVEDB\FILES\BACKUP\GEOSHO.DBF

320
* Backing up GEOSH transaction files i.e. newly entered data
* to drive Backup directory

IF FILE("\PAVEDB\EDITUPDT\Backup\GEOS_OLD.DBF")
SET TALK OFF
DELE FILE \PAVEDB\EDITUPDT\Backup\GEOS_OLD.DBF
SET TALK ON
ENDIF

IF FILE("\PAVEDB\EDITUPDT\Backup\GEOS_NEW.DBF")
RENA \PAVEDB\EDITUPDT\Backup\GEOS_NEW.DBF TO \PAVEDB\EDITUPDT\Backup\GEOS_OLD.DBF
ENDIF
COPY FILE \PAVEDB\EDITUPDT\GEOS_NEW.DBF TO \PAVEDB\EDITUPDT\Backup\GEOS_NEW.DBF
CLEAR
SET TALK OFF
ENDIF

* backing up SURFACE THICKNESS files
USE \PAVEDB\EDITUPDT\SURF_NEW INDEX \PAVEDB\EDITUPDT\SURF_NEW
MOUNT = RECCOUNT()
USE

IF MOUNT <> 0
CLEAR
@ 9,5 SAY "Please wait. Backing up SURFACE files . . ."
SET DEFAULT TO &MBACKDRV
IF FILE('SURFACE.DBF')
 DELE FILE SURFACE.DBF
ENDIF

* Checking disk space on Backup drive and backing up SURFACE master files
SET DEFAULT TO &MDRIVE
USE \PAVEDB\FILES\SURFACE
STORE RECCOUNT() * RECSIZE() TO MSIZE
MNULL = ""
DO WHILE MNULL < FIELD(MNUMFIELDS + 1)
 MNUMFIELDS = MNUMFIELDS + 1
ENDDO
MHEADER = (32 * MNUMFIELDS) + 34
TOTALSIZE = MSIZE + MHEADER + 20
SET DEFAULT TO &MBACKDRV
MDISKSPACE = DISKSPACE()
SET DEFAULT TO &MDRIVE
DO WHILE MDISKSPACE < TOTALSIZE
 ? "Not enough space on diskette in drive " + MBACKDRV
 ? "Please replace with another diskette and press any key to continue"
 WAIT ""
 IF READKEY() = 12
 ? "PROCESS ABORTED"
 RETURN
 ENDIF
SET DEFAULT TO &MBACKDRV
MDISKSPACE = DISKSPACE()
SET DEFAULT TO &MDRIVE
USE \PAVEDB\FILES\SURFACE.DBF
 DELETE FILE \PAVEDB\FILES\BACKUP\SURFACE.DBF
ENDIF

SET TALK ON
COPY FILE \PAVEDB\FILES\SURFACE.DBF TO &MBACKDRV\SURFACE.DBF
COPY FILE \PAVEDB\FILES\SURFACE.DBF TO \PAVEDB\FILES\BACKUP\SURFACE.DBF

* Backing up SURFACE transaction files i.e. newly entered data
* to drive Backup directory
IF FILE('PAVEDB\EDITUPDT\BACKUP\SURF_OLD.DBF')
 SET TALK OFF
 DELETE FILE \PAVEDB\EDITUPDT\BACKUP\SURF_OLD.DBF
 SET TALK ON
ENDIF
 IF FILE('PAVEDB\EDITUPDT\BACKUP\SURF_NEW.DBF')
 RENAME \PAVEDB\EDITUPDT\BACKUP\SURF_OLD.DBF TO \PAVEDB\EDITUPDT\BACKUP\SURF_NEW.DBF
 ENDIF
 COPY FILE \PAVEDB\EDITUPDT\SURF_NEW.DBF TO \PAVEDB\EDITUPDT\BACKUP\SURF_NEW.DBF
 CLEAR
 SET TALK OFF
ENDIF

* backing up SUBGRADE THICKNESS files
USE \PAVEDB\EDITUPDT\SUBG_NEW INDEX \PAVEDB\EDITUPDT\SUBG_NEW
MOUNT = RECCOUNT()
USE
IF MOUNT <> 0
 CLEAR
 9,5 SAY "Please wait. Backing up SUBGRADE files . . ."
 SET TALK OFF
 SET DEFAULT TO &MBACKDRV
 IF FILE('SUBGRADE.DBF')
 DELETE FILE SUBGRADE.DBF
 ENDIF

* Checking disk space on Backup drive and backing up SUBGRADE master files
SET DEFAULT TO &MDRIVE
USE \PAVEDB\FILES\SUBGRADE
STORE RECCOUNT() * RECSIZE() TO MSIZE
MNULL = ""
DO WHILE MNULL < FIELD(MNUMFIELDS + 1)
 MNUMFIELDS = MNUMFIELDS + 1
ENDDO
MHEADER = (32 * MNUMFIELDS) + 34
MTOTALSIZE = MSIZE + MHEADER + 20
SET DEFAULT TO &MBACKDRV
MDISKSPACE = DISKSPACE()
SET DEFAULT TO &MDRIVE
DO WHILE MDISKSPACE < MTOTALSIZE
 ? "Not enough space on diskette in drive " + MBACKDRV
? "Please replace with another diskette and press any key to continue"
WAIT " "
IF READKEY() = 12
 ? "PROCESS ABORTED"
 RETURN
ENDIF
SET DEFAULT TO &MBACKDRV
MDISKSPACE = DISKSPACE()
SET DEFAULT TO &MDRIVE
ENDDO
USE
IF FILE('PAVEDB\files\backup\SUBGRADE.DBF')
 DELETE FILE 'PAVEDB\FILES\BACKUP\SUBGRADE.DBF'
ENDIF
SET TALK ON
COPY FILE 'PAVEDB\FILES\SUBGRADE.DBF' TO &MBACKDRV\SUBGRADE.DBF
COPY FILE 'PAVEDB\FILES\SUBGRADE.DBF' TO 'PAVEDB\FILES\BACKUP\SUBGRADE.DBF'

* Backing up SUBGRADE transaction files i.e. newly entered data
* to drive Backup directory
IF FILE('PAVEDB\EDITUPDT\BACKUP\SUBG_OLD.DBF')
 SET TALK OFF
 DELETE FILE 'PAVEDB\EDITUPDT\BACKUP\SUBG_OLD.DBF'
 SET TALK ON
ENDIF
IF FILE('PAVEDB\EDITUPDT\BACKUP\SUBG_NEW.DBF')
 RENAME 'PAVEDB\EDITUPDT\BACKUP\SUBG_NEW.DBF' TO 'PAVEDB\EDITUPDT\BACKUP\SUBG_OLD.DBF'
ENDIF
COPY FILE 'PAVEDB\EDITUPDT\SUBG_NEW.DBF' TO 'PAVEDB\EDITUPDT\BACKUP\SUBG_NEW.DBF'
CLEAR
SET TALK OFF
ENDIF

SET ESCAPE OFF
SET TALK OFF
SET ECHO OFF
SET TYPE TO 20
DO 'PAVEDB\EDITUPDT\INV_UPDT'
RETURN
PROGRAM LISTING

* * SUBSYSTEM: EDIT & UPDATE SUBSYSTEM
* PROGRAM NAME: INV_UPDT.PRG 03/23/88
* CALLED FROM: INV_BRUP.PRG
* PROJECT 2456 - TEXAS FLEXIBLE PAVEMENT DATABASE CONVERSION
* TAMU/TII
* AUTHOR: TREVOR X. PEREIRA
* PURPOSE: TO TO CHECK NEW DATA ENTERED IN EACH OF THE 5 INVENTORY FILES

* LIST OF PROGRAMS CALLED FROM THE FOLLOWING PROCEDURES:
 * LAYRCHEK.PRG - LAYRCHEK3.PRG, LAYRSVER.PRG, SIDCHEK1.PRG, LAYDESC.PRG
 * LAYTCHEK.PRG - LAYTCHEK1.PRG, LAYTCHEK2.PRG, LAYTCHEK3.PRG, SIDCHEK2.PRG
 * GEOSCHEK.PRG - GEOSCHEK1.PRG, GEOSCHEK2.PRG, GEOSCHEK3.PRG, SIDCHEK3.PRG
 * SUBSCHEK.PRG - SUBSCHEK1.PRG, SUBSCHEK2.PRG, SUBSCHEK3.PRG, SIDCHEK4.PRG
 * SURFCHEK.PRG - SURFCHEK1.PRG, SURFCHEK2.PRG, SURFCHEK3.PRG, SIDCHEK5.PRG

SET ALIVE TO \PAVEDB\EDITUPD\ERRORS
SET ALIVE OFF

* * Checking LOCATION File
* USE \PAVEDB\EDITUPD\LOCN_NEW INDEX \PAVEDB\EDITUPD\LOCN_NEW
MOUNT = RECOUNT()
USE
IF MOUNT <> 0
 * Running the edit/check programs
 CLEAR
 @ 5,5 say "The new LOCATION data you entered is"
 @ 6,5 SAY "being checked for errors."
 USE \PAVEDB\EDITUPD\LOCN_NEW INDEX \PAVEDB\EDITUPD\LOCN_NEW
 DO WHILE .NOT. EOF()
 REPLACE ERRORCHAR WITH .F.
 SKIP
 ENDDO
 USE
 DO \PAVEDB\EDITUPD\LOCNCHEK
 CLEAR
 @ 5, 5 SAY "Please Wait. Updating Master Database"
 * Appending data to the Master database if there are no errors
 SEIE 1
 USE \PAVEDB\EDITUPD\LOCN_NEW INDEX \PAVEDB\EDITUPD\LOCN_NEW
 SEIE 2
 USE \PAVEDB\FILES\LOCATION INDEX \PAVEDB\INDEXES\LOCSID
 SEIE 1
 DO WHILE .NOT. EOF()
 IF .NOT. ERRORCHAR

324
SELE 2
APPEND BLANK
REPLACE SID NO WITH A->SID NO
REPLACE HWYDIST WITH A->HWYDIST
REPLACE CNTYNUM WITH A->CNTYNUM
REPLACE CONTROL WITH A->CONTROL
REPLACE SECTION WITH A->SECTION
REPLACE HWYPREFIX WITH A->HWYPREFIX
REPLACE HWYNUM WITH A->HWYNUM
REPLACE HWYSUFFIX WITH A->HWYSUFFIX
REPLACE BEGINPT WITH A->BEGINPT
REPLACE ENDPT WITH A->ENDPT
REPLACE MINIMO WITH A->MINIMO
REPLACE MINISTRY WITH A->MINISTRY
REPLACE LEANEID WITH A->LEANEID
REPLACE BEGINPT WITH A->BEGINPT
REPLACE EDISIGN WITH A->EDISIGN
REPLACE EMDISIGN WITH A->EMDISIGN
REPLACE ENDPT WITH A->ENDPT
REPLACE EDISIGN WITH A->EDISIGN
REPLACE EMDISIGN WITH A->EMDISIGN
REPLACE FUNCIAS WITH A->FUNCIAS
REPLACE HEMSSAM WITH A->HEMSSAM
REPLACE HEMSSSEC WITH A->HEMSSSEC
REPLACE INACTIMO WITH A->INACTIMO
REPLACE INACTYR WITH A->INACTYR
REPLACE PREVSID WITH A->PREVSID
REPLACE NEXTSID WITH A->NEXTSID
REPLACE ACTVFLAG WITH A->ACTVFLAG
REPLACE NUMLANES WITH A->NUMLANES
REPLACE COMMENT WITH A->COMMENT
SELE 1
DELETE
ENDIF
SKIP
ENDDO
SELE 1
PACK
ENDIF
SELE 1
USE
SELE 2
USE

* Checking layer id file
*
USE \PAVEDB\EDITUPDT\LAYR_NEW INDEX \PAVEDB\EDITUPDT\LAYR_NEW
MOUNT = RECCOUNT()
USE
IF MOUNT <> 0
@ 5,5 SAY "The new LAYER IDENTIFICATION data you entered is"
@ 6,5 SAY "being checked for errors."
* Running the edit/check programs
USE \PAVEDB\EDITUPDT\LAYR_NEW INDE \PAVEDB\EDITUPDT\LAYR_NEW
DO WHILE .NOT. EOF()
 REPLACE ERRORCHAR WITH .F.
 SKIP
ENDDO
USE
SET PROC TO \PAVEDB\EDITUPDT\LAYRCHEK
DO LAYRCHEK
DO LAYRVER
DO SIDCHEK
DO LOCCHEK
DO LAYDESC
CLEAR
@ 5, 5 SAY "Please Wait. Updating Master Database"
* Appending data to the Master database if there are no errors
SELE 1
 USE \PAVEDB\EDITUPDT\LAYR_NEW INDEX \PAVEDB\EDITUPDT\LAYR_NEW
SELE 2
 USE \PAVEDB\FILES\LAYER INDEX \PAVEDB\INDEXES\LAYNDX
SELE 1
DO WHILE .NOT. EOF() .AND. A->SID_NO = MTESTSID
 IF A->ERRORCHAR
 MERROR = MERROR + 1
 ENDIF
 SKIP
ENDDO
IF MERROR = 0
 LOCATE FOR SID_NO = MTESTSID
 DO WHILE .NOT. EOF() .AND. A->SID_NO = MTESTSID
 SELE 2
 APPEND BLANK
 REPLACE SID_NO WITH A->SID_NO
 REPLACE STRUCNUM WITH A->STRUCNUM
 REPLACE IAYNUM WITH A->IAYNUM
 REPLACE IAYDESC WITH A->IAYDESC
 REPLACE CENTTHK WITH A->CENTTHK
 REPLACE IAYMATCL WITH A->IAYMATCL
 REPLACE JOBCMPYR WITH A->JOBCMPYR
 REPLACE JOBCMPMO WITH A->JOBCMPMO
 REPLACE WIDENLYR WITH A->WIDENLYR
 REPLACE WIDENIMO WITH A->WIDENIMO
 SELE 1
 DELE
 SKIP
ENDDO
ENDIF
ENDDO
SELE 1
PACK
* Checking Layer Thickness Across the Road File

USE \PAVEDB\EDITUPDT\LAYT_NEW INDEX \PAVEDB\EDITUPDT\LAYT_NEW
MOUNT = RECCOUNT()
USE
IF MOUNT <> 0
 @ 5,5 SAY "The new LAYER THICKNESS ACROSS THE ROAD data you entered is"
 @ 6,5 SAY "being checked for errors."
 * Running the edit/check programs
 USE \PAVEDB\EDITUPDT\LAYT_NEW INDEX \PAVEDB\EDITUPDT\LAYT_NEW
 DO WHILE .NOT. EOF()
 REPLACE ERRORCHAR WITH .F.
 SKIP
 ENDDO
 USE
 SET PROC TO \PAVEDB\EDITUPDT\LAYTCHEK
 DO LAYTCHK1
 DO LAYTCHK3
 DO SIDCHEK2
 CLEAR
 @ 5,5 SAY "Please Wait. Updating Master Database"
 * Appending data to the Master database if there are no errors
 SELE 1
 USE \PAVEDB\EDITUPDT\LAYT_NEW INDEX \PAVEDB\EDITUPDT\LAYT_NEW
 SELE 2
 USE \PAVEDB\INDEX\LAYTHICK INDEX \PAVEDB\INDEXES\LAYINDEX
 SELE 1
 DO WHILE .NOT. EOF()
 IF .NOT. ERRORCHAR
 SELE 2
 APPEND BLANK
 REPLACE SID NO WITH A->SID NO
 REPLACE STRUCNUM WITH A->STRUCNUM
 REPLACE LAYNUM WITH A->LAYNUM
 REPLACE FC3THK WITH A->FC3THK
 REPLACE FC2THK WITH A->FC2THK
 REPLACE FC1THK WITH A->FC1THK
 REPLACE CENTTHK WITH A->CENTTHK
 REPLACE FC3DIS WITH A->FC3DIS
 REPLACE FC2DIS WITH A->FC2DIS
 REPLACE FC1DIS WITH A->FC1DIS
 SELE 1
 DELETE
 ENDDO
 SKIP
 ENDDO
 SELE 1
PACK
ENDIF
SEIE 1
USE
SEIE 2
USE

* Checking Geometric & Shoulder Information File
*
USE \PAVEDB\EDITUPDT\GEOS_NEW INDEX \PAVEDB\EDITUPDT\GEOS_NEW
MOUNT = REccount()
USE
IF MOUNT <> 0
* Running the edit/check programs
CLEAR
@ 5,5 say "The new GEOMETRIC & SHOULDER data you entered is"
@ 6,5 SAY "being checked for errors."
USE \PAVEDB\EDITUPDT\GEOS_NEW INDEX \PAVEDB\EDITUPDT\GEOS_NEW
DO WHILE .NOT. EOF()
 REPLACE ERRORCHAR WITH .F.
 SKIP
ENDDO
USE
SET PROC TO \PAVEDB\EDITUPDT\GEOSCHEK
DO GEOSCHEK1
DO GEOSCHEK3
DO SIDCHEK3
SET PROC TO

CLEAR
@ 5, 5 SAY "Please Wait. Updating Master Database"
* Appending data to the Master database if there are no errors
SEIE 1
 USE
 USE \PAVEDB\EDITUPDT\GEOS_NEW INDEX \PAVEDB\EDITUPDT\GEOS_NEW
SEIE 2
 USE
 USE \PAVEDB\FILES\GEOSHO INDEX \PAVEDB\INDEXES\GEONDX
SEIE 1
DO WHILE .NOT. EOF()
 IF .NOT. ERRORCHAR
 SEIE 2
 APPEND BLANK
 REPLACE SID NO WITH A->SID NO
 REPLACE STRUCNUM WITH A->STRUCNUM
 REPLACE PAVETYP WITH A->PAVETYP
 REPLACE LANEWID WITH A->LANEWID
 REPLACE OUTSHOHD WITH A->OUTSHOHD
 REPLACE SHOSFTYP WITH A->SHOSFTYP
 REPLACE SHOBSTYP WITH A->SHOBSTYP
 REPLACE SHOSFIHK WITH A->SHOSFIHK
 REPLACE SHOBSTHK WITH A->SHOBSTHK

328
REPLACE WIDENFIG WITH A->WIDENFIG
SELE 1
DELE
ENDIF
SKIP
ENDDO
SELE 1
PACK
ENDIF
SELE 1
USE
SELE 2
USE

* Checking Surface Information File
* USE \PAVEDB\EDITUPDT\SURF_NEW INDEX \PAVEDB\EDITUPDT\SURF_NEW
MOUNT = RECCOUNT() USE IF MOUNT <> 0 CLEAR
@ 5,5 SAY "The new Surface Information File data you entered is"
@ 6,5 SAY "being checked for errors."

* Running the edit/check programs
CLEAR
USE \PAVEDB\EDITUPDT\SURF_NEW INDEX \PAVEDB\EDITUPDT\SURF_NEW
DO WHILE .NOT. EOF()
 REPLACE ERRORCHAR WITH .F.
 SKIP
ENDDO
USE
SET PROC TO \PAVEDB\EDITUPDT\SURFCHK
DO SURFCHK1
DO SURFCHK3
DO SIDCHEK4
CLEAR
@ 5,5 SAY "Please Wait. Updating Master Database"

* Appending error-free SID's to the Master database
SELE 1
USE
USE \PAVEDB\EDITUPDT\SURF_NEW INDEX \PAVEDB\EDITUPDT\SURF_NEW
SELE 2
USE
USE \PAVEDB\FILES\SURFACE INDEX \PAVEDB\INDEXES\SURFNDX
SELE 1
DO WHILE .NOT. EOF()
 IF .NOT. A->ERRORCHAR
 SELE 2
 APPEND BLANK
 REPLACE SID NO WITH A->SID_NO
 REPLACE STRUCNUM WITH A->STRUCNUM
 ELSE
 SKIP
 ENDIF
REPLACE IAYNUM WITH A->IAYNUM
REPLACE AGAPPLRT WITH A->AGAPPLRT
REPLACE ADMXYP WITH A->ADMXYP
REPLACE A0MXPER WITH A->A0MXPER
REPLACE ASAPPLRT WITH A->ASAPPLRT
SELE 1
DELE
ENDIF
SKIP
ENDDO
SELE 1
PACK
ENDIF
SELE 1
USE
SELE 2
USE

* *
* Checking Subgrade File *
*
USE \PAVEDB\EDITUPDT\SUBG_NEW INDEX \PAVEDB\EDITUPDT\SUBG_NEW
MCOUNT = RECCOUNT()
USE
IF MCOUNT <> 0
 CLEAR
 CLEAR TYPE
 @ 5,5 SAY "The new SUBGRADE FILE data you entered is"
 @ 6,5 SAY "being checked for errors."

 * Running the edit/check programs
 CLEAR
 USE \PAVEDB\EDITUPDT\SUBG_NEW INDEX \PAVEDB\EDITUPDT\SUBG_NEW
 DO WHILE .NOT. EOF()
 REPLACE ERRORCHAR WITH .F.
 SKIP
 ENDDO
 USE
 SET PROC TO \PAVEDB\EDITUPDT\SUBGCHK
 DO SUBGCHK1
 DO SUBGCHK3
 DO SITCHEKS
 CLEAR
 @ 5,5 SAY "Please Wait. Updating Master Database"
 * Appending data to the Master database if there are no errors
 SELE 1
 USE
 USE \PAVEDB\EDITUPDT\SUBG_NEW INDEX \PAVEDB\EDITUPDT\SUBG_NEW
 SELE 2
 USE
 USE \PAVEDB\FILES\SUBGRADE INDEX \PAVEDB\INDEXES\SUBGNDX
 SELE 1

330
DO WHILE .NOT. EOF()
 IF .NOT. ERRORCHAR
 SELE 2
 APPEND BLANK
 REPLACE SID_NO WITH A->SID_NO
 REPLACE STRUCNUM WITH A->STRUCNUM
 REPLACE LAYNUM WITH A->LAYNUM
 REPLACE PPSV200 WITH A->PPSV200
 REPLACE PLASTIX WITH A->PLASTIX
 REPLACE LIQLIM WITH A->LIQLIM
 REPLACE TXTRIAXL WITH A->TXTRIAXL
 REPLACE PERMIX WITH A->PERMIX
 SELE 1
 DELE
 ENDDO
 SKIP
 ENDDO
 SELE 1
 PACK
ENDIF
SELE 1
USE
SELE 2
USE
SELE 1
CLOSE ALTE
SET PRINT ON
? " LIST OF ERRORS IN NEWLY ENTERED INVENTORY DATA FILES"
? " ---"
TYPE \PAVEDB\EDITUPDT\ERRORS.TXT
SET PRINT OFF
RETURN
PROGRAM LISTING

* * SUBSYSTEM: EDIT & UPDATE
* PROGRAM NAME: LOCNCHK.PRG 06/17/88
* CALLED FROM: INV UPDT.PRG
* PROJECT 2456 - TEXAS FLEXIBLE PAVEMENT DATABASE CONVERSION
* TAMU/TII
* AUTHOR: TREVOR X. PEREIRA
* PURPOSE: CHECKS LOCATION DATA
*

SET TALK OFF
CLEAR
SELE 1
USE \\PAVEDB\EDITUPDT\LOCN_NEW INDE \\PAVEDB\EDITUPDT\LOCN_NEW
SELE 2
USE \\PAVEDB\FILES\LOCATION INDE \\PAVEDB\INDEXES\LOCSID
M_ERROR = "LOCATION FILE - INCORRECT DATA ENTERED"
SELE 1

MERRORCNT = 0
SET ALIVE ON
? M_ERROR
DO WHILE .NOT. EOF()

MSID NO = SID NO
* calculates the correct Sid Number
STORE 0 TO VAR1, VAR2, VAR3, COMPARE
VAR1 = INT(MSID NO/1000)
VAR2 = MOD(INT(MSID_NO/100),10)
VAR2 = VAR2 * 2
VAR3 = MOD(INT(MSID_NO/10),10)
VAR3 = VAR3 * 3
VAR4 = MOD(VAR1,10)+VAR2+VAR3
COMPARE = MOD(VAR4,10)

* compares calculated Sid number with Sid number entered
IF COMPARE <> MOD(MSID NO,10)

MERRORCNT = MERRORCNT + 1
DISPLAY FIELD SID NO OFF
? "SID NUMBER IS NOT VALID"
? " "
ENDIF
* verifies that Sid number has been entered
IF MSID NO = 0

MERRORCNT = MERRORCNT + 1
DISPLAY FIELD SID NO OFF
? " " SID NUMBER IS NOT VALID"
? " "
ENDIF
SELE 2
SEEK MSID NO

IF FOUND()
 ERRORCNT = ERRORCNT + 1
 DISPLAY FIELD SID NO OFF
 ? " SID Number is already present in Location file"
 ? " "
ENDIF

SELECT 1

IF HWYDIST < 0 .OR. HWYDIST > 27
 DISPLAY FIELDS SID NO, HWYDIST OFF
 ERRORCNT = ERRORCNT + 1
ENDIF

IF CNTYNUM < 0 .OR. CNTYNUM > 270
 DISPLAY FIELDS SID NO, CNTYNUM OFF
 ERRORCNT = ERRORCNT + 1
ENDIF

DO CASE
 CASE HWYPREFIX = "FM"
 CASE HWYPREFIX = "SH"
 CASE HWYPREFIX = "IH"
 CASE HWYPREFIX = "US"
 CASE HWYPREFIX = "SP"
 CASE HWYPREFIX = "LP"
 CASE HWYPREFIX = "PR"
 OTHERWISE
 DISPLAY FIELDS SID NO, HWYPREFIX OFF
 ERRORCNT = ERRORCNT + 1
ENDCASE

IF HWYNUM = 0
 DISPLAY FIELDS SID NO, HWYNUM OFF
 ERRORCNT = ERRORCNT + 1
ENDIF

IF EDISSIGN = "+" .OR. EDISSIGN = "-"
ELSE
 DISPLAY FIELDS SID NO, EDISSIGN OFF
 ERRORCNT = ERRORCNT + 1
ENDIF

IF EDISSIGN = "+" .OR. EDISSIGN = "-"
ELSE
 DISPLAY FIELDS SID NO, EDISSIGN OFF
 ERRORCNT = ERRORCNT + 1
ENDIF

IF LANEID = "R" .OR. LANEID = "L"
ELSE
 DISPLAY FIELDS SID NO, LANEID OFF
 ERRORCNT = ERRORCNT + 1
ENDIF

IF ENDMENT = 0 .AND. BEMENT = 0
 DISPLAY FIELDS SID NO, BEMENT, ENDMNT OFF
 ERRORCNT = ERRORCNT + 1
ENDIF

IF MPMIMO < 0 .OR. MPMIMO > 12
 DISPLAY FIELDS SID NO, MPMIMO OFF
 ERRORCNT = ERRORCNT + 1
ENDIF
ENDIF
IF NUMLANES < 1 .OR. NUMLANES > 22
 DISPLAY FIELDS SID NO, NUMLANES OFF
 MERRORCNT = MERRORCNT + 1
ENDIF
IF ACIVFLAG
 IF INACTYR <> 0
 DISPLAY FIELDS SID NO, INACTYR OFF
 ? " Inactive Flag and Inactive YEAR are inconsistent"
 ? " "
 MERRORCNT = MERRORCNT + 1
 ENDIF
 IF INACIMO <> 0
 DISPLAY FIELDS SID NO, INACIMO OFF
 ? " Inactive Flag and Inactive MONTH are inconsistent"
 ? " "
 MERRORCNT = MERRORCNT + 1
 ENDIF
 IF NEXTSID <> 0
 DISPLAY FIELDS SID NO, NEXTSID OFF
 ? " " Cannot point to Another SID number when present SID number is active"
 ? " "
 MERRORCNT = MERRORCNT + 1
 ENDIF
ENDIF
IF PREVSID <> 0
 MPREVSID = PREVSID
 MBEGMPST = BEGMPST
 MEDISSIGN = BDISSIGN
 MEEMPSTDIS = EEMPSTDIS
 MENDMPST = ENDMPST
 MEDISSIGN = EDISSIGN
 MEEMPSTDIS = EEMPSTDIS
 SEIE 2
 SEEK MPREVSID
 IF .NOT. FOUND()
 SEIE 1
 DISPLAY FIELDS SID NO, PREVSID
 ? " " SID Number NOT present in location file"
 ? " "
 MERRORCNT = MERRORCNT + 1
 ELSE
 IF MBEGMPST <> BEGMPST .OR. MEDISSIGN <> BDISSIGN .OR. MEEMPSTDIS <>
 EEMPSTDIS
 SEIE 1
 DISPLAY FIELDS SID NO, PREVSID OFF
 ? " " SID Number and PREVIOUS SID Beginning Mile Post do not match"
 ? " "
 ? " "
 ENDIF
ENDIF
MERRORCNT = MERRORCNT + 1
ENDIF
SELE 2
IF MENDMPST <> ENDMPST .OR. MEDISSIGN <> EDISSIGN .OR. MEMPSTDIS <>
EMPSTDIS
SELE 1
DISPLAY FIELD SID NO, PREVSID OFF
? " " SID Number and PREVIOUS SID Beginning Mile Post do not match"
? " "
? " "
MERRORCNT = MERRORCNT + 1
ENDIF
ENDIF
SELE 1
ENDIF
IF CONTROL = 0
DISPLAY FIELDS SID NO, CONTROL OFF
MERRORCNT = MERRORCNT + 1
ENDIF
IF SECTION = 0
DISPLAY FIELDS SID NO, SECTION OFF
MERRORCNT = MERRORCNT + 1
ENDIF
IF FUNCIAS < 1 .OR. FUNCIAS > 7
DISPLAY FIELDS SID NO, FUNCIAS OFF
MERRORCNT = MERRORCNT + 1
ENDIF
IF EMDPST = 0
DISPLAY FIELDS SID NO, EMDPST OFF
MERRORCNT = MERRORCNT + 1
ENDIF
IF EMPSTDIS < 0
DISPLAY FIELDS SID NO, EMPSTDIS OFF
MERRORCNT = MERRORCNT + 1
ENDIF
IF EMPSTDIS < 0
DISPLAY FIELDS SID NO, EMPSTDIS OFF
MERRORCNT = MERRORCNT + 1
ENDIF
IF MPNYR < 20 .OR. MPNYR > 99
DISPLAY FIELDS SID NO, HWYNUM OFF
MERRORCNT = MERRORCNT + 1
ENDIF
IF .NOT. ACTIVFLAG
IF INACTYR < 72 .OR. INACTYR > 99
DISPLAY FIELDS SID NO, INACTYR OFF
MERRORCNT = MERRORCNT + 1
ENDIF
IF INACIMO < 0 .OR. INACIMO > 12
DISPLAY FIELDS SID NO, INACIMO OFF
MERRORCNT = MERRORCNT + 1
ENDIF
ENDIF
IF MERRORCNT <> 0
335
REPLACE ERRORCHAR WITH .T.
MERRORCNT = 0
ENDIF
SKIP
ENDDO
SELE 1
USE
SELE 2
USE
* reset parameters
CLEAR
?? CHR(12)
SET ALTE OFF
RETURN
PROGRAM LISTING

* SUBSYSTEM: EDIT & UPDATE
* PROGRAM NAME: LAYRCHEK.PRG 06/08/88
* CALLED FROM: INV UDOT.PRG
* PROJECT 2456 - TEXAS FLEXIBLE PAVEMENT DATABASE SYSTEM
* TAMU/TII
* AUTHOR: TREVOR X. PEREIRA
* PURPOSE: LIST OF PROCEDURES TO CHECK FOR ERRORS IN THE LAYER FILE
*

* PROCEDURE LAYER DESCRIPTION

PROC LAYDESC

* set parameters
SET TALK OFF
SET ECHO OFF
CLEAR

USE \PAVEDB\EDITUPD\LAYR NEW INDEX \PAVEDB\EDITUPD\LAYR NEW
MERROR = "LAYER ID FILE - INCORRECT LAYER DESCRIPTION OR MATERIAL
CLASSIFICATION"
MERROR2 = "---"

SET ALITE ON
? MERROR
? MERROR2
* check layer description with layer material classification
DO WHILE .NOT. EOF()
 DO CASE
 CASE LAYDESC = 7
 IF LAYMATCL < 41 .OR. LAYMATCL > 45
 DISPLAY FIELDS SID NO, STRUCNUM, LAYNUM, LAYDESC, LAYMATCL OFF
 REPLACE ERRORCHAR WITH .T.
 ENDIF
 CASE LAYDESC = 6
 IF LAYMATCL < 21 .OR. LAYMATCL > 33
 IF LAYMATCL <> 17
 DISPLAY FIELDS SID NO, STRUCNUM, LAYNUM, LAYDESC, LAYMATCL OFF
 REPLACE ERRORCHAR WITH .T.
 ENDIF
 ENDIF
 CASE LAYDESC = 5
 IF LAYMATCL < 21 .OR. LAYMATCL > 27
 IF LAYMATCL <> 17
 DISPLAY FIELDS SID NO, STRUCNUM, LAYNUM, LAYDESC, LAYMATCL OFF
 ENDIF
 END CASE
END DO

337
REPLACE ERRORCHAR WITH .T.
ENDIF
ENDIF

CASE IAYDESC = 4
 IF LAYMATCL < 1 .OR. LAYMATCL > 4
 DISPLAY FIELDS SID NO, STRUCNUM, LAYNUM, LAYDESC, LAYMATCL OFF
 REPLACE ERRORCHAR WITH .T.
 ENDIF
CASE IAYDESC = 3
 IF LAYMATCL < 1 .OR. LAYMATCL > 17
 DISPLAY FIELDS SID NO, STRUCNUM, LAYNUM, LAYDESC, LAYMATCL OFF
 REPLACE ERRORCHAR WITH .T.
 ENDIF
CASE IAYDESC = 2
 IF LAYMATCL <> 11
 DISPLAY FIELDS SID NO, STRUCNUM, LAYNUM, LAYDESC, LAYMATCL OFF
 REPLACE ERRORCHAR WITH .T.
 ENDIF
CASE IAYDESC = 1
 IF LAYMATCL < 1 .OR. LAYMATCL > 16
 DISPLAY FIELDS SID NO, STRUCNUM, LAYNUM, LAYDESC, LAYMATCL OFF
 REPLACE ERRORCHAR WITH .T.
 ENDIF
CASE IAYDESC = 10
 IF LAYMATCL < 5 .OR. LAYMATCL > 7
 DISPLAY FIELDS SID NO, STRUCNUM, LAYNUM, LAYDESC, LAYMATCL OFF
 REPLACE ERRORCHAR WITH .T.
 ENDIF
CASE IAYDESC = 12
 IF LAYMATCL < 12 .OR. LAYMATCL > 15
 DISPLAY FIELDS SID NO, STRUCNUM, LAYNUM, LAYDESC, LAYMATCL OFF
 REPLACE ERRORCHAR WITH .T.
 ENDIF
CASE IAYDESC = 14
 IF LAYMATCL <> 27
 DISPLAY FIELDS SID NO, STRUCNUM, LAYNUM, LAYDESC, LAYMATCL OFF
 REPLACE ERRORCHAR WITH .T.
 ENDIF
ENDCASE
SKIP
ENDDO
USE
* reset parameters
? CHR(12)
CLEAR
SET ALTIE OFF
RETURN
* PROCEDURE VERIFY LAYER NUMBERS
* *************************
PROC LAYRSVER
*
* VERIFIES THAT THE LAYER NUMBERS ARE IN CONSECUTIVE
* ORDER IN THE TRANSACTION FILE AND THAT NONE ARE MISSING
*
CLEAR
SELE 1
USE \PAVEDB\FILES\LAYER INDEX \PAVEDB\INDEXES\LAYNDX
SELE 2
USE \PAVEDB\EDITUPDT\LAYR_NEW INDE \PAVEDB\EDITUPDT\LAYR_NEW

M_ERROR = "LAYER ID FILE - MISSING OR INCORRECT LAYER NUMBERS"
M_ERROR2 = "--"

SET ALTE ON
? M_ERROR
? M_ERROR2
DO WHILE .NOT. EOF()
 MSID = SID_NO

 SELE 1
 SEEK STR(MSID,4)
 IF FOUND()
 DO WHILE .NOT. EOF() .AND. SID_NO <> MSID
 SKIP
 ENDDO
 SKIP -1
 LAYNUM = LAYNUM + 1
 ELSE
 LAYNUM = 1
 ENDF

 * checks for consecutive sid numbers
 SELE 2
 DO WHILE .NOT. EOF() .AND. B->SID_NO = MSID
 IF LAYNUM <> LAYNUM
 IF LAYDESC = 13 .OR. LAYDESC = 12
 SKIP
 ENDIF
 STORE LAYNUM TO LAYNUM
 IF MSID <> SID_NO
 SKIP -1
 ENDF
 ELSE
 DISPLAY SID_NO, STRUCNUM, LAYNUM OFF
 REPLACE ERRORCHAR WITH .T.
 DO WHILE .NOT. EOF() .AND. MSID = SID_NO
 SKIP
 REPLACE ERRORCHAR WITH .T.
 ENDF
 ENDF

339
ENDDO
 SKIP -1
 ENDIF
 ENDIF
 MIAYNUM = MIAYNUM + 1
 IF .NOT. EOF()
 SKIP
 ENDIF
 ENDDO
USE
 * resets parameters
 N = 0
 DO WHILE N < 6
 ? CHR(13)
 N = N + 1
 ENDDO
 SET ALIVE OFF
clear
RETURN

* procedure layer out of range check

PROC LAYRCHECK
 *
 * to list out of range data in the layer identification
 * transaction file
 *
 * set parameters
 SET TALK OFF
 SET ECHO OFF
USE \PAVEDB\EDITUPDT\LAWR_NEW INDEX \PAVEDB\EDITUPDT\LAWR_NEW

 M_ERRORCK = 0
 M_ERROR = "LAYER ID FILE - OUT OF RANGE DATA"
 M_ERROR2 = "-----------------------------"

 SET ALIVE ON
 ? M_ERROR
 ? M_ERROR2

 * check the data
 DO WHILE .NOT. EOF()
 IF STRUCNUM < 1 .OR. STRUCNUM > 9
 DISPLAY FIELDS SID NO, STRUCNUM, LAYNUM OFF
 M_ERRORCK = M_ERRORCK + 1
 ENDIF
 IF LAYNUM < 1 .OR. LAYNUM > 13
 DISPLAY FIELDS SID NO, STRUCNUM, LAYNUM OFF
 M_ERRORCK = M_ERRORCK + 1
 ENDIF

340
ENDIF
IF IAYDESC < 1 .OR. IAYDESC > 14
 DISPLAY FIELDS SID_NO, STRUCNUM, IAYNUM, LAYDESC OFF
 M_ERRORCK = M_ERRORCK + 1
ENDIF
IF CENTLTHK < .1 OR. CENTLTHK > 25
 IF LAYNUM <> 1 .AND. CENTLTHK = 0
 ELSE
 DISPLAY FIELDS SID_NO, STRUCNUM, IAYNUM, CENTLTHK OFF
 M_ERRORCK = M_ERRORCK + 1
 ENDIF
 ENDIF
IF LAYMATCL < 1 .OR. LAYMATCL > 45
 DISPLAY FIELDS SID_NO, STRUCNUM, IAYNUM, LAYMATCL OFF
 M_ERRORCK = M_ERRORCK + 1
ENDIF
IF JOBCMPYR < 20 .OR. JOBCMPYR > 99
 DISPLAY FIELDS SID_NO, STRUCNUM, IAYNUM, JOBCMPYR OFF
 M_ERRORCK = M_ERRORCK + 1
ENDIF
IF JOBCMPMO < 1 .OR. JOBCMPMO > 12
 DISPLAY FIELDS SID_NO, STRUCNUM, IAYNUM, JOBCMPMO OFF
 M_ERRORCK = M_ERRORCK + 1
ENDIF
IF WIDENLYR < 28 .OR. WIDENLYR > 99
 IF WIDENLYR <> 0
 DISPLAY FIELDS SID_NO, STRUCNUM, IAYNUM, WIDENLYR OFF
 M_ERRORCK = M_ERRORCK + 1
 ENDIF
ENDIF
IF WIDENLMO < 1 .OR. WIDENLMO > 12
 IF WIDENLMO <> 0
 DISPLAY FIELDS SID_NO, STRUCNUM, IAYNUM, WIDENLMO OFF
 M_ERRORCK = M_ERRORCK + 1
 ENDIF
ENDIF
IF M_ERRORCK <> 0
 REPLACE ERRORCHAR WITH .T.
 M_ERRORCK = 0
ENDIF
SKIP
ENDDO

USE
* reset parameters
N = 0
DO WHILE N < 6
 ? CHR(13)
 N = N + 1
ENDDO
CLEAR
SET ALTIE OFF
RETURN

* PROCEDURE CHECK SID NUMBER

PROC SIDCHECK1
*
* LIST OUT SID NUMBERS THAT ARE INCORRECT
*

* set parameters
set talk off
set echo off
clear

USE \'PAVEDB\EDITUPDT\LAYR_NEW INDEX \PAVEDB\EDITUPDT\LAYR_NEW
M_ERROR = "LAYER ID FILE - INCORRECT SID NUMBERS"
M_ERROR2 = " "
SET ALTE ON
? M_ERROR
? M_ERROR2

* initialize variables
STORE 0 TO VAR1, VAR2, VAR3, VAR4, COMPARE

* calculate correct Sid Number check digit
DO WHILE .NOT. EOF()
 VAR1 = INT(SID_NO/1000)
 VAR2 = MOD(INT(SID_NO/100),10)
 VAR2 = VAR2 * 2
 VAR3 = MOD(INT(SID_NO/10),10)
 VAR3 = VAR3 * 3
 VAR4 = MOD(VAR1,10)+VAR2+VAR3
 COMPARE = MOD(VAR4,10)

 * compare actual check digit with calculated check digit
 IF COMPARE <> MOD(SID_NO,10)
 DISPLAY SID NO, STRUCNUM, LAYNUM OFF
 REPLACE ERRORCHAR WITH .T.
 ENDIF
 IF SID NO = 0
 DISPLAY SID NO, STRUCNUM, LAYNUM OFF
 REPLACE ERRORCHAR WITH .T.
 ENDIF
 SKIP
ENDDO
USE
* reset parameters
N = 0
DO WHILE N < 6
 ? CHR(13)
 N = N + 1
ENDDO
SET ALTE OFF

342
USE
CLEAR
RETURN

* PROCEDURE LOCATION CHECK

PROC LOCCHK1
*
* LIST OUT LAYER RECORDS THAT DO NOT HAVE A LOCATION RECORD
*

* set parameters
set talk off
set echo off
clear

SELE 1
USE \PAVEDB\EDITUPDT\LAYR_NEW INDEX \PAVEDB\EDITUPDT\LAYR_NEW
SELE 2
USE \PAVEDB\FILES\LOCATION INDE \PAVEDB\INDEXES\LOCSID

M ERROR = "LAYER ID FILE - ENTERED SID NUMBERS THAT DO NOT HAVE A LOCATION RECORD"
M ERROR2 = "---"

SET ALRT ON
? M_ERROR
? M_ERROR2
SELE 1
DO WHILE .NOT. EOF()
 MSID_NO = A->SID_NO
 SELE 2
 SEEK MSID_NO
 IF .NOT. FOUND()
 SELE 1
 DISPLAY SID NO, STRUCNUM, LAYNUM OFF
 REPLACE ERRORCHAR WITH .T.
 ENDIF
 SELE 1
SKIP
ENDDO
SELE 1
USE
SELE 2
USE

* reset parameters
N = 0
DO WHILE N < 6
 ? CHR(13)
 N = N + 1
ENDDO
SET ALTE OFF
CLEAR
RETURN
PROGRAM LISTING

* * SUBSYSTEM: EDIT & UPDATE INVENTORY FILES
* * PROGRAM NAME: LAYTCK E.K. PRG 06/08/88
* * CALLED FROM: INV UPDT. PRG
* * PROJECT 2456 - TEXAS FLEXIBLE PAVEMENT DATABASE CONVERSION
* * TAMU/TII
* * AUTHOR: TREVOR X. PEREIRA
* * PURPOSE: TO LIST ERRORS INTO THE LAYER THICKNESS ACROSS THE ROAD FILE
*

* PROCEDURE CHECK LAYER THICKNESS FOR RECORDS NOT IN LAYER FILE

PROC LAYTHCK1
* set parameters
Set talk off
set echo off
CLEAR

* print out page heading
SET ALINE ON
MITITLE = "LAYER THICKNESS FILE - LIST OF NEW RECORDS ENTERED NOT PRESENT IN LAYER ID FILE"
MITITLE2 = "---"

? MITITLE
? MITITLE2

* assign files to different work areas
SELECT 1
 USE \PAVE DB\FILES\LAYER INDEX \PAVE DB\INDEXES\LAYNDX
SELECT 2
 USE \PAVE DB\EDITUPDT\LAYT_N E W INDEX \PAVE DB\EDITUPDT\LAYT_NEW

DO WHILE .NOT. EOF()
 MLAYSID = SID NO
 MLAYSTRC = STRUCNUM
 MLAYNUM = LAYNUM

* find the laythick file record in layer file
SELECT 1
 seek str(MLAYSID,4)+str(MLAYSTRC,2)+str(MLAYNUM,2)
IF .NOT. FOUND()
 SELECT 2
 DISPLAY FIELDS SID NO, STRUCNUM, LAYNUM OFF
 REPLACE ERRORCHAR WITH .T.
ENDIF
SELECT 2
SKIP
* reset parameters
N = 0
DO WHILE N < 6
 ? CHR(13)
 N = N + 1
ENDDO
CLEAR
SET ALTE OFF
SELE 1
USE
SELE 2
USE
RETURN

* procedure to check out of range data

PROC LAYTCNK3
*
* to list all out of range data in the layer thickness
* across the road file
*
* set parameters
SET TALK OFF
SET ECHO OFF
USE \PAVEDB\EDITUPD\LAYT_NEW INDEX \PAVEDB\EDITUPD\LAYT_NEW
GOTO TOP
M_ERROR = 0

* print out the page heading
M_TITLE = "LAYER THICKNESS FILES - OUT OF RANGE CHECK"
M_TITLE2 = "-----------------------------"
SET ALTE ON
? M_TITLE
? M_TITLE2

* check the ranges
DO WHILE .NOT. EOF()
 IF STRUCNUM < 1 .OR. STRUCNUM > 9
 DISPLAY FIELDS SID_NO, STRUCNUM, LAYNUM, STRUCNUM OFF
 M_ERROR = M_ERROR + 1
 ENDIF
 IF LAYNUM < 1 .OR. LAYNUM > 13
 DISPLAY FIELDS SID_NO, STRUCNUM, LAYNUM, LAYNUM OFF
 M_ERROR = M_ERROR + 1
 ENDIF
 IF FC3THK < 0 .OR. FC3THK > 25
 DISPLAY FIELDS SID_NO, STRUCNUM, LAYNUM, FC3THK OFF
 M_ERROR = M_ERROR + 1
 ENDIF
BEGIN IF FC2THK < 0 OR FC2THK > 25
 DISPLAY SID NO, STRUCNUM, LAYNUM, FC2THK OFF
 M_ERROR = M_ERROR + 1
ENDIF

IF FC1THK < .1 OR FC1THK > 25
 DISPLAY SID NO, STRUCNUM, LAYNUM, FC1THK OFF
 M_ERROR = M_ERROR + 1
ENDIF

IF CENTTHK < .1 OR CENTTHK > 25
 DISPLAY SID NO, STRUCNUM, LAYNUM, CENTTHK OFF
 M_ERROR = M_ERROR + 1
ENDIF

IF FC1DIS < .01 OR FC1DIS > 99
 DISPLAY SID NO, STRUCNUM, LAYNUM, FC1DIS OFF
 M_ERROR = M_ERROR + 1
ENDIF

IF FC2DIS < FC1DIS
 IF FC2DIS <> 0
 DISPLAY SID NO, STRUCNUM, LAYNUM, FC2DIS OFF
 M_ERROR = M_ERROR + 1
 ENDIF
ENDIF

IF FC3DIS < FC2DIS
 IF FC3DIS <> 0
 DISPLAY SID NO, STRUCNUM, LAYNUM, FC3DIS OFF
 M_ERROR = M_ERROR + 1
 ENDIF
ENDIF

IF M_ERROR <> 0
 REPL ERRORCHAR WITH .T.
 M_ERROR = 0
ENDIF
SKIP
ENDDO

* reset parameters
N = 0
DO WHILE N < 6
 ? CHR(13)
 N = N + 1
ENDDO
CLEAR
SET ALTE OFF
USE
RETURN

* PROCEDURE TO CHECK THE SID NUMBER

PROC SIDCHEK2
*
* TO CHECK FOR INVALID SID NUMBERS
*
* set parameters
set talk off
set echo off
CLEAR

USE \PAVEDB\EDITUPDT\LAYT_NEW INDEX \PAVEDB\EDITUPDT\LAYT_NEW

* set up page heading
M_TITLE1 = "LAYER THICKNESS FILE - SID NUMBER CHECK"
M_TITLE2 = "--"
SET ALNIE ON
? M_TITLE1
? M_TITLE2
STORE 0 TO VAR1, VAR2, VAR3, VAR4, COMPARE

* calculate check digit
DO WHILE .NOT. EOF()
 VAR1 = INT(SID_NO/1000)
 VAR2 = MOD(INT(SID_NO/100),10)
 VAR2 = VAR2 * 2
 VAR3 = MOD(INT(SID_NO/10),10)
 VAR3 = VAR3 * 3
 VAR4 = MOD(VAR1,10)+VAR2+VAR3
 COMPARE = MOD(VAR4,10)

 * compare calculated check digit with actual check digit
 IF COMPARE <> MOD(SID_NO,10)
 DISPLAY SID NO OFF
 REPL ERRORCHAR WITH .T.
 MSID = SID NO
 DO WHILE SID NO = MSID .OR. (.NOT. EOF())
 SKIP
 ENDDO
 SKIP -1
 ENDF
 IF SID NO = 0
 DISPLAY SID NO, STRUCNUM, LAYNUM OFF
 REPL ERRORCHAR WITH .T.
 ENDF
 SKIP
ENDDO

* reset parameters
? CHR(12)
CLEAR
SET ALNIE OFF
USE
RETURN

* PROCEDURE LAYER THICKNESS CHECK 2

PROC LAYTHK2
*
* TO LIST LAYER IDENTIFICATION FILE RECORDS THAT ARE NOT
* PRESENT IN LAYER THICKNESS ACROSS THE ROAD FILE
*
* set parameters
SET TALK OFF
SET ECHO OFF
CLEAR

M_TITLE = "LAYER THICKNESS FILE - LIST OF ALL RECORDS IN LAYER ID FILE THAT ARE NOT"
M_TITLE2 = " PRESENT IN THE LAYER THICKNESS FILE"
M_TITLE3 = "--"
SET ALIVE ON
? M_TITLE
? M_TITLE2
? M_TITLE3

* assign files to different work areas
SELECT 1
 USE \PAVEDB\FILES\LAYER INDEX \PAVEDB\INDEXES\LAYNDX
SELECT 2
 USE \PAVEDB\FILES\LAYTHICK INDEX \PAVEDB\INDEXES\LAYNDX
SELECT 1
DO WHILE .NOT. EOF()
 MSID = SID NO
 MSTR = STRUCNUM
 MIAY = LAYNUM

 * if layer number is 1, skip to the next record in layer file
 IF LAYNUM = 1
 SKIP
 LOOP
 ENDIF

 * find the layer record in laythick file
 SELECT 2
 SEEK STR(MSID,4)+STR(MSTR,2)+STR(MIAY,2)
 IF .NOT. FOUND()
 SELECT 1
 DISPLAY FIELDS SID NO, STRUCNUM, LAYNUM OFF
 REPLACE ERRORCHAR WITH .T.
 ENDIF
 SELECT 1
 SKIP
ENDDO

* reset parameters
N = 0
DO WHILE N < 6
 \? CHR(13)
 N = N + 1
ENDDO
CLEAR
SET ALTE OFF
SELE 1
USE
SELE 2
USE
RETURN
* SUBSYSTEM: EDIT & UPDATE INVENTORY FILES
* PROGRAM NAME: GEOSCHKL.PRG 06/07/88
* CALLED FROM: INV UPDT.PRG
* PROJECT 2456 - TEXAS FLEXIBLE PAVEMENT DATABASE CONVERSION
* TAMU/TTI
* AUTHOR: TREVOR X. PEREIRA
* PURPOSE: PROCEDURES TO LIST NEWLY ENTERED RECORDS THAT ARE
* IN ERROR
*

* PROCEDURE GEOSCHKL

PROC GEOSCHKL

* set parameters
set talk off
set echo off
CLEAR

M_TITLE = "GEOMETRIC & SHOULDER FILE - LIST OF NEWLY ENTERED RECORDS NOT IN
LAYER ID FILE"
M_TITLE2 = "-------------------------------"
SET ALIVE ON
? M_TITLE
? M_TITLE2

* assign database files to different work areas
SELECT 1
 USE \PAVEDB\FILES\LAYER INDEX \PAVEDB\INDEXES\LAYNDX

SELECT 2
 USE \PAVEDB\EDITUPDT\GEOS_NEW INDEX \PAVEDB\EDITUPDT\GEOS_NEW

SELECT 2
DO WHILE .NOT. EOF()
 * store to memory variables
 MSID = SID_NO
 MSISTRUC = STRUCNUM

SELECT 1
 * find the record in layer that equals the sid number and structure
 * number
 SEEK STR(MSID,4)+STR(MSTRUC,2)

 * if record is not found, print the sid number
 IF .NOT. FOUND()
 SELECT 2
DISPLAY FIELD SID NO, STRUCNUM OFF
REPLACE ERRORCHAR WITH .T.

ENDIF
SELE 2
SKIP
ENDDO

* reset parameters
N = 0
DO WHILE N < 6
 ? CHR(13)
 N = N + 1
ENDDO
CLEAR
SET ALTE OFF
SELE 1
USE
SELE 2
USE
return

* PROCEDURE GEOSCHK3

PROC GEOSCHK3

*
* TO LIST ALL OUT OF RANGE DATA FOR THE GEOMETRIC AND
* INFORMATION FILE
*

* set parameters
SET TALK OFF
SET ECHO OFF
USE \PAVEDB\EDITUPDT\GEOS_NEW INDEX \PAVEDB\EDITUPDT\GEOS_NEW
M_ERROR = 0

* set up page heading
M_TTITLE = "GEOMETRIC & SHOULDER FILE - OUT OF RANGE CHECK"
M_TTITLE2 = "--"
SET ALTE ON
? M_TTITLE
? M_TTITLE2

* check data range
DO WHILE .NOT. EOF()
 IF STRUCNUM < 1 .OR. STRUCNUM > 9
 DISPLAY FIELDS SID NO, STRUCNUM OFF
 M_ERROR = M_ERROR + 1
 ENDFI
 IF PAVETYP < 1 .OR. PAVETYP > 27
 DISPLAY FIELDS SID NO, STRUCNUM, PAVETYP OFF

M_ERROR = M_ERROR + 1
ENDIF
IF LANEWID < 8 .OR. LANEWID > 15
 IF LANEWID <> 0
 DISPLAY FIELDS SID NO, STRUCNUM, LANEWID OFF
 M_ERROR = M_ERROR + 1
ENDIF
ENDIF
IF OUTSHOWD < 0 .OR. OUTSHOWD > 12
 DISPLAY FIELDS SID NO, STRUCNUM, OUTSHOWD OFF
 M_ERROR = M_ERROR + 1
ENDIF
IF SHOSFTYP < 1 .OR. SHOSFTYP > 6
 DISPLAY FIELDS SID NO, STRUCNUM, SHOSFTYP OFF
 M_ERROR = M_ERROR + 1
ENDIF
IF SHOBSTYP < 21 .OR. SHOBSTYP > 45
 IF SHOBSTYP <> 0
 DISPLAY FIELDS SID NO, STRUCNUM, SHOBSTYP OFF
 M_ERROR = M_ERROR + 1
ENDIF
ENDIF
IF WIDENFLG < 0 .OR. WIDENFLG > 2
 DISPLAY FIELDS SID NO, STRUCNUM, WIDENFLG OFF
 M_ERROR = M_ERROR + 1
ENDIF
IF SHOSFTHK < 0 .OR. SHOSFTHK > 10.1
 DISPLAY FIELDS SID NO, STRUCNUM, SHOSFTHK OFF
 M_ERROR = M_ERROR + 1
ENDIF
IF M_ERROR <> 0
 REPLACE ERRORCHAR WITH .T.
 M_ERROR = 0
ENDIF
SKIP
ENDDO

* reset parameters
N = 0
DO WHILE N < 6
 ? CHR(13)
 N = N + 1
ENDDO
CLEAR
SET ALIVE OFF
USE
RETURN

* PROCEDURE GEOSID

PROC SIDCHEK3
* TO LIST OUT ALL INCORRECT SID NUMBERS FOR GEOMETRIC & SHOULDER *

* SET PARAMETERS
 set talk off
 set echo off

USE \PAVEDB\EDITUPDT\GEOS_NEW INDEX \PAVEDB\EDITUPDT\GEOS_NEW

* SET PAGE HEADING
 M_TITLE = "GEOMETRIC & SHOULDER FILE - LIST OF INCORRECT SID NUMBERS"
 M_TITLE2 = "--"
 SET ALINE ON
 ? M_TITLE
 ? M_TITLE2

STORE 0 TO VAR1, VAR2, VAR3, VAR4, COMPARE
DO WHILE .NOT. EOF()
 * calculate the correct check digit for the Sid number
 VAR1 = INT(SID NO/1000)
 VAR2 = MOD(INT(SID_NO/100),10)
 VAR2 = VAR2 * 2
 VAR3 = MOD(INT(SID_NO/10),10)
 VAR3 = VAR3 * 3
 VAR4 = MOD(VAR1,10)+VAR2+VAR3
 COMPARE = MOD(VAR4,10)

 * compare the entered check digit with the calculated check digit
 IF COMPARE <> MOD(SID_NO,10)
 DISPLAY SID NO OFF
 REPLACE ERRORCHAR WITH .T.
 MSID = SID NO
 DO WHILE SID NO = MSID .OR. (.NOT. EOF()
 SKIP
 ENDDO
 SKIP -1
 ENDF
 IF SID NO = 0
 DISPLAY SID NO, STRUCTNUM OFF
 REPLACE ERRORCHAR WITH .T.
 ENDF
 SKIP
ENDDO

* reset parameters
 ? CHR(12)
 CLEAR
 SET ALINE OFF
 USE
 RETURN
* SUBSYSTEM: EDrr
* PROGRAM NAME: SURFCHK.PRG 06/08/88
* CALLED FROM: INV_UPDT.PRG
* PROJECT 2456 - TEXAS FLEXIBLE PAVEMENT DATABASE CONVERSION
* TAMU/TTI
* AUTHOR: TREVOR X. PEREIRA
* PURPOSE: LISTS THE SURFACE FILE RECORDS THAT HAVE ERRORS
*

* PROCEDURE TO CHECK SURFACE RECORDS IN LAYER FILE *

PROC SURFCHKL

* LISTS THE SURFACE FILE RECORDS THAT ARE NOT PRESENT IN *
* THE MASTER LAYER IDENTIFICATION FILE *
* set parameters
set talk off
set echo off
CLEAR

M_TITLE = "SURFACE FILE - LIST OF NEWLY ENTERED RECORDS NOT PRESENT IN LAYER ID FILE"
M_TITTLE2 = "---"
SET ALINE ON
? M_TITLE
? M_TITTLE2

* assign files to different work areas
SELECT 1
 USE \PAVEDB\FILES\LAYER INDEX \PAVEDB\INDEXES\LAYNDX

SELECT 2
 USE \PAVEDB\EDITUPDT\SURF_NEW INDEX \PAVEDB\EDITUPDT\SURF_NEW

DO WHILE .NOT. EOF()
 * store surface record in memory
 MSURFSID = SID_NO
 MSURFSTR = STRUCNUM
 MSURFLAY = LAYNUM

 * find the layer ID record that matches surface record
 SELECT 1
 SEEK STR(MSURFSID,4)+STR(MSURFSTR,2)+STR(MSURFLAY,2)
 IF .NOT. FOUND()
 SELECT 2
 DISPLAY FIELDS SID_NO, STRUCNUM, LAYNUM OFF

355
REPLACE ERRORCHAR WITH .T.
ELSE
SELE 2
ENDIF
SKIP
ENDDO

* reset parameters
N = 0
DO WHILE N < 6
 ? CHR(13)
 N = N + 1
ENDDO
CLEAR
SET ALTIE OFF
SELE 1
USE
SELE 2
USE
RETURN

* PROCEDURE TO CHECK OUT OF RANGE DATA

PROC SURFCHK3
*
* TO LIST ALL OUT OF RANGE DATA IN THE SURFACE FILE
*
*
* set parameters
SET TALK OFF
SET ECHO OFF
*
* print out page headings
M_TITLE = "SURFACE FILE - OUT OF RANGE RECORDS"
M_TITLE2 = "-----------------------------"
M_ERROR = 0
SET ALTIE ON
? M_TITLE
? M_TITLE2
*
USE \PAVEDB\EDITUPDT\SURF_NEW INDEX \PAVEDB\EDITUPDT\SURF_NEW
*
* check data with ranges
DO WHILE .NOT. EOF()
 IF STRUCNUM < 1 .OR. STRUCNUM > 9
 DISPLAY FIELDS SID NO, STRUCNUM, LAYNUM, STRUCNUM OFF
 M_ERROR = M_ERROR + 1
 ENDIF
 IF LAYNUM < 1 .OR. LAYNUM > 13
 DISPLAY FIELDS SID NO, STRUCNUM, LAYNUM, LAYNUM OFF
 M_ERROR = M_ERROR + 1
 ENDIF
ENDF
IF AGAPPLRT < 30 .OR. AGAPPLRT > 200
 IF AGAPPLRT <> 0
 DISPLAY SID_NO, STRUCNUM, LAYNUM, AGAPPLRT OFF
 M_ERROR = M_ERROR + 1
 ENDIF
ENDIF
IF ALMXPER < 0 .OR. ALMXPER > 10.2
 DISPLAY SID_NO, STRUCNUM, LAYNUM, ALMXPER OFF
 M_ERROR = M_ERROR + 1
ENDIF
IF ASAPPLRT < .1 .OR. ASAPPLRT > .6
 IF ASAPPLRT <> 0
 DISPLAY SID_NO, STRUCNUM, LAYNUM, ASAPPLRT OFF
 M_ERROR = M_ERROR + 1
 ENDIF
ENDIF
IF M_ERROR <> 0
 REPLACE ERRORCHAR WITH .T.
 M_ERROR = 0
ENDIF
SKIP
ENDDO

* reset parameters
N = 0
DO WHILE N < 6
 ? CHR(13)
 N = N + 1
ENDDO
CLEAR
SET ALIKE OFF
USE
RETURN

* PROCEDURE TO CHECK SID NUMBER

PROC SIDCHEK4
*
* TO LIST ALL INCORRECT SID NUMBERS FOR SURFACE FILE
*

* set parameters
set talk off
set echo off
CLEAR
USE \PAVEDB\EDITUPDL\SURF_NEW INDEX \PAVEDB\EDITUPDL\SURF_NEW

* print out page heading
M_TITILE = "SURFACE FILE - INCORRECT SID NUMBER"
M_TITILE2 = "---"
SET ALTE ON
M TITLE
M TITLE2

* initialize variables
STORE 0 TO VAR1, VAR2, VAR3, VAR4, COMPARE

* calculate check digit of Sid number
DO WHILE .NOT. EOF()
 VAR1 = INT(SID NO/1000)
 VAR2 = MOD(INT(SID NO/100),10)
 VAR2 = VAR2 * 2
 VAR3 = MOD(INT(SID NO/10),10)
 VAR3 = VAR3 * 3
 VAR4 = MOD(VAR1,10)+VAR2+VAR3
 COMPARE = MOD(VAR4,10)

 * compare calculated check digit with actual check digit
 IF COMPARE <> MOD(SID NO,10)
 DISPLAY SID NO, STRUCNUM, IAYNUM OFF
 REPLACE ERRORCHAR WITH .T.
 ENDIF
 IF SID NO = 0
 DISPLAY SID NO, STRUCNUM, IAYNUM OFF
 REPLACE ERRORCHAR WITH .T.
 ENDIF
 SKIP
ENDDO

* reset parameters
CHR(12)
CLEAR
SET ALTE OFF
USE
RETURN
* * SUBSYSTEM: EDIT & UPDATE INVENTORY FILES
* PROGRAM NAME: SUBGCHK.PRG 06/08/88
* CALLED FROM: INV UPDT.PRG
* PROJECT 2456 = TEXAS FLEXIBLE PAVEMENT DATABASE CONVERSION
* TAMU/TITI
* AUTHOR: TREVOR X. PEREIRA
* PURPOSE: PROCEDURES TO LIST THE SUBGRADE FILE RECORDS THAT HAVE ERRORS
*

* PROCEDURE SUBGCHK1

PROC SUBGCHK1

* TO LIST THE SUBGRADE FILE RECORDS THAT ARE NOT PRESENT
* IN THE MASTER LAYER IDENTIFICATION FILE
*
* set parameters
set talk off
set echo off
CLEAR

M_TITLE = "SUBGRADE FILE - LIST OF NEWLY ENTERED RECORDS NOT PRESENT IN LAYER ID FILE"
M_TITLE2 = "__"

SET ALTE ON
? M_TITLE
? M_TITLE2

* assign files to different work areas
SELECT 1
 USE \PAVEDB\FILES\LAYER INDEX \PAVEDB\INDEXES\LAYNDX
SELECT 2
 USE \PAVEDB\EDITUPDT\SUBG_NEW INDEX \PAVEDB\EDITUPDT\SUBG_NEW

DO WHILE .NOT. EOF()
 MSUBGSID = SID NO
 MSUBLAY = "1"
 MSUBGSTR = "1"

 * find the subgrade sid number in layer identification file
 SELECT 1
 seek str(MSUBGSID,4)+MSUBLAY+MSUBGSTR
 IF .NOT. FOUND()
 SELECT 2
 DISPLAY FIELD SID_NO, STRUCNUM, LAYNUM OFF
REPLACE ERRORCHAR WITH .T.
ENDIF
SELECT 2
SKIP
ENDDO

* reset parameters
N = 0
DO WHILE N < 6
 ? CHR(13)
 N = N + 1
ENDDO
SET ALINE OFF
clear
SELE 1
USE
SELE 2
USE
RETURN

* PROCEDURE TO CHECK OUT OF RANGE DATA

PROC SUBGCHK3
*
* TO LIST OUT ALL DATA THAT IS OUT OF RANGE IN THE SUBGRADE FILE
*

* set parameters
SET TALK OFF
SET ECHO OFF

* print out page heading
M_TITIE = "SUBGRADE FILE - OUT OF RANGE RECORDS"
M_TITIE2 = "-----------------------------"
M_ERROR = 0
SET ALINE ON
? M_TITIE
? M_TITIE2

USE \PAVEDB\EDITUPDT\SUBG_NEW INDEX \PAVEDB\EDITUPDT\SUBG_NEW

* do a range check for all fields
DO WHILE .NOT. EOF()
 IF PIASTIX < 0 .OR. PIASTIX > 70
 IF PIASTIX <> 0
 DISPLAY FIELDS SID_NO, STRUCNUM, LAYNUM, PIASTIX OFF
 M_ERROR = M_ERROR + 1
 ENDF
 ENDF
 IF LIQLIM < 10 .OR. LIQLIM > 80
 IF LIQLIM <> 0
 DISPLAY FIELDS SID_NO, STRUCNUM, LAYNUM, LIQLIM OFF
 ENDF
 ENDF

360
M_ERROR = M_ERROR + 1
ENDIF
ENDIF
IF TXTRIAXL < 1 .OR. TXTRIAXL > 6
ENDIF
ENDIF
IF PERMIX < 0 .OR. PERMIX > 10
DISPLAY SID NO, STRUCNUM, LAYNUM, TXTRIAXL OFF
M_ERROR = M_ERROR + 1
ENDIF
ENDIF
IF M_ERROR <> 0
REPLACE ERRORCHAR WITH .T.
M_ERROR = 0
ENDIF
SKIP
ENDDO
*
reset parameters
N = 0
DO WHILE N < 6
 ? CHR(13)
 N = N + 1
ENDDO
SET ALTE OFF
clear
SEIE 1
USE
SEIE 2
USE
RETURN

* PROCEDURE TO CHECK SID NUMBERS

PROC SIDCHEK5
*
* LIST OF INCORRECT SID NUMBERS FOR THE SUBGRADE FILE
*
* set parameters
set talk off
set echo off

M_TTITLE = "SUBGRADE FILE - INCORRECT SID NUMBERS"
M_TTITLE2 = "---"
SET ALTE ON
? M_TTITLE
? M_TTITLE2

361
USE \PAVDB\EDITUPDT\SUBG_NEW INDEX \PAVDB\EDITUPDT\SUBG_NEW

* initialize variables
STORE 0 TO VAR1, VAR2, VAR3, VAR4, COMPARE

* calculate correct Sid number check digit
DO WHILE .NOT. EOF()
 VAR1 = INT(SID NO/1000)
 VAR2 = MOD(INT(SID NO/100),10)
 VAR2 = VAR2 * 2
 VAR3 = MOD(INT(SID NO/10),10)
 VAR3 = VAR3 * 3
 VAR4 = MOD(VAR1,10) + VAR2 + VAR3
 COMPARE = MOD(VAR4,10)
 * compare calculated check digit with actual check digit
 IF COMPARE <> MOD(SID NO,10)
 DISPLAY SID NO, STRUCNUM, LAYNUM OFF
 REPLACE ERRORCHAR WITH .T.
 ENDIF
 IF SID NO = 0
 DISPLAY SID NO, STRUCNUM, LAYNUM OFF
 REPLACE ERRORCHAR WITH .T.
 ENDIF
 SKIP
ENDDO

* reset parameters
? CHR(12)
SET ALIKE OFF
clear
USE
RETURN
TEXAS FLEXIBLE PAVEMENT DATABASE
VOLUME II. PROGRAMMER’S MANUAL

By
Rebecca Yette, Trevor Pereira and Victor Wong

Research Report
456-1F Volume II cont.
on
Research Study Number 2-8-86-456
Texas Flexible Pavement Database

Sponsored By
Texas State Department of Highways & Public Transportation

In Cooperation with
Federal Highway Administration

August 1988

Texas Transportation Institute
Texas A&M University System
College Station, Texas
APPROXIMATE CONVERSIONS TO SI UNITS

LENGTH

<table>
<thead>
<tr>
<th>Symbol</th>
<th>When You Know</th>
<th>Multiply By</th>
<th>To Find</th>
</tr>
</thead>
<tbody>
<tr>
<td>in</td>
<td>inches</td>
<td>2.54</td>
<td>cm</td>
</tr>
<tr>
<td>ft</td>
<td>feet</td>
<td>0.3048</td>
<td>m</td>
</tr>
<tr>
<td>yd</td>
<td>yards</td>
<td>0.914</td>
<td>m</td>
</tr>
<tr>
<td>mi</td>
<td>miles</td>
<td>1.61</td>
<td>km</td>
</tr>
</tbody>
</table>

AREA

<table>
<thead>
<tr>
<th>Symbol</th>
<th>When You Know</th>
<th>Multiply By</th>
<th>To Find</th>
</tr>
</thead>
<tbody>
<tr>
<td>in²</td>
<td>square inches</td>
<td>645.2</td>
<td>cm²</td>
</tr>
<tr>
<td>ft²</td>
<td>square feet</td>
<td>0.0929</td>
<td>m²</td>
</tr>
<tr>
<td>yd²</td>
<td>square yards</td>
<td>0.836</td>
<td>m²</td>
</tr>
<tr>
<td>mi²</td>
<td>square miles</td>
<td>2.59</td>
<td>km²</td>
</tr>
<tr>
<td>ac</td>
<td>acres</td>
<td>0.395</td>
<td>ha</td>
</tr>
</tbody>
</table>

MASS (weight)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>When You Know</th>
<th>Multiply By</th>
<th>To Find</th>
</tr>
</thead>
<tbody>
<tr>
<td>oz</td>
<td>ounces</td>
<td>28.35</td>
<td>g</td>
</tr>
<tr>
<td>lb</td>
<td>pounds</td>
<td>0.454</td>
<td>kg</td>
</tr>
<tr>
<td>T</td>
<td>short tons</td>
<td>0.907</td>
<td>Mg</td>
</tr>
</tbody>
</table>

VOLUME

<table>
<thead>
<tr>
<th>Symbol</th>
<th>When You Know</th>
<th>Multiply By</th>
<th>To Find</th>
</tr>
</thead>
<tbody>
<tr>
<td>fl oz</td>
<td>fluid ounces</td>
<td>29.57</td>
<td>mL</td>
</tr>
<tr>
<td>gal</td>
<td>gallons</td>
<td>3.785</td>
<td>L</td>
</tr>
<tr>
<td>ft³</td>
<td>cubic feet</td>
<td>0.0328</td>
<td>m³</td>
</tr>
<tr>
<td>yd³</td>
<td>cubic yards</td>
<td>0.0765</td>
<td>m³</td>
</tr>
</tbody>
</table>

TEMPERATURE (exact)

<table>
<thead>
<tr>
<th>°F</th>
<th>Fahrenheit (5/9 after subtracting 32)</th>
<th>°C</th>
<th>Celsius (9/5 then adding 32)</th>
</tr>
</thead>
</table>

* SI is the symbol for the International System of Measurements

These factors conform to the requirement of FHWA Order 5190.1A.
CONTINUATION OF REPORT 456-1F Vol. II
The Edit & Update program (EDITUPDT.PRG) calls CHNGLAYR.PRG to change the Inventory data. The inventory files include Location, Layer Identification, Layer Thickness Across the Road, Geometric and Shoulder, Surface and Subgrade. The user must make a backup of the master files first. In order to do this, CHNGLAYR.PRG calls the backup program CHNGBKUP.PRG.

The backup program backs up the master files to floppy disk as well as to the hard disk. It also creates 6 temporary dBASE files for the user to make changes to (LOCCHNG.DBF, LAYRCHNG.DBF, LAYTCCHNG.DBF, GEOSCHNG.DBF, SURFCHNG.DBF and SUBCHNG.DBF).

After the changes have been completed, the Edit/Check programs must be run to flag any errors. The Edit/Check programs include CHEKLOCN.PRG, CHEKLAYR.PRG, CHEKLAYT.PRG, CHEKGEOS.PRG, CHEKSURF.PRG and CHEKSUBG.PRG. If there are any errors present in the files, an error listing is printed out and the user can edit the data again to remove the errors. If no errors are present, the temporary files become the master files with the new changes in them. The original master files are deleted.

The programs and the temporary dBASE files for this section (CHANGE Inventory Data) are in the subdirectory \PAVEDB\EDITUPDT.

The inventory change process is illustrated in figures 16 through 18. Figure 16 depicts the change process on a global level, Figure 17 illustrates the high level program flow logic, and figure 18 charts the programs, procedures, and input and output files used in the inventory change process.
Inventory Data - Change Process

FIGURE 16
Inventory Data - Change Process
Program Flow Chart

Inventory Changes

Add Data Exists? Y → Stop
N

Temp Change Files Exist? N → Create Temp Change Files
Y

Change Data

Data With Errors? Y → Error Reports
N

Update Master Database

Stop

FIGURE 17
INVENTORY DATA - CHANGE PROCESS
PROGRAM FLOW DIAGRAM (Continued)

FIGURE 18
INVENTORY DATA - CHANGE PROCESS
PROGRAM FLOW DIAGRAM

FIGURE 18 (Continued)
Program Specification

Program Name: CHNGLAYR.PRG

Purpose: To display the CHANGE Inventory data menu, Change the Data and to call the programs that Edit & Check the data.

Procedures/Edits:

The following are the procedures:
1) Backup the master files using CHNGBKUP.PRG.
2) Run the Edit/Check procedures to flag errors in the Changed data (CHEKLOCN.PRG, CHEKLAYR.PRG, CHEKLAYT.PRG, CHEKGEOS.PRG, CHEKSURF.PRG and CHEKSUBG.PRG).

Input/Output Files:

<table>
<thead>
<tr>
<th>Files</th>
<th>Indices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temporary files</td>
<td></td>
</tr>
<tr>
<td>LOCNCHNG.DBF</td>
<td>LOCNCHNG.NDX</td>
</tr>
<tr>
<td>LAYRCHNG.DBF</td>
<td>LAYRCHNG.NDX</td>
</tr>
<tr>
<td>LAYTCHNG.DBF</td>
<td>LAYTCHNG.NDX</td>
</tr>
<tr>
<td>GEOSCHNG.DBF</td>
<td>GEOSCHNG.NDX</td>
</tr>
<tr>
<td>SURFCHNG.DBF</td>
<td>SURFCHNG.NDX</td>
</tr>
<tr>
<td>SUBGCHNG.DBF</td>
<td>SUBGCHNG.NDX</td>
</tr>
<tr>
<td>Master Files</td>
<td></td>
</tr>
<tr>
<td>LOCATION.DBF</td>
<td>LOCSID.NDX</td>
</tr>
<tr>
<td>LAYER.DBF</td>
<td>LAYNDX.NDX</td>
</tr>
<tr>
<td>LAYTHICK.DBF</td>
<td>LAYNDX.NDX</td>
</tr>
<tr>
<td>GEOSHO.DBF</td>
<td>GEONDX.NDX</td>
</tr>
<tr>
<td>SURFACE.DBF</td>
<td>SURFNDX.NDX</td>
</tr>
<tr>
<td>SUBGRADE.DBF</td>
<td>SUBGNDX.NDX</td>
</tr>
</tbody>
</table>

368
Programs Called (See Program Flow Diagram):

dBASE programs
- CHNGBKUP.PRG
- CHEKGEOS.PRG
- CHEKLAYR.PRG
- CHEKLAYT.PRG
- CHEKLOCN.PRG
- CHEKSUBG.PRG
- CHEKSURF.PRG

Screen Format Programs
- GEOSCHNG.FMT
- LAYRCHNG.FMT
- LAYTCHNG.FMT
- LOCNCHNG.FMT
- SUBGCHNG.FMT
- SURFCHNG.FMT
CHANGE INVENTORY SCREENS

The following screens are produced by CHNGLAYR.PRG and the screen format files except for the next menu (Edit & Update menu 3.0) which is produced by EDITUPDT.PRG.

TEXAS FLEXIBLE PAVEMENT DATABASE 3.0
Edit & Update

1 - Pavement Condition Data
2 - Inventory Data
3 - Traffic Data
4 - Tables

OPTION ➔

Choice 2 Inventory Data asks the user if he wants to ADD or CHANGE data to the inventory files. If he wants to CHANGE, CHNGLAYR.PRG program is run which produces the next screen (CHANGE Inventory Data 3.2.C).

TEXAS FLEXIBLE PAVEMENT DATABASE 3.2.C
EDIT & UPDATE
CHANGE Inventory Data

1 - Location
2 - Layer ID
3 - Geometric & Shoulder
4 - Surface
5 - Subgrade
6 - Layer Thickness Across The Road

K - Check the Data Changed

OPTION ➔
CHANG INVENTORY SCREENS (continued)

Choice 1 Location displays the first screen on this page to let the user change Location data.
Choice 2 Layer ID displays the second screen on this page to let the user change add Layer data.

TEXAS FLEXIBLE PAVEMENT DATABASE
EDIT & UPDATE - CHANGE Inventory
Location File

<table>
<thead>
<tr>
<th>SID Number</th>
<th>13</th>
<th>District 1</th>
<th>County 92</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highway Ident.</td>
<td>US 82</td>
<td>Control/Section</td>
<td>45/4</td>
</tr>
<tr>
<td>Mile Post</td>
<td>22 + 0 TO 24 + 0</td>
<td>Lane Identification</td>
<td>R</td>
</tr>
<tr>
<td>Mile Point</td>
<td>22.000 TO 24.000</td>
<td>Mile Point Date</td>
<td>6/75</td>
</tr>
<tr>
<td>HPMS Sample Number</td>
<td></td>
<td>HPMS Section Subdivision</td>
<td>0</td>
</tr>
<tr>
<td>Functional Classification</td>
<td>0</td>
<td>Number of Lanes</td>
<td>1</td>
</tr>
<tr>
<td>Active</td>
<td>?</td>
<td>Inactive Date</td>
<td>0/0</td>
</tr>
<tr>
<td>Previous SID</td>
<td>0</td>
<td>Next SID</td>
<td>0</td>
</tr>
</tbody>
</table>

To exit & keep changes, press CTRL + End keys simultaneously

TEXAS FLEXIBLE PAVEMENT DATABASE
EDIT & UPDATE - CHANGE Inventory
Layer Identification

<table>
<thead>
<tr>
<th>Structure Number</th>
<th>Layr No.</th>
<th>Layer Desc.</th>
<th>Center Thick</th>
<th>Material Type</th>
<th>Job Compltd Mnth</th>
<th>Year</th>
<th>Widened Mnth</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>7</td>
<td>0.00</td>
<td>44</td>
<td>6</td>
<td>31</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

To exit & keep changes, press CTRL + End keys simultaneously
Choice 3. Geometric & Shoulder displays the first screen on this page to modify data.
Choice 4. Surface displays the second screen on this page to modify data.

TEXAS FLEXIBLE PAVEMENT DATABASE
EDIT & UPDATE - CHANGE Inventory
Geometric & Shoulder Information

<table>
<thead>
<tr>
<th>Sid Number</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure Number</td>
<td>1</td>
</tr>
</tbody>
</table>

- Type of Pavement (See TTI Codes) 34
- Lane Width (Feet) 12
- Outside Shoulder Width (Feet) 0
- Shoulder Surface Type 1
- Shoulder Base Type (See Base Type Code, Table A.6) 0
- Shoulder Surface Thickness (Inches) 0.0
- Shoulder Base Thickness (Inches) 0.00
- Widened Flag (0-2) 1

To exit & keep changes, press CTRL + End keys simultaneously

TEXAS FLEXIBLE PAVEMENT DATABASE
EDIT & UPDATE - CHANGE Inventory
Surface Layer

<table>
<thead>
<tr>
<th>SID NUMBER</th>
<th>13</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Structure Number</th>
<th>Layer Number</th>
<th>Aggregate Type</th>
<th>Application Rate</th>
<th>Percent Admixture</th>
<th>Asphalt Application Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>0 AC</td>
<td>5.70 (S.Y./C.Y.)</td>
<td>0.00 (GAL/S.Y.)</td>
<td></td>
</tr>
</tbody>
</table>

To exit & keep changes, press CTRL + End keys simultaneously
Choice 5 Subgrade displays the first screen on this page to enter data into.
Choice 6 Layer Thickness Across The Road displays the second screen on this page to enter data into.

TEXAS FLEXIBLE PAVEMENT DATABASE
EDIT & UPDATE - CHANGE Inventory
Subgrade File

SID NUMBER 13

Percent Passing No. 200 Sieve 88.8
Texas Triaxial Class 5.3
Liquid Limit 64.5
Plasticity Index 40.4
Permeability Index 0.23

To exit & keep changes, press CTRL + End keys simultaneously

TEXAS FLEXIBLE PAVEMENT DATABASE
EDIT & UPDATE - CHANGE Inventory
Layer Thickness Across The Road

SID NUMBER 13

<table>
<thead>
<tr>
<th>Structure Number</th>
<th>Layer Number</th>
<th>Thickness - From Center</th>
<th>Distance From Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>10.00 10.00 6.00 6.00</td>
<td>12.0 9.0 5.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(In Inches)</td>
<td>(In Feet)</td>
</tr>
</tbody>
</table>

To exit & keep changes, press CTRL + End keys simultaneously
* GEOMETRIC & SHOULDIER INFORMATION SCREEN FORMAT FILE - GEOSCHNG.FMT

@ 0, 0 CLEAR
@ 4, 22 SAY "TEXAS FLEXIBLE PAVEMENT DATABASE"
@ 5, 22 SAY "EDIT & UPDATE - CHANGE Inventory"
@ 6, 22 SAY "Geometric & Shoulder Information"
@ 8, 56 SAY "Sid Number"
@ 8, 67 SAY GEOSCHNG->SID NO
@ 9, 50 SAY "Structure Number"
@ 9, 69 SAY GEOSCHNG->STRUCTNUM PICTURE "99"
@ 11, 8 SAY "Type of Pavement (See TTI Codes)"
@ 11, 61 GET GEOSCHNG->PAVETYP PICTURE "99" RANGE 1,27
@ 12, 8 SAY "Lane Width (Feet)"
@ 12, 61 GET GEOSCHNG->LANEWID PICTURE "99" RANGE 8,15
@ 13, 8 SAY "Outside Shoulder Width (Feet)"
@ 13, 61 GET GEOSCHNG->OUTISHOWD PICTURE "99" RANGE 0,15
@ 14, 8 SAY "Shoulder Surface Type"
@ 14, 61 GET GEOSCHNG->SHOFSFTYP PICTURE "99" RANGE 1,6
@ 15, 8 SAY "Shoulder Base Type (See Base Type Code, Table A.6)"
@ 15, 61 GET GEOSCHNG->SHOFSFTYP PICTURE "99" RANGE 21,45
@ 16, 8 SAY "Shoulder Surface Thickness (Inches)"
@ 16, 59 GET GEOSCHNG->SHOFSFTHK PICTURE "99.9" RANGE 0.0,10.1
@ 17, 8 SAY "Shoulder Base Thickness (Inches)"
@ 17, 58 GET GEOSCHNG->SHOFSBTHK PICTURE "99.99"
@ 18, 8 SAY "Widened Flag (0-2)"
@ 18, 62 GET GEOSCHNG->WIDENFLG PICTURE "9" RANGE 0,2
@ 3, 3 TO 20, 74 DOUBLE
@ 22, 10 SAY "To exit & keep changes, press CTRL + End keys simultaneously"
* LAYER IDENTIFICATION SCREEN FORMAT FILE - LAYRCNG.FMT

@ 0, 0 CLEAR
@ 3, 23 SAY "TEXAS FLEXIBLE PAVEMENT DATABASE"
@ 4, 23 SAY "EDIT & UPDATE - CHANGE Inventory"
@ 5, 23 SAY " Layer Identification"
@ 7, 55 SAY "Sid Number"
@ 7, 66 SAY LAYRCNG->SID_NO PICTURE "9999"
@ 10, 54 SAY "Date"
@ 11, 4 SAY "
@ 12, 4 SAY "Structure Layr Layer Center Type Material Job Compltd Widened"
@ 13, 4 SAY " No. Desc. Thick Class. Mnth Year Mnth Year"
@ 14, 4 SAY "" "" "" "" "" "" "" "" "" "" "" ""
@ 16, 8 SAY LAYRCNG->STRUCMUM PICTURE "g"
@ 16, 17 SAY LAYRCNG->LAYNUM PICTURE "99"
@ 16, 24 GET LAYRCNG->LAYDESC PICTURE "99" RANGE 1,14
@ 16, 30 GET LAYRCNG->CENTTHK PICTURE "99.99" RANGE 0,25.0
@ 16, 40 GET LAYRCNG->LAYMATCL PICTURE "99" RANGE 01,45
@ 16, 48 GET LAYRCNG->JOBCMPYR PICTURE "99" RANGE 1,12
@ 16, 55 GET LAYRCNG->JOBCMPYR PICTURE "99" RANGE 20,99
@ 16, 62 GET LAYRCNG->WIDENLYR PICTURE "99" RANGE 0,12
@ 16, 67 GET LAYRCNG->WIDENLYR PICTURE "99" RANGE 0,99
@ 2, 2 TO 18, 74 DOUBLE
@ 22, 10 SAY "To exit & keep changes, press CTRL + End keys simultaneously"
* LAYER THICKNESS ACROSS THE ROAD SCREEN FORMAT FILE - LAYTHCHNG.FMT

@ 0, 0 CLEAR
@ 4, 23 SAY "TEXAS FLEXIBLE PAVEMENT DATABASE"
@ 5, 23 SAY "EDIT & UPDATE - CHANGE Inventory"
@ 6, 23 SAY "Layer Thickness Across The Road"
@ 8, 56 SAY "SID NUMBER "
@ 8, 67 SAY LAYTHCHNG->SID NO PICTURE "9999"
@ 10, 25 SAY "Thickness - From Center Distance From Center"
@ 11, 3 SAY "Structure Layer
initially

@ 12, 4 SAY "Number Number 3rd Pos 2nd Pos 1st Pos Center 3rd Pos 2nd Pos 1st Pos"
@ 13, 3 SAY "-------- ------ ------ ------ ------ ------ ------ ------"

@ 14, 6 SAY LAYTHCHNG->STRUACNUM PICTURE "99"
@ 14, 16 SAY LAYTHCHNG->LAYNUM PICTURE "99"
@ 14, 24 GET LAYTHCHNG->FC3THK PICTURE "99.99" RANGE 0.0,25.0
@ 14, 40 GET LAYTHCHNG->FC1THK PICTURE "99.99" RANGE 0.0,25.0
@ 14, 56 GET LAYTHCHNG->FC3DIS PICTURE "99.9" RANGE 0.0,99.0
@ 14, 64 GET LAYTHCHNG->FC2DIS PICTURE "99.9" RANGE 0.0,99.0
@ 14, 72 GET LAYTHCHNG->FC1DIS PICTURE "99.9" RANGE 0.0,99.0
@ 15, 34 SAY "(In Inches)"
@ 15, 62 SAY "(In Feet)"
@ 2, 0 TO 17, 79 DOUBLE
@ 22, 10 SAY "To exit & keep changes, press CTRL + End keys simultaneously"
* LOCATION INFORMATION SCREEN FORMAT FILE - LOCCHNG.FMT

@ 2, 23 SAY "TEXAS FLEXIBLE PAVEMENT DATABASE"
@ 3, 23 SAY "EDIT & UPDATE - CHANGE Inventory"
@ 4, 23 SAY "Location File"
@ 6, 6 SAY "SID Number"
@ 6, 18 SAY LOCCHNG->SID NO PICTURE "9999"
@ 6, 44 SAY "District"
@ 6, 53 GET LOCCHNG->HWYDIST PICTURE "99" RANGE 0,99
@ 6, 59 SAY "County"
@ 6, 66 GET LOCCHNG->CNYNUM PICTURE "999" RANGE 0,999
@ 8, 6 SAY "Highway Ident."
@ 8, 21 GET LOCCHNG->HWYPREFIX
@ 8, 24 GET LOCCHNG->HWYNUM PICTURE "9999"
@ 8, 29 GET LOCCHNG->HWYSUFFIX
@ 8, 44 SAY "Control/Section"
@ 8, 60 GET LOCCHNG->CONTROL PICTURE "9999"
@ 8, 64 SAY "/"
@ 8, 65 GET LOCCHNG->SECTION PICTURE "99"
@ 10, 6 SAY "Mile Post"
@ 10, 17 GET LOCCHNG->BEGMPOST PICTURE "9999"
@ 10, 21 GET LOCCHNG->EDMSTSIGN
@ 10, 23 GET LOCCHNG->EMPSSTDIS PICTURE "99"
@ 10, 26 SAY "TO"
@ 10, 29 GET LOCCHNG->ENDMPOST PICTURE "9999"
@ 10, 33 GET LOCCHNG->EDISSIGN
@ 10, 35 GET LOCCHNG->EMPSSTDIS PICTURE "99"
@ 10, 44 SAY "Lane Identification"
@ 10, 64 GET LOCCHNG->LANEID
@ 12, 6 SAY "Mile Point"
@ 12, 17 GET LOCCHNG->BEGMPT PICTURE "99.999"
@ 12, 24 SAY "TO"
@ 12, 27 GET LOCCHNG->ENDMPT PICTURE "99.999"
@ 12, 44 SAY "Mile Point Date"
@ 12, 61 GET LOCCHNG->MPNIMO PICTURE "99" RANGE 0,12
@ 12, 63 SAY "/"
@ 12, 64 GET LOCCHNG->MPNTYR PICTURE "99"
@ 14, 6 SAY "HPMS Sample Number"
@ 14, 25 GET LOCCHNG->HPMSSAM
@ 14, 44 SAY "HPMS Section Subdivision"
@ 14, 69 GET LOCCHNG->HPMSSSEC PICTURE "9"
@ 16, 6 SAY "Functional Classification"
@ 16, 31 GET LOCCHNG->FUCNIA PICTURE "99" RANGE 1,7
@ 16, 44 SAY "Number of Lanes"
@ 16, 61 GET LOCCHNG->NUMLANES PICTURE "99" RANGE 1,22
@ 18, 6 SAY "Active ?"
@ 18, 15 GET LOCCHNG->ACTVFLG PICTURE "I"
@ 18, 19 SAY "Inactive Date"
@ 18, 33 GET LOCCHNG->INACTIMO PICTURE "99" RANGE 0,12
@ 18, 35 SAY "/"
@ 18, 36 GET LOCCHNG->INACTYR PICTURE "99"
@ 18, 41 SAY "Previous SID"
@ 18, 54 GET LOCCHNG->PREVSID PICTURE "9999"
@ 18, 61 SAY "Next SID"
@ 18, 70 GET LOCCHNG->NEXTSID PICTURE "9999"
@ 20, 6 SAY "Comment"
@ 20, 15 GET LOCCHNG->COMMENT PICTURE
"XX"
@ 1, 2 TO 21, 77 DOUBLE
@ 22, 10 SAY "To exit & keep changes, press CTRL + End keys simultaneously"
PROGRAM LISTING

* SUBGRADE SCREEN FORMAT FILE - SUBGCHNG.FMT

@ 0, 0 CLEAR
@ 4, 23 SAY "TEXAS FLEXIBLE PAVEMENT DATABASE"
@ 5, 23 SAY "EDIT & UPDATE - CHANGE Inventory"
@ 6, 23 SAY "Subgrade File"
@ 8, 45 SAY "SID NUMBER"
@ 8, 56 SAY SUBGCHNG->SID NO PICTURE "9999"
@ 11, 19 SAY "Percent Passing No. 200 Sieve"
@ 11, 51 GET SUBGCHNG->PFSV200 PICTURE "99.9"
@ 12, 19 SAY "Texas Triaxial Class"
@ 12, 52 GET SUBGCHNG->TXTRIAXL PICTURE "9.9" RANGE 0.0,6.0
@ 13, 19 SAY "Liquid Limit"
@ 13, 51 GET SUBGCHNG->LIQLIM PICTURE "99.9" RANGE 0.0,80.0
@ 14, 19 SAY "Plasticity Index"
@ 14, 51 GET SUBGCHNG->PLASTIX PICTURE "99.9" RANGE 0.0,70.0
@ 15, 19 SAY "Permeability Index"
@ 15, 50 GET SUBGCHNG->PERMIX PICTURE "99.99" RANGE 0.00,10.00
@ 3, 12 TO 17, 65 DOUBLE
@ 22, 10 SAY "To exit & keep changes, press CTRL + End keys simultaneously"
PROGRAM LISTING

* SURFACE SCREEN FORMAT FILE - SURFCHNG.FMT

@ 0, 0 CLEAR
@ 4, 20 SAY " TEXAS FLEXIBLE PAVEMENT DATABASE"
@ 5, 20 SAY " EDIT & UPDATE - CHANGE Inventory"
@ 6, 20 SAY " Surface Layer"
@ 8, 57 SAY "SID NUMBER
@ 8, 68 SAY SURFCHNG->SID_NO PICTURE "9999"
@ 10, 3 SAY "
@ 11, 3 SAY " Aggregate Percent"
@ 12, 3 SAY "Structure Layer Application Type Admixture Asphalt"
@ 13, 3 SA
* SUBSYSTEM: EDIT & UPDATE INVENTORY DATABASE III FILES
* PROGRAM NAME: CHNGLAYR.PRG 06/27/88
* CALLED FROM: EDITUPDT.PRG
* PROJECT 2456 - TEXAS FLEXIBLE PAVEMENT DATABASE CONVERSION
* TAMU/TTI
* AUTHOR: TREVOR X. PEREIRA
* PURPOSE: THIS PROCEDURE CALLS UP THE RESPECTIVE INVENTORY
* DATA FILES TO CHANGE THE DATA IN IT. THE FOLLOWING PROCEDURES CAN BE FOUND HERE:
*
*
First check to see if there is any data in the transaction file. If there is data, display error message and go back to editupdt program.

SET ESCAPE OFF
CLEAR
MCOUNT = 0
USE \\PAVEDB\EDITUPDT\LOCN NEW INDEX \\PAVEDB\EDITUPDT\LOCN_NEW
MCOUNT = MCOUNT + RECOUNT()
USE \\PAVEDB\EDITUPDT\LAYR NEW INDEX \\PAVEDB\EDITUPDT\LAYR_NEW
MCOUNT = MCOUNT + RECOUNT()
USE \\PAVEDB\EDITUPDT\LAYT NEW INDEX \\PAVEDB\EDITUPDT\LAYT_NEW
MCOUNT = MCOUNT + RECOUNT()
USE \\PAVEDB\EDITUPDT\GEO5 NEW INDEX \\PAVEDB\EDITUPDT\GEO5_NEW
MCOUNT = MCOUNT + RECOUNT()
USE \\PAVEDB\EDITUPDT\SURF NEW INDEX \\PAVEDB\EDITUPDT\SURF_NEW
MCOUNT = MCOUNT + RECOUNT()
USE \\PAVEDB\EDITUPDT\SUBG NEW INDEX \\PAVEDB\EDITUPDT\SUBG_NEW
MCOUNT = MCOUNT + RECOUNT()
IF FILE("PAVEDB\EDITUPDT\LOCNCHNG.DBF")
 MOUNT2 = MOUNT2 + 1
ENDIF
IF FILE("PAVEDB\EDITUPDT\LOCNCHNG.NDX")
 MOUNT2 = MOUNT2 + 1
ENDIF
IF FILE("PAVEDB\EDITUPDT\LAYRCHNG.DBF")
 MOUNT2 = MOUNT2 + 1
ENDIF
IF FILE("PAVEDB\EDITUPDT\LAYRCHNG.NDX")
 MOUNT2 = MOUNT2 + 1
ENDIF
IF FILE("PAVEDB\EDITUPDT\LAYTCHNG.DBF")
 MOUNT2 = MOUNT2 + 1
ENDIF
IF FILE("PAVEDB\EDITUPDT\LAYTCHNG.NDX")
 MOUNT2 = MOUNT2 + 1
ENDIF
IF FILE("PAVEDB\EDITUPDT\GEOCHNG.DBF")
 MOUNT2 = MOUNT2 + 1
ENDIF
IF FILE("PAVEDB\EDITUPDT\GEOCHNG.NDX")
 MOUNT2 = MOUNT2 + 1
ENDIF
IF FILE("PAVEDB\EDITUPDT\SURFCHNG.DBF")
 MOUNT2 = MOUNT2 + 1
ENDIF
IF FILE("PAVEDB\EDITUPDT\SURFCHNG.NDX")
 MOUNT2 = MOUNT2 + 1
ENDIF
IF FILE("PAVEDB\EDITUPDT\SUBGCHNG.DBF")
 MOUNT2 = MOUNT2 + 1
ENDIF
IF FILE("PAVEDB\EDITUPDT\SUBGCHNG.NDX")
 MOUNT2 = MOUNT2 + 1
ENDIF
IF MOUNT2 = 0
 DO \PAVEDB\EDITUPDT\CHNGBKUP
ENDIF
M_OK = 0
CLEAR
* Display the Inventory Change data menu on the screen
DO WHILE MCONTINUE
STORE " " TO CHNGCOLL
DO WHILE .NOT. (CHNGCOLL $ '123456K')
 @ 3, 21 SAY "TEXAS FLEXIBLE PAVEMENT DATABASE 3.3.C"
 @ 4, 21 SAY "EDIT & UPDATE"
 @ 5, 21 SAY "CHANGE Inventory Data"
 @ 8, 15 SAY "1 - Location"
 @ 9, 15 SAY "2 - Layer ID"
 @ 10, 15 SAY "3 - Geometric & Shoulder"
 @ 11, 15 SAY "4 - Surface"
 @ 12, 15 SAY "5 - Subgrade"
 @ 13, 15 SAY "6 - Layer Thickness Across The Road"
READ IF READKEY() = 12
 MCONTINUE = .F.
 SET PROC TO EXIT
ENDIF
IF (CHNGCOLL $ '123456')
 @ 19, 23 SAY "Please enter SID Number ———> " GET MSID_NO PICTURE "9999"
 READ
 CLEAR
ENDIF
ENDDO
IF MCONTINUE
 CLEAR
 DO CASE
 CASE CHNGCOLL = "1"
 USE \PAVEDB\EDITUPDT\LOCNHNG INDE \PAVEDB\EDITUPDT\LOCNHNG
 SEEK MSID NO
 SET FORMAT TO \PAVEDB\EDITUPDT\LOCNHNG
 CHANGE
 SET FORMAT TO
 CASE CHNGCOLL = "2"
 USE \PAVEDB\EDITUPDT\LAYRHNG INDE \PAVEDB\EDITUPDT\LAYRHNG
 SEEK STR(MSID NO,4)
 SET FORMAT TO \PAVEDB\EDITUPDT\LAYRHNG
 CHANGE
 SET FORMAT TO
 CASE CHNGCOLL = "3"
 USE \PAVEDB\EDITUPDT\GEOCHNG INDE \PAVEDB\EDITUPDT\GEOCHNG
 SEEK STR(MSID NO,4)
 SET FORMAT TO \PAVEDB\EDITUPDT\GEOCHNG
 CHANGE
 SET FORMAT TO
 CASE CHNGCOLL = "4"
 USE \PAVEDB\EDITUPDT\SURCHNG INDE \PAVEDB\EDITUPDT\SURCHNG
 SEEK STR(MSID NO,4)
 SET FORMAT TO \PAVEDB\EDITUPDT\SURCHNG
 CHANGE
 SET FORMAT TO
 CASE CHNGCOLL = "5"
 USE \PAVEDB\EDITUPDT\SUBGCHNG INDE \PAVEDB\EDITUPDT\SUBGCHNG
 SEEK STR(MSID NO,4)
 SET FORMAT TO \PAVEDB\EDITUPDT\SUBGCHNG
 CHANGE
 SET FORMAT TO
 CASE CHNGCOLL = "6"
 USE \PAVEDB\EDITUPDT\LAYCHNG INDE \PAVEDB\EDITUPDT\LAYCHNG
 SEEK STR(MSID NO,4)
 SET FORMAT TO \PAVEDB\EDITUPDT\LAYCHNG
 CHANGE
 SET FORMAT TO
 383
CASE CHNGCOLL = "K"
 DO \PAVEDB\EDITUDP\CHEKLOCN
 DO \PAVEDB\EDITUDP\CHEKLAYR
 DO \PAVEDB\EDITUDP\CHEKLAYT
 DO \PAVEDB\EDITUDP\CHEKGEO
 DO \PAVEDB\EDITUDP\CHEKSURF
 DO \PAVEDB\EDITUDP\CHEKSUBG
 DO \PAVEDB\EDITUDP\COPYLAYR
 ENDCASE
 CLEAR
 ENDIF
 CLEAR
 ENDDO
 RETURN
PROGRAM LISTING

*
* SUBSYSTEM: EDIT & UPDATE
* PROGRAM NAME: CHNGBKUP.PRG 06/21/88
* CALLED FROM: CHNGLAYR.PRG
* MODIFIED ON: 09/20/88
* PROJECT 2456 - TEXAS FLEXIBLE PAVEMENT DATABASE CONVERSION
* TAMU/TII
* AUTHOR: TREVOR X. PEREIRA
* PURPOSE: BACK UP MASTER INVENTORY FILES (ORIGINAL FILES)
*
SET TALK OFF
SET ECHO OFF
SET ESCAPE OFF
CLEAR
MBACKDRV = MDRIVE2 + ":"
CLEAR TYPE
SET TYPE TO 0
STORE 0 TO MSIZE, MNUMFIELDS, MHEADER, MIOTALSIZE, MCOUNT
STORE "" TO MNUL
@ 5,5 say "The MASTER files have to be backed up first."
@ 9,5 say "Place a FORMATTED DISKETTE in drive " + MBACKDRV + ":" and close the drive."
@ 12,5 say "If you DO NOT want to continue, press the ESC key."
@ 13,5 say "Otherwise press any other key to continue."
READ
IF READKEY() = 12
 CLEAR
 MCONTINUE = .F.
 RETURN
ENDIF
*
* Backing up Location Data
*
CLEAR
MOVERWRITE = " "
SET DEFAULT TO &MBACKDRV
DO WHILE FILE("LOCATION.DBF")
 ? "LOCATION FILE exists on drive " + MBACKDRV
 ACCEPT "Overwrite it (Y/N) " TO MOVERWRITE
 IF MOVERWRITE $ "Yy"
 DELE FILE LOCATION.DBF
 ELSE
 CLEAR
 ? "Replace diskette in drive " + MBACKDRV + ":" with another diskette"
 ? "Then press any key to continue"
 WAIT " "
 ENDIF
ENDDO
SET DEFAULT TO &MDrive

SET TALK OFF
* Checking disk space on backup drive and backing up LOCATION master files
USE \PAVEDB\FILES\LOCATION
STORE RECOUNT (*) * RECSIZE () TO MSIZE
MNULL = ""
DO WHILE MNULL < FIELD (MINUMFIELDS + 1)
 MINUMFIELDS = MINUMFIELDS + 1
ENDDO
MHEADER = (32 * MINUMFIELDS) + 34
MIOFILESIZE = MSIZE + MHEADER + 20
SET DEFAULT TO &MBACKDRV
MDISKSPACE = DISKSPACE ()
SET DEFAULT TO &MDrive
DO WHILE MDISKSPACE < MIOFILESIZE
 ? "Not enough space on drive " + MBACKDRV
 ? "Please replace with another diskette and press any key to continue"
 WAIT ""
 IF READKEY () = 12
 ? "PROCESS ABORTED"
 RETURN
 ENDIF
 SET DEFAULT TO &MBACKDRV
 MDISKSPACE = DISKSPACE ()
 SET DEFAULT TO &MDrive
ENDDO
USE
? "Please wait. Backing up Location data files . . ."
IF FILE ("\PAVEDB\FILES\backup\LOCATION.DBF")
 DELE FILE \PAVEDB\FILES\BACKUP\LOCATION.DBF
ENDIF
SET TALK ON
COPY FILE \PAVEDB\FILES\LOCATION.DBF TO \MBACKDRV\LOCATION.DBF
COPY FILE \PAVEDB\FILES\LOCATION.DBF TO \PAVEDB\FILES\BACKUP\LOCATION.DBF
SET TALK OFF

* * back ing up layer id files *

CLEAR
MOVERWRITE = " "
SET DEFAULT TO &MBACKDRV
DO WHILE FILE ("LAYER.DBF")
 ? "LAYER FILE exists on drive " + MBACKDRV
 ACCEPT "Overwrite it (Y/N) " TO MOVERWRITE
 IF MOVERWRITE $ "Yy"
 DELE FILE LAYER.DBF
 ELSE
 CLEAR
 ? "Replace diskette in drive " + MBACKDRV + " with another diskette"
 ? "Then press any key to continue"
 WAIT ""
 ENDIF
ENDO
CLEAR
SET DEFAULT TO &MDRIVE

* Checking disk space on backup drive and backing up Layer ID master files
USE \PAVEDB\FILES\LAYER
STORE RECOUNT() * RECSIZE() TO MSIZE
MNULL = "."
DO WHILE MNULL < FIELD(MNUMFIELDS + 1)
 MNUMFIELDS = MNUMFIELDS + 1
ENDO
MHEADER = (32 * MNUMFIELDS) + 34
MIOTALSIZE = MSIZE + MHEADER + 20
SET DEFAULT TO &MBACKDRV
MDISKSPACE = DISKSPACE()
SET DEFAULT TO &MDRIVE
DO WHILE MDISKSPACE < MIOTALSIZE
 ? "Not enough space on diskette in drive " + MBACKDRV
 ? "Please replace with another diskette and press any key to continue"
 WAIT ""
 IF READKEY() = 12
 ? "PROCESS ABORTED"
 RETURN
 ENDIF
SET DEFAULT TO &MBACKDRV
MDISKSPACE = DISKSPACE()
SET DEFAULT TO &MDRIVE
ENDO
CLEAR
? "Please wait. Backing up Layer ID . . ."
USE
IF FILE('\pavedb\files\backup\LAYER.DBF')
 DELE FILE \PAVEDB\FILES\BACKUP\LAYER.DBF
ENDIF
SET TALK ON
COPY FILE \PAVEDB\FILES\LAYER.DBF TO &MBACKDRV\LAYER.DBF
COPY FILE \PAVEDB\FILES\LAYER.DBF TO \PAVEDB\FILES\BACKUP\LAYER.DBF
SET TALK OFF

* back up LAYTHICK THICKNESS files
*
CLEAR
MOVERWRITE = " "
SET DEFAULT TO &MBACKDRV
DO WHILE FILE('LAYTHICK.DBF')
 ? "LAYTHICK THICKNESS FILE exists on drive " + MBACKDRV
 ACCEPT "Overwrite it (Y/N) " TO MOVERWRITE
 IF MOVERWRITE $ "Yy"
 DELE FILE LAYTHICK.DBF
 ELSE
 CLEAR
 ? "Replace diskette in drive " + MBACKDRV + " with another diskette"
 ? "Then press any key to continue"
WAIT " "
ENDIF
ENDDO
SET DEFAULT TO &MDRIVE

* Checking diskspace on backup drive and backing up LAYTHICK ID master files
USE \\PAVEDB\\FILES\\LAYTHICK
STORE RECOUNT() * RECSIZE() TO MSIZE
MNULL = ""
DO WHILE MNULL < FIELD(MNUMFIELDS + 1)
 MNUMFIELDS = MNUMFIELDS + 1
ENDDO
MHEADER = (32 * MNUMFIELDS) + 34
MIOTALSIZE = MSIZE + MHEADER + 20
SET DEFAULT TO &MBACKDRV
MDISKSPACE = DISKSPACE()
SET DEFAULT TO &MDRIVE
DO WHILE MDISKSPACE < MIOTALSIZE
 ? "Not enough space on diskette in drive " + MBACKDRV
 ? "Please replace with another diskette and press any key to continue"
WAIT " "
IF READKEY() = 12
 ? "PROCESS ABORTED"
 RETURN
ENDIF
SET DEFAULT TO &MBACKDRV
MDISKSPACE = DISKSPACE()
SET DEFAULT TO &MDRIVE
ENDDO

? "Please wait. Backing up LAYER THICKNESS Across the Road files . . ."
USE
IF FILE(\\PAVEDB\\FILES\\LAYTHICK.DBF)
 DELETE FILE \\PAVEDB\\FILES\\LAYTHICK.DBF
ENDIF
SET TALK ON
COPY FILE \\PAVEDB\\FILES\\LAYTHICK.DBF TO &MBACKDRV\\LAYTHICK.DBF
COPY FILE \\PAVEDB\\FILES\\LAYTHICK.DBF TO \\PAVEDB\\FILES\\BACKUP\\LAYTHICK.DBF
SET TALK OFF

*
* backing up GEOMETRIC & SHOULDER files
*
CLEAR
MOVWRITE = " "
SET DEFAULT TO &MBACKDRV
DO WHILE FILE("GEOSHO.DBF")
 ? "GEOMETRIC & SHOULDER FILE exists on drive " + MBACKDRV
 ACCEPT "Overwrite it (Y/N) " TO MOVWRITE
 IF MOVWRITE $ "Yy"
 DELETE FILE GEOSHO.DBF
 ELSE
 CLEAR
 ? "Replace diskette in drive " + MBACKDRV + " with another diskette"
 ? "Then press any key to continue"
WAIT " "
ENDIF
ENDDO
SET DEFAULT TO &MDRIVE

* Checking disk space on backup drive and backing up GEOMETRIC & SHOULDER master files
USE \PAVEDB\FILES\GEOSH
STORE RECOUNT() * RECSIZE() TO MSIZE
MNULL = ""
DO WHILE MNULL < FIELD(MNUMFIELDS + 1)
 MNUMFIELDS = MNUMFIELDS + 1
ENDDO
MHEADER = (32 * MNUMFIELDS) + 34
MIOTALSIZE = MSIZE + MHEADER + 20
SET DEFAULT TO &MBACKDRV
MDISKSPACE = DISKSPACE()
SET DEFAULT TO &MDRIVE
DO WHILE MDISKSPACE < MIOTALSIZE
 ? "Not enough space on diskette in drive " + MBACKDRV
 ? "Please replace with another diskette and press any key to continue"
 WAIT " "
 IF READKEY() = 12
 ? "PROCESS ABORTED"
 RETURN
 ENDF
 SET DEFAULT TO &MBACKDRV
 MDISKSPACE = DISKSPACE()
 SET DEFAULT TO &MDRIVE
ENDDO
? "Please wait. Backing up GEOMETRIC & SHOULDER files"
USE
IF FILE('\pavedb\files\backup\GEOSH.O.DBF')
 DELE FILE \PAVEDB\FILES\BACKUP\GEOSH.O.DBF
ENDIF
SET TALK ON
COPY FILE \PAVEDB\FILES\GEOSH.O.DBF TO &MBACKDRV\GEOSH.O.DBF
COPY FILE \PAVEDB\FILES\GEOSH.O.DBF TO \PAVEDB\FILES\BACKUP\GEOSH.O.DBF
SET TALK OFF

*
* backing up SURFACE THICKNESS files
*
CLEAR
MOVERWRITE = " "
SET DEFAULT TO &MBACKDRV
DO WHILE FILE('SURFACE.DBF')
 ? "SURFACE FILE exists on drive " + MBACKDRV
 ACCEPT "Overwrite it (Y/N) " TO MOVERWRITE
 IF MOVERWRITE $ "Y"
 DELE FILE SURFACE.DBF
 ELSE
 CLEAR
 ENDIF
"Replace diskette in drive " + MBACKDRV + " with another diskette"
"Then press any key to continue"
WAIT ""
ENDIF
ENDDO
CLEAR
SET DEFAULT TO &MDRIVE

* Checking disk space on backup drive and backing up SURFACE master files
USE \PAVEDB\FILES\SURFACE
STORE RECCOUNT() * RECsize() TO MSIZE
MNULL = ""
DO WHILE MNULL < FIELD(MNUMFIELDS + 1)
 MNUMFIELDS = MNUMFIELDS + 1
ENDDO
MHEADER = (32 * MNUMFIELDS) + 34
MIOTALSIZE = MSIZE + MHEADER + 20
SET DEFAULT TO &MBACKDRV
MDISKSPACE = DISKSPACE()
SET DEFAULT TO &MDRIVE
DO WHILE MDISKSPACE < MIOTALSIZE
 "Not enough space on diskette in drive " + MBACKDRV
 "Please replace with another diskette and press any key to continue"
WAIT ""
IF READKEY() = 12
 "PROCESS ABORTED"
 RETURN
ENDIF
SET DEFAULT TO &MBACKDRV
MDISKSPACE = DISKSPACE()
SET DEFAULT TO &MDRIVE
ENDDO
USE
CLEAR
"Please wait. Backing up SURFACE files . . ."
IF FILE('\pavedb\files\backup\SURFACE.DBF')
 DELE FILE \PAVEDB\FILES\BACKUP\SURFACE.DBF
ENDIF
SET TALK OFF
COPY FILE \PAVEDB\FILES\SURFACE.DBF TO &MBACKDRV\SURFACE.DBF
COPY FILE \PAVEDB\FILES\SURFACE.DBF TO \PAVEDB\FILES\BACKUP\SURFACE.DBF
SET TALK OFF

* backing up SUBGRADE THICKNESS files
*
CLEAR
MOVERWRITE = ""
SET DEFAULT TO &MBACKDRV
DO WHILE FILE('SUBGRADE.DBF')
 "SUBGRADE FILE exists on drive " + MBACKDRV
 ACCEPT "Overwrite it (Y/N) " TO MOVERWRITE
 IF MOVERWRITE $ "Y"
 DELE FILE SUBGRADE.DBF
 ENDIF
ENDIF
ELS
CLEAR
? "Replace diskette in drive " + MBACKDRV + " with another diskette"
? "Then press any key to continue"
WAIT "
xENDD
ENDO
CLEAR
SET TALK OFF
SET DEFAULT TO &MDRIVE

* Checking diskspace on backup drive and backing up SUBGRADE master files
USE \PAVEDB\FILES\SUBGRADE
STORE RECCOUNT() * RECSIZE() TO MSIZE
MNULL = ""
DO WHILE MNULL < FIELD(MNUMFIELDS + 1)
 MNUMFIELDS = MNUMFIELDS + 1
ENDDO
MHEADER = (32 * MNUMFIELDS) + 34
MIOTALSIZE = MSIZE + MHEADER + 20
SET DEFAULT TO &MBACKDRV
MDISKSPACE = DISKSPACE()
SET DEFAULT TO &MDRIVE
DO WHILE MDISKSPACE < MIOTALSIZE
 ? "Not enough space on diskette in drive " + MBACKDRV
 ? "Please replace with another diskette and press any key to continue"
 WAIT "
 IF READKEY() = 12
 ? "PROCESS ABORTED"
 RETURN
 ENDIF
 SET DEFAULT TO &MBACKDRV
 MDISKSPACE = DISKSPACE()
 SET DEFAULT TO &MDRIVE
ENDDO
USE
? "Please wait. Backing up SUBGRADE files ..."
IF FILE(\pavedb\files\backup\SUBGRADE.DBF')
 DELETE FILE \PAVEDB\FILES\BACKUP\SUBGRADE.DBF
ENDIF
SET TALK ON
COPY FILE \PAVEDB\FILES\SUBGRADE.DBF TO &MBACKDRV\SUBGRADE.DBF
COPY FILE \PAVEDB\FILES\SUBGRADE.DBF TO \PAVEDB\FILES\BACKUP\SUBGRADE.DBF
SET TALK OFF

CLEAR
? "Please wait. Setting up Files ..."
SET TALK ON
SET SAFETY OFF
COPY FILE \PAVEDB\FILES\LOCATION.DBF TO \PAVEDB\EDITUPDT\LOCNCHNG.DBF
COPY FILE \PAVEDB\INDEXES\LOCSTD.NDX TO \PAVEDB\EDITUPDT\LOCNCHNG.NDX
COPY FILE \PAVEDB\FILES\LAYER.DBF TO \PAVEDB\EDITUPDT\LAYRCHNG.DBF
COPY FILE \PAVEDB\INDEXES\LAYNXD.NDX TO \PAVEDB\EDITUPDT\LAYRCHNG.NDX
COPY FILE \PAVEDB\FILES\LAYTHICK.DBF TO \PAVEDB\EDITUPDT\LAYTHCHNG.DBF

391
COPY FILE \PAVEDB\INDEXES\LAYINDX.NDX TO \PAVEDB\EDITUPDT\LAYCHNG.NDX
COPY FILE \PAVEDB\FILES\GEO nhỏ DBF TO \PAVEDB\EDITUPDT\GEOCHNG.DBF
COPY FILE \PAVEDB\INDEXES\GEONDX.NDX TO \PAVEDB\EDITUPDT\GEOCHNG.NDX
COPY FILE \PAVEDB\FILES\SURFACE.DBF TO \PAVEDB\EDITUPDT\SURFCHNG.DBF
COPY FILE \PAVEDB\INDEXES\SURFDX.NDX TO \PAVEDB\EDITUPDT\SURFCHNG.NDX
COPY FILE \PAVEDB\FILES\SUBGRADE.DBF TO \PAVEDB\EDITUPDT\SUBCHNG.DBF
COPY FILE \PAVEDB\INDEXES\SUBGNDX.NDX TO \PAVEDB\EDITUPDT\SUBGCHNG.NDX
SET SAFETY ON
SET TALK OFF
SET ECHO OFF
SET TYPE TO 20
SET ESCAPE OFF
RETURN
* SUBSYSTEM: EDIT & UPDATE INVENTORY FILES
* PROGRAM NAME: CHECKGEOS.PRG 06/21/88
* CALLED FROM: CHNLAYR.PRG
* PROJECT 2456 - TEXAS FLEXIBLE PAVEMENT DATABASE CONVERSION
* TAMU/TTI
* AUTHOR: TREVOR X. PEREIRA
* PURPOSE: PROGRAM TO LIST RECORDS THAT ARE IN ERROR
*
* set parameters
set talk off
set echo off
CLEAR
M ERROR = 0
SET ALTE TO GEOSERR

M TITLE = "GEOMETRIC & SHOULDER FILE - LIST OF RECORDS NOT IN LAYER ID FILE"
M TITIE2 = "--"
SET ALTE ON
? M TITIE
? M TITIE2

* assign database files to different work areas
SELECT 1
 USE \PAVEDB\EDITUPD\LAYRCHNG INDEX \PAVEDB\EDITUPD\LAYRCHNG

SELECT 2
 USE \PAVEDB\EDITUPD\GEOCHNG INDEX \PAVEDB\EDITUPD\GEOCHNG

SELECT 2
DO WHILE .NOT. EOF()
 * store to memory variables
 MSID = SID NO
 MSTRUC = STRUCNUM

 SELECT 1
 * find the record in layer that equals the sid number and structure number
 SEEK STR(MSID,4)+STR(MSTRUC,2)

 * if record is not found, print the sid number
 IF .NOT. FOUND()
 SELECT 2
 DISPLAY FIELD SID NO, STRUCNUM OFF
 M ERROR = M ERROR + 1
 ENDIF
 SELECT 2
 SKIP
ENDDO
SELE 1
USE
SELE 2
USE
?
?
?
?
?
?
?
*
* TO LIST ALL OUT OF RANGE DATA FOR THE GEOMETRIC AND
* INFORMATION FILE
*
USE \PAVED\EDITUPDT\GESCHNG INDEX \PAVED\EDITUPDT\GESCHNG

* set up page heading
M TITIE = "GEOMETRIC & SHOULDER FILE - OUT OF RANGE RECORDS"
M TITIE2 = "----------------------------------"
? M TITIE
? M TITIE2

* check data range
DO WHILE .NOT. EOF()
 IF STRUCNUM < 1 .OR. STRUCNUM > 9
 DISPLAY FIELDS SID NO, STRUCNUM OFF
 M ERROR = M ERROR + 1
 ENDIF
 IF PAVETYP < 1 .OR. PAVETYP > 37
 DISPLAY FIELDS SID NO, STRUCNUM, PAVETYP OFF
 M ERROR = M ERROR + 1
 ENDIF
 IF IANEWID < 8 .OR. IANEWID > 15
 IF IANEWID <> 0
 DISPLAY FIELDS SID NO, STRUCNUM, IANEWID OFF
 M ERROR = M ERROR + 1
 ENDIF
 ENDIF
 IF OUTSHOWD < 0 .OR. OUTSHOWD > 15
 DISPLAY FIELDS SID NO, STRUCNUM, OUTSHOWD OFF
 M ERROR = M ERROR + 1
 ENDIF
 IF SHOSFTYP < 1 .OR. SHOSFTYP > 6
 DISPLAY FIELDS SID NO, STRUCNUM, SHOSFTYP OFF
 M ERROR = M ERROR + 1
 ENDIF
 IF SHOBSTYP < 21 .OR. SHOBSTYP > 49
 IF SHOBSTYP <> 0
 DISPLAY FIELDS SID NO, STRUCNUM, SHOBSTYP OFF
 M ERROR = M ERROR + 1
 ENDIF
 ENDIF
ENDIF
IF WIDENFLG < 0 .OR. WIDENFLG > 2
 DISPLAY FIELDS SID NO, STRUCNUM, WIDENFLG OFF
 M_ERROR = M_ERROR + 1
ENDIF
IF SHOPTHK < 0 .OR. SHOPTHK > 10.1
 DISPLAY FIELDS SID NO, STRUCNUM, SHOPTHK OFF
 M_ERROR = M_ERROR + 1
ENDIF
SKIP
ENDDO
CLEAR
? " "
? " "
? " "
? " "
? " "
? " "
*
* TO LIST OUT ALL INCORRECT SID NUMBERS FOR GEOMETRIC & SHOULDER
*
* SET PARAMETERS
set talk off
set echo off
* SET PAGE HEADING
M_TITIE = "GEOMETRIC & SHOULDER FILE - LIST OF INCORRECT SID NUMBERS"
M_TITIE2 = "---"
? "M_TITIE"
? "M_TITIE2"
STORE 0 TO VAR1, VAR2, VAR3, VAR4, COMPARE
DO WHILE .NOT. EOF()
 * calculate the correct check digit for the Sid number
 VAR1 = INT(SID NO/1000)
 VAR2 = MOD(INT(SID_NO/100),10)
 VAR2 = VAR2 * 2
 VAR3 = MOD(INT(SID_NO/10),10)
 VAR3 = VAR3 * 3
 VAR4 = MOD(VAR1,10)+VAR2+VAR3
 COMPARE = MOD(VAR4,10)
 * compare the entered check digit with the calculated check digit
 IF COMPARE <> MOD(SID NO,10)
 DISPLAY SID NO, STRUCNUM OFF
 M_ERROR = M_ERROR + 1
 ENDIF
 IF SID NO = 0
 DISPLAY SID NO, STRUCNUM OFF
 M_ERROR = M_ERROR + 1
 ENDIF
 SKIP
ENDDO
* reset parameters

CLEAR
? ""
? ""
? ""
? ""
? ""
? ""
? ""

* TO LIST THE LAYER IDENTIFICATION RECORDS THAT ARE NOT
* PRESENT IN GEOMETRIC AND SHOULDER
*

* set parameters

CLEAR
M_ERROR1 = "GEOMETRIC & SHOULDER FILE - LIST OF ALL LAYER ID RECORDS"
M_ERROR2 = "NOT PRESENT IN THE GEOMETRIC & SHOULDER FILE"
M_ERROR3 = "---"
? M_ERROR1
? M_ERROR2
? M_ERROR3

* assign files to different work areas

SELECT 1
 USE \PAVEDB\EDITUPDT\LAYRCNG INDEX \PAVEDB\EDITUPDT\LAYRCNG
SELECT 2
 USE \PAVEDB\EDITUPDT\GEOSCHNG INDEX \PAVEDB\EDITUPDT\GEOSCHNG

SELECT 1
DO WHILE .NOT. EOF()
 MSID = SID NO
 MSTRUC = STRUCNUM
 STRC_COMP = STRUCNUM

 * find the 1st layer identification record in geometric and shoulder
 * file
 SELECT 2
 Seek str(MSID,4)+str(MSTRUC,2)
 IF .NOT. FOUND()
 SELECT 1
 DISPLAY FIELDS SID_NO, STRUCNUM OFF
 M_ERROR = M_ERROR + 1
 ENDIF
 SELECT 1
 SKIP

 * skip the rest of the records for the same sid number
 DO WHILE MSID = SID NO .AND. STRC_COMP = STRUCNUM
 SKIP
 ENDDO
ENDO
SELECT 1
use

396
SELECT 2
USE
USE \PAVEDB\EDITUPDT\GESCHNG INDEX \PAVEDB\EDITUPDT\GESCHNG
PACK
USE
CLEAR
? CHR(12)
SET ALTE OFF
CLOSE ALTE
IF M_ERROR <> 0
 M_OK = M_OK + 1
ENDIF
RETURN
* * *
SUBSYSTEM: EDIT & UPDATE INVENTORY FILES
* PROGRAM NAME: CHEKIAYR.PRG 06/21/88
* CALLED FROM: CHNGIAYR.PRG
* PROJECT 2456 - TEXAS FLEXIBLE PAVEMENT DATABASE SYSTEM
* TAMU/TII
* AUTHOR: TREVOR X. PEREIRA
* PURPOSE: CHECKS FOR ERRORS IN THE LAYER FILE
*

* set parameters
SET TALK OFF
SET ECHO OFF
CLEAR
SET ALTE TO LAYRERR
USE \PAVEDB\EDITUPDT\LAYRCENG INDEX \PAVEDB\EDITUPDT\LAYRCENG
M ERROR = "LAYER ID FILE - INCORRECT LAYER DESCRIPTION OR MATERIAL CLASSIFICATION"
M ERROR2 =
--
SET ALTE ON
? M ERROR
? M ERROR2
M_ERRORCK = 0
* check layer description with layer material classification
DO WHILE .NOT. EOF()
 DO CASE
 CASE LAYDESC = 7
 IF LAYMATCL < 41 .OR. LAYMATCL > 45
 DISPLAY FIELDS SID NO, STRUCNUM, LAYNUM, LAYDESC, LAYMATCL OFF
 M_ERRORCK = M_ERRORCK + 1
 ENDIF
 CASE LAYDESC = 6
 IF LAYMATCL < 21 .OR. LAYMATCL > 33
 IF LAYMATCL <> 17
 DISPLAY FIELDS SID NO, STRUCNUM, LAYNUM, LAYDESC, LAYMATCL OFF
 M_ERRORCK = M_ERRORCK + 1
 ENDIF
 ENDIF
 ENDIF
 CASE LAYDESC = 5
 IF LAYMATCL < 21 .OR. LAYMATCL > 27
 IF LAYMATCL <> 17
 DISPLAY FIELDS SID NO, STRUCNUM, LAYNUM, LAYDESC, LAYMATCL OFF
 M_ERRORCK = M_ERRORCK + 1
 ENDIF
 ENDIF
 ENDIF
 CASE LAYDESC = 4
 IF LAYMATCL < 1 .OR. LAYMATCL > 4
 DISPLAY FIELDS SID NO, STRUCNUM, LAYNUM, LAYDESC, LAYMATCL OFF
 ENDIF
 ENDIF
 END CASE
END DO

M_ERRORCK = M_ERRORCK + 1
ENDIF
CASE IAYDESC = 3
 IF LAYMATCL < 1 .OR. LAYMATCL > 17
 DISPLAY FIELDS SID_NO, STRUCNUM, IAYNUM, IAYDESC, LAYMATCL OFF
 M_ERRORCK = M_ERRORCK + 1
 ENDIF
CASE IAYDESC = 2
 IF LAYMATCL <> 11
 DISPLAY FIELDS SID_NO, STRUCNUM, IAYNUM, IAYDESC, LAYMATCL OFF
 M_ERRORCK = M_ERRORCK + 1
 ENDIF
CASE IAYDESC = 1
 IF LAYMATCL < 1 .OR. LAYMATCL > 16
 DISPLAY FIELDS SID_NO, STRUCNUM, IAYNUM, IAYDESC, LAYMATCL OFF
 M_ERRORCK = M_ERRORCK + 1
 ENDIF
CASE IAYDESC = 10
 IF LAYMATCL < 5 .OR. LAYMATCL > 7
 DISPLAY FIELDS SID_NO, STRUCNUM, IAYNUM, IAYDESC, LAYMATCL OFF
 M_ERRORCK = M_ERRORCK + 1
 ENDIF
CASE IAYDESC = 12
 IF LAYMATCL < 12 .OR. LAYMATCL > 15
 DISPLAY FIELDS SID_NO, STRUCNUM, IAYNUM, IAYDESC, LAYMATCL OFF
 M_ERRORCK = M_ERRORCK + 1
 ENDIF
CASE IAYDESC = 14
 IF LAYMATCL <> 27
 DISPLAY FIELDS SID_NO, STRUCNUM, IAYNUM, IAYDESC, LAYMATCL OFF
 M_ERRORCK = M_ERRORCK + 1
 ENDIF
ENDCASE
ENDDO
CLEAR
? " "
? " "
? " "
? " "
? " "
? " "
* *
* VERIFIES THAT THE LAYER NUMBERS ARE IN CONSECUTIVE
* ORDER IN THE TRANSACTION FILE AND THAT NONE ARE MISSING
*
GO TO TOP
M_ERROR = "LAYER ID FILE - MISSING OR INCORRECT LAYER NUMBERS"
M_ERROR2 = "---"
? M_ERROR
? M_ERROR2
MSID NO = SID_NO
MIAYNUM = 1
DO WHILE .NOT. EOF()
 * checks for consecutive sid numbers
 DO WHILE .NOT. EOF() .AND. MSID_NO = SID_NO
 IF IAYNUM <> MLAYNUM
 IF IAYDESC = 13 .OR. IAYDESC = 12
 SKIP
 STORE IAYNUM TO MLAYNUM
 IF MSID_NO <> SID_NO
 SKIP -1
 ENDF
 ELSE
 DISPLAY SID NO, STRUCNUM, LAYNUM OFF
 M_ERRORCK = M_ERRORCK + 1
 STORE IAYNUM TO MLAYNUM
 ENDF
 ENDDO
 MIAYNUM = MLAYNUM + 1
 SKIP
ENDDO
MSID_NO = SID_NO
MLAYNUM = 1
ENDDO
CLEAR
?
?
?
?
?
?
?
?
?
?
?
?
?

* TO LIST OUT OF RANGE DATA IN THE LAYER IDENTIFICATION
* TRANSACTION FILE
* GO TO TOP
M_ERROR = "LAYER ID FILE - OUT OF RANGE DATA"
M_ERROR2 = "-----------------------------"
? M_ERROR
? M_ERROR2

* check the data
DO WHILE .NOT. EOF()
 IF STRUCNUM < 1 .OR. STRUCNUM > 9
 DISPLAY FIELDS SID NO, STRUCNUM, LAYNUM OFF
 M_ERRORCK = M_ERRORCK + 1
 ENDF
 IF IAYNUM < 1 .OR. IAYNUM > 13
 DISPLAY FIELDS SID NO, STRUCNUM, LAYNUM OFF
 M_ERRORCK = M_ERRORCK + 1
 ENDF
 IF IAYDESC < 1 .OR. IAYDESC > 14
 DISPLAY FIELDS SID NO, STRUCNUM, LAYNUM, LAYDESC OFF
 M_ERRORCK = M_ERRORCK + 1
 ENDF

400
IF CENTER < .1 OR. CENTER > 25
 IF LAYNUM NOT 1 AND CENTER = 0
 DISPLAY FIELDS SID NO, STRUCNUM, LAYNUM, CENTER OFF
 M_ERRORCK = M_ERRORCK + 1
 ENDIF
ENDIF
IF LAYMATCL < 1 OR. LAYMATCL > 45
 DISPLAY FIELDS SID NO, STRUCNUM, LAYNUM, LAYMATCL OFF
 M_ERRORCK = M_ERRORCK + 1
ENDIF
IF JOBCMPYR < 20 OR. JOBCMPYR > 99
 DISPLAY FIELDS SID NO, STRUCNUM, LAYNUM, JOBCMPYR OFF
 M_ERRORCK = M_ERRORCK + 1
ENDIF
IF JOBCMPMO < 1 OR. JOBCMPMO > 12
 DISPLAY FIELDS SID NO, STRUCNUM, LAYNUM, JOBCMPMO OFF
 M_ERRORCK = M_ERRORCK + 1
ENDIF
IF WIDENLYR < 28 OR. WIDENLYR > 99
 IF WIDENLYR <> 0
 DISPLAY FIELDS SID NO, STRUCNUM, LAYNUM, WIDENLYR OFF
 M_ERRORCK = M_ERRORCK + 1
 ENDIF
ENDIF
IF WIDENIMO < 1 OR. WIDENIMO > 12
 IF WIDENIMO <> 0
 DISPLAY FIELDS SID NO, STRUCNUM, LAYNUM, WIDENIMO OFF
 M_ERRORCK = M_ERRORCK + 1
 ENDIF
ENDIF
ENDDO
SKIP
CLEAR
? " "
? " "
? " "
? " "
? " "
? " "

*
* LIST OUT SID NUMBERS THAT ARE INCORRECT
*

clear
GOTO TOP
M_ERROR = "LAYER ID FILE - INCORRECT SID NUMBERS"
M_ERROR2 = "-------------------------------------"
? M_ERROR
? M_ERROR2

* initialize variables
STORE 0 TO VAR1, VAR2, VAR3, VAR4, COMPARE
* calculate correct Sid Number check digit
DO WHILE .NOT. EOF()
 VAR1 = INT(SID NO/1000)
 VAR2 = MOD(INT(SID NO/100),10)
 VAR2 = VAR2 * 2
 VAR3 = MOD(INT(SID NO/10),10)
 VAR3 = VAR3 * 3
 VAR4 = MOD(VAR1,10)+VAR2+VAR3
 COMPARE = MOD(VAR4,10)
 * compare actual check digit with calculated check digit
 IF COMPARE <> MOD(SID NO,10)
 DISPLAY SID NO, STRUCNUM, LAYNUM OFF
 M_ERRORCK = M_ERRORCK + 1
 ENDIF
 IF SID NO = 0
 DISPLAY SID NO, STRUCNUM, LAYNUM OFF
 M_ERRORCK = M_ERRORCK + 1
 ENDIF
 SKIP
ENDDO
? " "
? " "
? " "
? " "
? " "
? " "

* LIST OUT LAYER RECORDS THAT DO NOT HAVE A LOCATION RECORD
*
clear
GOTO TOP
SELE 2
USE \PAVEDB\EDITUPDT\LOCNCHG INDE \PAVEDB\EDITUPDT\LOCNCHG
M_ERROR = "LAYER ID FILE - SID NUMBERS THAT DO NOT HAVE A LOCATION RECORD"
M_ERROR2 = "--------------------------------------"
SELE 1
? M_ERROR
? M_ERROR2
DO WHILE .NOT. EOF()
 MSID NO = A->SID NO
 SELE 2
 SEEK MSID NO
 IF .NOT. FOUND()
 SELE 1
 DISPLAY SID NO, STRUCNUM, LAYNUM OFF
 M_ERRORCK = M_ERRORCK + 1
 ENDIF
 SELE 1
 DO WHILE A->SID NO = MSID NO .OR. (.NOT. EOF())
 SKIP
 ENDDO
ENDDO
select 1
use
select 2
use
USE \PAVEDB\EDITUPDT\LAYRCHNG INDEX \PAVEDB\EDITUPDT\LAYRCHNG
PACK
USE
? CHR(12)
SET ALITE OFF
CLOSE ALITE
IF M_ERRORCK <> 0
 M_OK = M_OK + 1
ENDIF
CLEAR
RETURN
* SUBSYSTEM: EDIT & UPDATE INVENTORY FILES
* PROGRAM NAME: CHECKLAYT.PRG 06/21/88
* CALLED FROM: CHNGLAYR.PRG
* PROJECT 2456 - TEXAS FLEXIBLE PAVEMENT DATABASE CONVERSION
* TAMU/TTI
* AUTHOR: TREVOR X. PEREIRA
* PURPOSE: TO LIST ERRORS IN THE LAYER THICKNESS ACROSS THE ROAD FILE
*
* set parameters
Set talk off
set echo off
CLEAR
*
* print out page heading
SET ALINE TO LAYTERR
SET ALINE ON
MITTLE = "LAYER THICKNESS FILE - LIST OF RECORDS NOT PRESENT IN LAYER ID FILE"
MITTLE2 = "-'-
? ""?
? ""?
? ""?
? ""?
? ""?
? ""

* TO LIST ALL OUT OF RANGE DATA IN THE LAYER THICKNESS
* ACROSS THE ROAD FILE
*

USE \PAVEDB\EDITUPDT\LAYTHNG INDEX \PAVEDB\EDITUPDT\LAYTHNG
GOTO TOP

* print out the page heading
M_TTLE = "LAYER THICKNESS FILES - OUT OF RANGE RECORDS"
M_TTLE2 = "--"
? M_TTLE
? M_TTLE2

* check the ranges
DO WHILE .NOT. EOF()
 IF STRUCNUM < 1 .OR. STRUCNUM > 9
 DISPLAY FIELDS SID NO, STRUCNUM, LAYNUM, STRUCNUM OFF
 M_ERROR = M_ERROR + 1
 ENDIF
 IF LAYNUM < 1 .OR. LAYNUM > 13
 DISPLAY FIELDS SID NO, STRUCNUM, LAYNUM, LAYNUM OFF
 M_ERROR = M_ERROR + 1
 ENDIF
 IF FC3THK < 0 .OR. FC3THK > 25
 DISPLAY FIELDS SID NO, STRUCNUM, LAYNUM, FC3THK OFF
 M_ERROR = M_ERROR + 1
 ENDIF
 IF FC2THK < 0 .OR. FC2THK > 25
 DISPLAY FIELDS SID NO, STRUCNUM, LAYNUM, FC2THK OFF
 M_ERROR = M_ERROR + 1
 ENDIF
 IF FC1THK < .1 .OR. FC1THK > 25
 DISPLAY SID NO, STRUCNUM, LAYNUM, FC1THK OFF
 M_ERROR = M_ERROR + 1
 ENDIF
 IF CENTTHK < .1 .OR. CENTTHK > 25
 DISPLAY SID NO, STRUCNUM, LAYNUM, CENTTHK OFF
 M_ERROR = M_ERROR + 1
 ENDIF
 IF FC1DIS < .01 .OR. FC1DIS > 99
 DISPLAY SID NO, STRUCNUM, LAYNUM, FC1DIS OFF
 M_ERROR = M_ERROR + 1
 ENDIF
 IF FC2DIS < FC1DIS
 IF FC2DIS <> 0
 DISPLAY SID NO, STRUCNUM, LAYNUM, FC2DIS OFF
 ENDIF
M_ERROR = M_ERROR + 1
ENDIF
ENDIF
IF FC3DIS < FC2DIS
 IF FC3DIS <> 0
 DISPLAY SID NO, STRUCNUM, IAYNUM, FC3DIS OFF
 M_ERROR = M_ERROR + 1
 ENDIF
ENDIF
SKIP
ENDDO
CLEAR
? " "
? " "
? " "
? " "
? " "
? "

* TO CHECK FOR INVALID SID NUMBERS
*
GO TO TOP
* set up page heading
M_TITLE1 = "LAYER THICKNESS FILE - INCORRECT SID NUMBERS"
M_TITLE2 = "-------------------------"
? M_TITLE1
? M_TITLE2
STORE 0 TO VAR1, VAR2, VAR3, VAR4, COMPARE

* calculate check digit
DO WHILE .NOT. EOF()
 VAR1 = INT(SID_NO/1000)
 VAR2 = MOD(INT(SID_NO/100),10)
 VAR2 = VAR2 * 2
 VAR3 = MOD(INT(SID_NO/10),10)
 VAR3 = VAR3 * 3
 VAR4 = MOD(VAR1,10)+VAR2+VAR3
 COMPARE = MOD(VAR4,10)
 *
 IF COMPARE <> MOD(SID_NO,10)
 DISPLAY SID NO, STRUCNUM, IAYNUM OFF
 M_ERROR = M_ERROR + 1
 ENDIF
 IF SID_NO = 0
 DISPLAY SID NO, STRUCNUM, IAYNUM OFF
 M_ERROR = M_ERROR + 1
 ENDIF
 SKIP
ENDDO
* reset parameters
CLEAR
? " "

406
* TO LIST LAYER IDENTIFICATION FILE RECORDS THAT ARE NOT PRESENT IN LAYER THICKNESS ACROSS THE ROAD FILE *

M_TITLE = "LAYER THICKNESS FILE - LIST OF ALL RECORDS IN MASTER LAYER ID FILE"
M_TITLE2 = "THAT ARE NOT PRESENT IN THE LAYER THICKNESS FILE"
M_TITLE3 = "---

* assign files to different work areas
SELECT 1
 USE \PAVEDB\EDITUPDT\LAYRCHNG INDEX \PAVEDB\EDITUPDT\LAYRCHNG
SELECT 2
 USE \PAVEDB\EDITUPDT\LAYRCHNG INDEX \PAVEDB\EDITUPDT\LAYRCHNG

SELECT 1
DO WHILE .NOT. EOF()
 MSID = SID_NO
 MSTR = STRUCNUM
 MLAY = LAYNUM

 * if layer number is 1, skip to the next record in layer file
 IF LAYNUM = 1
 SKIP
 LOOP
 ENDIF

 * find the layer record in laythick file
 SELECT 2
 SEEK STR(MSID,4)+STR(MSTR,2)+STR(MLAY,2)
 IF .NOT. FOUND()
 SELECT 1
 DISPLAY FIELDS SID_NO, STRUCNUM, LAYNUM OFF
 M_ERROR = M_ERROR + 1
 ENDIF
 SELECT 1
 SKIP
ENDDO

CLEAR
? CHR(12)
SET ALIKE OFF
SELE 1
use
SELE 2
USE
USE \PAVEDB\EDITUPDT\LAYTCHNG INDEX \PAVEDB\EDITUPDT\LAYTCHNG PACK
USE
CLOSE ALTE
IF M_ERROR <> 0
 M_OK = M_OK + 1
ENDIF
RETURN

408
SUBSYSTEM: EDIT & UPDATE
PROG NAME: PATCH
Called From: GINSAYR
PROJECT 2456 - TEXAS FLEXIBLE PAVEMENT DATABASE CONVERSION
TAMU/TTI
AUTHOR: TREVOR X. PEREIRA
PURPOSE: CHECKS THE TEMPORARY LOCATION FILE FOR ERRORS AND THEN MAKES IT THE MASTER LOCATION FILE

SET TALK OFF
CLEAR
USE \\PAVEDB\\EDITUPDT\\LOCNCHG INDE \\PAVEDB\\EDITUPDT\\LOCNCHG
M ERROR = "LOCATION FILE - INCORRECT DATA ENTERED"
M ERROR2 = "---------"
SET ALITE TO LOCNERR
SET ALITE ON
MERRORCNT = 0
? M_ERROR
? M_ERROR2
DO WHILE .NOT. EOF()
 MSID NO = SID NO
 * calculates the correct Sid Number
 STORE 0 TO VAR1, VAR2, VAR3, COMPARE
 VAR1 = INT(MSID NO/1000)
 VAR2 = MOD(INT(MSID NO/100),10)
 VAR2 = VAR2 * 2
 VAR3 = MOD(INT(MSID NO/10),10)
 VAR3 = VAR3 * 3
 VAR4 = MOD(VAR1,10)+VAR2+VAR3
 COMPARE = MOD(VAR4,10)

 * compares calculated Sid number with Sid number entered
 IF COMPARE <> MOD(MSID NO,10)
 MERRORCNT = MERRORCNT + 1
 DISPLAY FIELD SID NO OFF
 ? "SID NUMBER IS NOT VALID"
 ? " "
 ? " "
 ENDIF

 * verifies that Sid number has been entered
 IF MSID NO = 0
 MERRORCNT = MERRORCNT + 1
 DISPLAY FIELD SID NO OFF
 ? "SID NUMBER IS NOT VALID"
 ? " "
 ? " "
 ENDIF

 ? M_ERROR
 ? M_ERROR2

END DO
IF HWYDIST < 0 .OR. HWYDIST > 27
 DISPLAY FIELDS SID NO, HWYDIST OFF
 MERRORCNT = MERRORCNT + 1
ENDIF
IF CNTYNUM < 0 .OR. CNTYNUM > 270
 DISPLAY FIELDS SID NO, CNTYNUM OFF
 MERRORCNT = MERRORCNT + 1
ENDIF
DO CASE
 CASE HWYPREFIX = "FM"
 CASE HWYPREFIX = "SH"
 CASE HWYPREFIX = "IH"
 CASE HWYPREFIX = "US"
 CASE HWYPREFIX = "SP"
 CASE HWYPREFIX = "LP"
 CASE HWYPREFIX = "PR"
 OTHERWISE
 DISPLAY FIELDS SID NO, HWYPREFIX OFF
 MERRORCNT = MERRORCNT + 1
ENDCASE
IF HWYNUM = 0
 DISPLAY FIELDS SID NO, HWYNUM OFF
 MERRORCNT = MERRORCNT + 1
ENDIF
IF EDISSIGN = "+" .OR. EDISSIGN = "-"
ELSE
 DISPLAY FIELDS SID NO, EDISSIGN OFF
 MERRORCNT = MERRORCNT + 1
ENDIF
IF EDISSIGN = "+" .OR. EDISSIGN = "-"
ELSE
 DISPLAY FIELDS SID NO, EDISSIGN OFF
 MERRORCNT = MERRORCNT + 1
ENDIF
IF LANEID = "R" .OR. LANEID = "L"
ELSE
 DISPLAY FIELDS SID NO, LANEID OFF
 MERRORCNT = MERRORCNT + 1
ENDIF
IF BEGIN = 0 .AND. ENDIN = 0
 DISPLAY FIELDS SID NO, BEGIN, ENDIN OFF
 MERRORCNT = MERRORCNT + 1
ENDIF
IF MINIMO < 0 .OR. MINIMO > 12
 DISPLAY FIELDS SID NO, MINIMO OFF
 MERRORCNT = MERRORCNT + 1
ENDIF
IF NUMLANES < 1 .OR. NUMLANES > 22
 DISPLAY FIELDS SID NO, NUMLANES OFF
 MERRORCNT = MERRORCNT + 1
ENDIF
IF PREVSID <> 0
 MPREVSID = PREVSID
 MBEGMPST = BEGMPS

MBDISSIGN = BDISSIGN
MEMPSDIS = BMPSTDIS
MENDMPST = ENDMPS
MEDISSIGN = EDISSIGN
MEMPSDIS = EMPSTDIS
SEEK MPREVSID
IF .NOT. FOUND(
SEEK MSID_NO
DISPLAY FIELD SID_NO, PREVSID OFF
? " SID Number NOT present in location file"
? "."
? "."
MERRORCNT = MERRORCNT + 1
ELSE
IF M лечения <> BEGMPST .OR. MBDISSIGN <> BDISSIGN .OR. MEMPSDIS <>

MEMPSDIS
SEEK MSID_NO
DISPLAY FIELD SID_NO, PREVSID OFF
? " SID Number and PREVIOUS SID Beginning Mile Post do not match"
? "."
? "."
MERRORCNT = MERRORCNT + 1
ENDIF
SEEK MPREVSID
IF MENIDMPST <> ENDMPS .OR. MEDISSIGN <> EDISSIGN .OR. MEMPSDIS <>

MEMPSDIS
SEEK MSID_NO
DISPLAY FIELD SID_NO, PREVSID OFF
? " SID Number and PREVIOUS SID Beginning Mile Post do not match"
? "."
? "."
MERRORCNT = MERRORCNT + 1
ENDIF
SEEK MSID_NO
ENDIF
IF NEXISID <> 0
MNEXISID = NEXISID
SEEK MNEXISID
IF .NOT. FOUND(
SEEK MSID_NO
DISPLAY FIELD SID_NO, NEXISID OFF
? " SID Number NOT present in location file"
? "."
? "."
MERRORCNT = MERRORCNT + 1
ENDIF
SEEK MSID_NO
ENDIF
IF CONTROL = 0
DISPLAY FIELDS SID NO, CONTROL OFF
MERRORCNT = MERRORCNT + 1
ENDIF
IF SECTION = 0

411
DISPLAY FIELDS SID NO, SECTION OFF
 MERRORCNT = MERRORCNT + 1
ENDIF
IF FUNCAS < 0 .OR. FUNCAS > 7
 DISPLAY FIELDS SID NO, FUNCAS OFF
 MERRORCNT = MERRORCNT + 1
ENDIF
IF ENMPST = 0
 DISPLAY FIELDS SID NO, ENMPST OFF
 MERRORCNT = MERRORCNT + 1
ENDIF
IF EMPSTDIS < 0
 DISPLAY FIELDS SID NO, EMPSTDIS OFF
 MERRORCNT = MERRORCNT + 1
ENDIF
IF EMPSTDIS < 0
 DISPLAY FIELDS SID NO, EMPSTDIS OFF
 MERRORCNT = MERRORCNT + 1
ENDIF
IF MNTYR < 20 .OR. MNTYR > 99
 DISPLAY FIELDS SID NO, HWYNUM OFF
 MERRORCNT = MERRORCNT + 1
ENDIF
IF .NOT. ACTVFLAG
 IF INACTYR < 50 .OR. INACTYR > 99
 DISPLAY FIELDS SID NO, INACTYR OFF
 MERRORCNT = MERRORCNT + 1
 ENDIF
 IF INACIMO < 0 .OR. INACIMO > 12
 DISPLAY FIELDS SID NO, INACIMO OFF
 MERRORCNT = MERRORCNT + 1
 ENDIF
ENDIF
IF ACTVFLAG
 IF INACTYR <> 0
 DISPLAY FIELDS SID NO, INACTYR OFF
 " Inactive Flag and Inactive YEAR are inconsistent"
 " "
 " "
 MERRORCNT = MERRORCNT + 1
 ENDIF
 IF INACIMO <> 0
 DISPLAY FIELDS SID NO, INACIMO OFF
 " Inactive Flag and Inactive MONTH are inconsistent"
 " "
 " "
 MERRORCNT = MERRORCNT + 1
 ENDIF
 IF NE>TSID <> 0
 DISPLAY FIELDS SID NO, NE>TSID OFF
 " Cannot point to Another SID number when present SID number is active"
 " "
 " "
 MERRORCNT = MERRORCNT + 1
 ENDIF
ENDIF
MERRORCNT = MERRORCNT + 1
ENDIF
ENDIF
SKIP
ENDDO
use
USE \PAVEDB\EDITUPDT\LOCNCHNG INDE \PAVEDB\EDITUPDT\LOCNCHNG
PACK
USE
* reset parameters
CLEAR
? CHR(12)
SET ALTE OFF
CLOSE ALTE
IF MERRORCNT <> 0
 M_OK = M_OK + 1
ENDIF
RETURN
* *
* SUBSYSTEM: EDIT & UPDATE INVENTORY FILES
* PROGRAM NAME: CHEKSUBG.PRG 06/21/88
* CALLED FROM: CHNGLAYR.PRG
* PROJECT 2456 - TEXAS FLEXIBLE PAVEMENT DATABASE CONVERSION
* TAMU/TTI
* AUTHOR: TREVOR X. PEREIRA
* PURPOSE: TO LIST THE SUBGRADE FILE RECORDS THAT HAVE ERRORS
*
*
* TO LIST THE SUBGRADE FILE RECORDS THAT ARE NOT PRESENT
* IN THE MASTER LAYER IDENTIFICATION FILE
*
* set parameters
set talk off
set echo off
SET ALTE TO SUBGERR
CLEAR
M_ERROR = 0

M_TITIE = " SUBGRADE FILE - LIST OF RECORDS NOT PRESENT IN LAYER ID FILE"
M_TITIE2 = "---"
SET ALTE ON
? M_TITIE
? M_TITIE2

* assign files to different work areas
SELECT 1
USE \PAVEDB\EDITUPD\LAYRCHNG INDEX \PAVEDB\EDITUPD\LAYRCHNG
SELECT 2
USE \PAVEDB\EDITUPD\SUBGCHNG INDEX \PAVEDB\EDITUPD\SUBGCHNG
DO WHILE .NOT. EOF()
MSUBGSID = SID NO
MSUBGLAY = " 1"
MSUBGSTR = " 1"

* find the subgrade sid number in layer identification file
SELECT 1
seek str(MSUBGSID,4)+MSUBGLAY+MSUBGSTR
IF .NOT. FOUND()
SELECT 2
DISPLAY FIELD SID_NO, STRUCNUM, LAYNUM OFF
M_ERROR = M_ERROR + 1
ENDIF
SELECT 2
SKIP
ENDDO
* TO LIST OUT ALL DATA THAT IS OUT OF RANGE IN THE SUBGRADE FILE
*

* print out page heading
M_TITLE = "SUBGRADE FILE - OUT OF RANGE RECORDS"
M_TITLE2 = "---"

USE \PAVEDB\EDITUPDT\SUBGCHNG INDEX \PAVEDB\EDITUPDT\SUBGCHNG

* do a range check for all fields
DO WHILE NOT. EOF()
 IF PLASTIX < 0 .OR. PLASTIX > 70
 IF PLASTIX <> 0
 DISPLAY FIELDS SID NO, STRUCNUM, LAYNUM, PLASTIX OFF
 M_ERROR = M_ERROR + 1
 ENDF
 ENDF
 IF LIQLIM < 10 .OR. LIQLIM > 80
 IF LIQLIM <> 0
 DISPLAY FIELDS SID NO, STRUCNUM, LAYNUM, LIQLIM OFF
 M_ERROR = M_ERROR + 1
 ENDF
 ENDF
 IF TXTRIAXL < 1 .OR. TXTRIAXL > 6
 IF TXTRIAXL <> 0
 DISPLAY FIELDS SID NO, STRUCNUM, LAYNUM, TXTRIAXL OFF
 M_ERROR = M_ERROR + 1
 ENDF
 ENDF
 IF PERMIX < 0 .OR. PERMIX > 10
 DISPLAY SID NO, STRUCNUM, LAYNUM, PERMIX OFF
 M_ERROR = M_ERROR + 1
 ENDF
 SKIP
ENDDO
CLEAR
? " "
? " "
? " "
? " "

415
* LIST OF INCORRECT SID NUMBERS FOR THE SUBGRADE FILE
*
M TITLE = "SUBGRADE FILE - INCORRECT SID NUMBERS"
M TITLE2 = "---"
? M TITLE
? M TITLE2

USE \PAVEDB\EDITUPDT\SUBGCHNG INDEX \PAVEDB\EDITUPDT\SUBGCHNG

* initialize variables
STORE 0 TO VAR1, VAR2, VAR3, VAR4, COMPARE

* calculate correct Sid number check digit
DO WHILE .NOT. EOF()
 VAR1 = INT(SID_NO/1000)
 VAR2 = MOD(INT(SID_NO/100),10)
 VAR2 = VAR2 * 2
 VAR3 = MOD(INT(SID_NO/10),10)
 VAR3 = VAR3 * 3
 VAR4 = MOD(VAR1,10)+VAR2+VAR3
 COMPARE = MOD(VAR4,10)

 * compare calculated check digit with actual check digit
 IF COMPARE <> MOD(SID_NO,10)
 DISPLAY SID_NO, STRUCNUM, LAYNUM OFF
 M_ERROR = M_ERROR + 1
 ENDIF
 IF SID_NO = 0
 DISPLAY SID_NO, STRUCNUM, LAYNUM OFF
 M_ERROR = M_ERROR + 1
 ENDIF
 SKIP
ENDDO
USE

* reset parameters
CLEAR

* TO LIST ALL LAYER IDENTIFICATION RECORDS NOT PRESENT IN THE SUBGRADE FILE
*
CLEAR
* print out the page heading
M TITLE = "SUBGRADE FILE - LIST OF ALL LAYER ID RECORDS NOT"
M_TITLE2 = " PRESENT IN THE SUBGRADE FILE"
M TITLE3 = "-----------------------------"
? M TITLE
? M TITILE2
? M TITILE3

* assign files to different work areas
SELECT 1
 USE \PAVEDB\EDITUPDT\LAYRCNG INDEX \PAVEDB\EDITUPDT\LAYRCNG
SELECT 2
 USE \PAVEDB\EDITUPDT\SUBGCHNG INDEX \PAVEDB\EDITUPDT\SUBGCHNG

SELECT 1
MSID = SID NO
MSTRUC = "1"
MLAYNUM = "1"
DO WHILE .NOT. EOF()
 SELECT 2
 seek str(MSID,4)+MSTRUC+MLAYNUM
 IF .NOT. FOUND()
 SELECT 1
 DISPLAY FIELD SID NO, STRUCNUM, LAYNUM OFF
 M_ERROR = M_ERROR + 1
 ENDIF
 SELECT 1
 DO WHILE .NOT. EOF() .AND. SID_NO = MSID
 SKIP
 ENDDO
 MSID = SID NO
ENDDO
SELECT 1
use
SELECT 2
use
USE \PAVEDB\EDITUPDT\SUBGCHNG INDEX \PAVEDB\EDITUPDT\SUBGCHNG
PACK
USE
CLEAR
? CHR(12)
SET ALTE OFF
CLOSE ALTE
IF M_ERROR <> 0
 M_OK = M_OK + 1
ENDIF
RETURN

417
* SUBSYSTEM: EDIT & UPDATE INVENTORY FILES
* PROGRAM NAME: CHEKSURF.PRG 06/23/88
* CALLED FROM: CHNGLAYR.PRG
* PROJECT 2456 - TEXAS FLEXIBLE PAVEMENT DATABASE CONVERSION
* TAMU/TTI
* AUTHOR: TREVOR X. PEREIRA
* PURPOSE: LISTS THE SURFACE FILE RECORDS THAT HAVE ERRORS
*
* LISTS THE SURFACE FILE RECORDS THAT ARE NOT PRESENT IN
* THE MASTER LAYER IDENTIFICATION FILE
*
* set parameters
set talk off
set echo off
SET ALTE TO SURFERR
CLEAR
M_ERROR = 0

M_TITLE = "SURFACE FILE - LIST OF RECORDS NOT PRESENT IN LAYER ID FILE"
M_TITLE2 = "---"
SET ALTE ON
? M_TITLE
? M_TITLE2

* assign files to different work areas
SELECT 1
 USE \PAVEDB\EDITUPDT\LAYRCNG INDEX \PAVEDB\EDITUPDT\LAYRCNG
SELECT 2
 USE \PAVEDB\EDITUPDT\SURFCHNG INDEX \PAVEDB\EDITUPDT\SURFCHNG

DO WHILE .NOT. EOF()
 * store surface record in memory
 MSURFSID = SID_NO
 MSURFSIR = STRUCNUM
 MSURFLAY = LAYNUM

 * find the layer ID record that matches surface record
 SELECT 1
 SEEK SIR(MSURFSID,4)+SIR(MSURFSIR,2)+SIR(MSURFLAY,2)
 IF .NOT. FOUND()
 SELE 2
 DISPLAY FIELDS SID_NO, STRUCNUM, LAYNUM OFF
 M_ERROR = M_ERROR + 1
 ELSE
 SELE 2
 ENDF
* TO LIST ALL OUT OF RANGE DATA IN THE SURFACE FILE *

* print out page headings
M_TITIE = "SURFACE FILE - OUT OF RANGE RECORDS"
M_TITIE2 = "--"
? M_TITIE
? M_TITIE2

USE \PAVEDB\EDITUPDT\SURFCHNG INDEX \PAVEDB\EDITUPDT\SURFCHNG

* check data with ranges
DO WHILE .NOT. EOF()
 IF STRUCNUM < 1 .OR. STRUCNUM > 9
 DISPLAY FIELDS SID NO, STRUCNUM, LAYNUM, STRUCNUM OFF
 M_ERROR = M_ERROR + 1
 ENDIF
 IF LAYNUM < 1 .OR. LAYNUM > 13
 DISPLAY FIELDS SID NO, STRUCNUM, LAYNUM, LAYNUM OFF
 M_ERROR = M_ERROR + 1
 ENDIF
 IF AGAPPIRT < 30 .OR. AGAPPIRT > 200
 IF AGAPPIRT <> 0
 DISPLAY SID NO, STRUCNUM, LAYNUM, AGAPPIRT OFF
 M_ERROR = M_ERROR + 1
 ENDIF
 ENDIF
 IF ADMXPER < 0 .OR. ADMXPER > 10.2
 DISPLAY SID NO, STRUCNUM, LAYNUM, ADMXPER OFF
 M_ERROR = M_ERROR + 1
 ENDIF
 IF ASAPPIRT < .1 .OR. ASAPPIRT > .6
 IF ASAPPIRT <> 0
 DISPLAY SID NO, STRUCNUM, LAYNUM, ASAPPIRT OFF
 M_ERROR = M_ERROR + 1
 ENDIF
 ENDIF
 SKIP
ENDDO
? " "

419
* TO LIST ALL INCORRECT SID NUMBERS FOR SURFACE FILE
*
CLEAR
* print out page heading
MITLE = "SURFACE FILE - INCORRECT SID NUMBERS"
MITLE2 = "---"
MITLE
MITLE2

* initialize variables
STORE 0 TO VAR1, VAR2, VAR3, VAR4, COMPARE

* calculate check digit of Sid number
DO WHILE .NOT. EOF()
 VAR1 = INT(SID_NO/1000)
 VAR2 = MOD(INT(SID_NO/100),10)
 VAR2 = VAR2 * 2
 VAR3 = MOD(INT(SID_NO/10),10)
 VAR3 = VAR3 * 3
 VAR4 = MOD(VAR1,10)+VAR2+VAR3
 COMPARE = MOD(VAR4,10)
 ENDIF
 IF COMPARE <> MOD(SID_NO,10)
 DISPLAY SID_NO, STRUCNUM, LAYNUM OFF
 M_ERROR = M_ERROR + 1
 ENDDO
 IF SID_NO = 0
 DISPLAY SID_NO, STRUCNUM, LAYNUM OFF
 M_ERROR = M_ERROR + 1
 ENDIF
 SKIP
ENDDO

USE
* TO LIST ALL LAYER IDENTIFICATION RECORDS THAT ARE NOT
* PRESENT IN THE SURFACE FILE
*
CLEAR
* print out page heading
M TITLE = "SURFACE FILE - LIST OF ALL LAYER ID RECORDS NOT"
M TITLE2 = "PRESENT IN THE SURFACE FILE"
M TITLE3 = "---"
? M TITLE
? M TITLE2
? M TITLE3

* assign files to different work areas
SELECT 1
 USE \PAVEDB\EDITUPDT\LAYRCHNG INDEX \PAVEDB\EDITUPDT\LAYRCHNG
SELECT 2
 USE \PAVEDB\EDITUPDT\SURFCHNG INDEX \PAVEDB\EDITUPDT\SURFCHNG
SELECT 1
DO WHILE .NOT. EOF()
 STORE .T. TO GOTIT

* find the surface layers in Layer ID file
DO WHILE GOTIT
 MSID = SID NO
 MSIR = STRUCNUM
 MLAY = LAYNUM
 IF LAYMATCL < 17
 GOTIT = .F.
 MDESC = LAYMATCL
 ELSE
 SKIP
 ENDF
ENDDO

* find the Layer ID record in Surface file
SELECT 2
SEEK SIR(MSID,4)+SIR(MSIR,2)+SIR(MLAY,2)
IF .NOT. FOUND()
 SELECT 1
 DISPLAY FIELDS SID NO, STRUCNUM, LAYNUM OFF
 M ERROR = M_ERROR + 1
ENDIF
SELECT 1
SKIP
ENDDO
SELE 1
use
SELE 2
USE \PAVEDB\EDITUPDT\SURFCHNG INDEX \PAVEDB\EDITUPDT\SURFCHNG
PACK
USE
CLEAR
? CHR(12)
SET ALITE OFF
CLOSE ALITE
IF M_ERROR <> 0
 M_OK = M_OK + 1
ENDLF
RETURN
Section 4: Traffic Data Update
Traffic Tape to Disk

PROGRAM NARRATIVE

This program is for use with a 6250 BPI Cipher GRC CacheTape tape drive system manufactured by Overland Data Incorporated (ODI). It utilizes the ODI DEPOT2 program to copy a tape file to a disk file. The DEPOT2 program is documented in Chapter 4 of the ODI manual. STLOG.PAS (a subprogram of TRAFUPD.PRG) uses the disk file as an input file. The diskfile is stored in the subdirectory \PAVEDB\FILES.
PROGRAM SPECIFICATION

PROGRAM NAME: READIRAF.BAT

PURPOSE: To copy the Traffic data from a tape to a disk file using the ODI DEPOT2 program.

INPUT FILE: The annual Roadway Inventory Tape File (RIFILE) obtained from the Texas State Department of Highways and Public Transportation.

OUTPUT FILE: TLOG.DAT - Annual Roadway Inventory Disk File.

PROGRAMS CALLED:
- DEPOT2
- READIRAF.CMD - command file for DEPOT2
rem readtraf.bat issues the depot2 command which calls rem the cmd file to read the annual Roadway Inventory tape obtained rem from SDHPT
DEPOT2 /c READTRAFCMD
; READIRAF.CMD, a command file for the ODI program DEPOT2.
; Use as: DEPOT2 /c READIRAF.CMD
; Instructions on making out this command file are in Chapter 4
; of the ODI manual pages 4-26 to 4-28.
; Change D:\PAVEDEB\FILES\TLOG.DAT to the name of your output disk file,
; if needed.
; Change "/r nn" record length if needed.
; Change "/s nnnn" blocksize if needed.
; "/m 1" skips past the tape label.
; "/tvM" translates from EBCDIC. Verbose explanations, reads till End-
; Of-File mark at the end of the data.
/\ D:\PAVEDEB\FILES\TLOG.DAT /r 263 /s 263 /m 1 /tvM
Traffic Update

PROGRAM NARRATIVE

The traffic update program allows the user to update the Traffic File in the Texas Flexible Pavement Database. The source of new data for this process is the annual Roadway Inventory Data File (RIFILE) which is produced by D-10 of the Texas State Department of Highways and Public Transportation. The RIFILE data is copied from a tape to a disk file by a stand alone batch program (READTRAF.BAT). The program will extract relevant traffic information from the RIFILE file and through some intermediate data processing update the Traffic Database. Due to the normally large amount of data, this update procedure is time-consuming. It would thus make sense to perform it only once a year. The traffic update programs are stored in the subdirectory \PAVEDB\EDITUPDT\TRAFFIC. Other than the master traffic file, the files used by traffic update are stored in \PAVEDB\EDITUPDT\TRAFFIC.
TRAFFIC UPDATE - PROGRAM FLOW DIAGRAM

FIGURE 19
PROGRAM SPECIFICATION

PROGRAM NAME: TRAFUPD.PRG

PURPOSE: To use annual Roadway Information File (RIFILE) data to update the Texas Flexible Pavement Database (TRAFFIC.DBF) Traffic File.

PROCEDURES/EDITs:

1. The traffic data is received on a tape. It is copied from the tape to a disk file and converted from EBCDIC to ASCII format. The data is stored as a record per line in the new disk file. This process is performed by READTRAF.BAT and is not part of the menu system.

2. The Traffic File contains yearly information for each section identification number. The fields include annual average daily traffic (one-way), annual 18KIP, and percentage of trucks.

INPUT FILES: 1. Annual Roadway Inventory Disk File (TLOGxx.DAT where xx stands for the last 2 digits of the RIFILE year)

I/O FILES: 1. Traffic database file (TRAFFIC.DBF)

PROGRAMS CALLED:

STLOG.PAS
SIDTLOG.PRG
LOGTRAF.PRG
NEWTRAF.PRG

NOTE: 1) Where TLOG is used in the following documentation it is referring to the RIFILE.

2) Program Flow Diagrams, Program Specifications, related file layouts, and the program listings are provided in the remainder of this section for each of the called programs.
Traffic Update
TLOG File Record Layout

Roadway Information (RFILE) File Layout

<table>
<thead>
<tr>
<th>LABEL</th>
<th>TYPE</th>
<th>LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUB FILE NUMBER</td>
<td>CHAR</td>
<td>1</td>
</tr>
<tr>
<td>FILE NUMBER</td>
<td>CHAR</td>
<td>1</td>
</tr>
<tr>
<td>THD DISTRICT</td>
<td>NUM</td>
<td>2</td>
</tr>
<tr>
<td>THD COUNTY</td>
<td>NUM</td>
<td>3</td>
</tr>
<tr>
<td>SHD CONTROL NUMBER</td>
<td>CHAR</td>
<td>4</td>
</tr>
<tr>
<td>SHD SECTION NUMBER</td>
<td>CHAR</td>
<td>2</td>
</tr>
<tr>
<td>SHD CONTROL/SECTION NUMBER</td>
<td>CHAR</td>
<td>6</td>
</tr>
<tr>
<td>BEGINNING MILEPOINT</td>
<td>NUM</td>
<td>5.3</td>
</tr>
<tr>
<td>ENDING MILEPOINT</td>
<td>NUM</td>
<td>5.3</td>
</tr>
<tr>
<td>LENGTH OF SECTION</td>
<td>NUM</td>
<td>5.3</td>
</tr>
<tr>
<td>DESIGNATED HIGHWAY SYSTEM</td>
<td>CHAR</td>
<td>2</td>
</tr>
<tr>
<td>DESIGNATED HIGHWAY NUMBER</td>
<td>CHAR</td>
<td>4</td>
</tr>
<tr>
<td>HIGHWAY STATUS</td>
<td>CHAR</td>
<td>1</td>
</tr>
<tr>
<td>RIGHT-OF-WAY WIDTH (IN FEET)</td>
<td>CHAR</td>
<td>3</td>
</tr>
<tr>
<td>HIGHWAY DESIGN TYPE</td>
<td>CHAR</td>
<td>1</td>
</tr>
<tr>
<td>ROAD BED WIDTH (IN FEET)</td>
<td>CHAR</td>
<td>3</td>
</tr>
<tr>
<td>BASE TYPE</td>
<td>CHAR</td>
<td>1</td>
</tr>
<tr>
<td>SURFACE WIDTH (IN FEET)</td>
<td>CHAR</td>
<td>3</td>
</tr>
<tr>
<td>COMBINATION OF TWO OR MORE SURFACE TYPES</td>
<td>CHAR</td>
<td>1</td>
</tr>
<tr>
<td>SURFACE TYPE</td>
<td>CHAR</td>
<td>2</td>
</tr>
<tr>
<td>NUMBER OF LANES</td>
<td>CHAR</td>
<td>2</td>
</tr>
<tr>
<td>SHOULDERS TYPE</td>
<td>CHAR</td>
<td>2</td>
</tr>
<tr>
<td>DATE OF LAST MILEPOST CHANGE (YMM)</td>
<td>CHAR</td>
<td>4</td>
</tr>
<tr>
<td>YEAR OF LAST MILEPOST CHANGE</td>
<td>CHAR</td>
<td>2</td>
</tr>
<tr>
<td>MONTH OF LAST MILEPOST CHANGE</td>
<td>CHAR</td>
<td>2</td>
</tr>
<tr>
<td>ADMINISTRATIVE SYSTEM</td>
<td>CHAR</td>
<td>2</td>
</tr>
<tr>
<td>TYPE RESERVATION SECTION LOCATED IN</td>
<td>CHAR</td>
<td>2</td>
</tr>
<tr>
<td>DESIGNATED WAY FEDERAL AID CODE</td>
<td>CHAR</td>
<td>2</td>
</tr>
<tr>
<td>1982 FUNCTIONAL CLASSIFICATION</td>
<td>CHAR</td>
<td>1</td>
</tr>
<tr>
<td>URBAN-RURAL FUNCTIONAL CLASSIFICATION</td>
<td>CHAR</td>
<td>1</td>
</tr>
<tr>
<td>CONNECTION LINK CODE (FUNCTIONAL CLASS)</td>
<td>CHAR</td>
<td>1</td>
</tr>
<tr>
<td>MAINTENANCE SECTION NUMBER</td>
<td>CHAR</td>
<td>2</td>
</tr>
<tr>
<td>MAINTENANCE CLASS CODE</td>
<td>CHAR</td>
<td>2</td>
</tr>
<tr>
<td>RESTRICTED LOAD LIMIT</td>
<td>CHAR</td>
<td>2</td>
</tr>
<tr>
<td>SPECIAL SYSTEMS</td>
<td>CHAR</td>
<td>2</td>
</tr>
<tr>
<td>TRUCKS OR COMMERCIAL VEHICLES</td>
<td>CHAR</td>
<td>1</td>
</tr>
<tr>
<td>CITY NUMBER</td>
<td>NUM</td>
<td>5</td>
</tr>
<tr>
<td>URBAN AREA NUMBER</td>
<td>NUM</td>
<td>5</td>
</tr>
<tr>
<td>HWY PERFORMANCE MONITORING SYST SECTION</td>
<td>CHAR</td>
<td>12</td>
</tr>
<tr>
<td>YEAR OF CURRENT AADT</td>
<td>NUM</td>
<td>2</td>
</tr>
<tr>
<td>ANNUAL AVG DAILY TRAFFIC, CURRENT YEAR</td>
<td>NUM</td>
<td>6</td>
</tr>
<tr>
<td>AADT FOR 1 YEAR PRIOR TO CURRENT YEAR</td>
<td>NUM</td>
<td>6</td>
</tr>
<tr>
<td>AADT FOR 2 YEARS PRIOR TO CURRENT YEAR</td>
<td>NUM</td>
<td>6</td>
</tr>
<tr>
<td>AADT FOR 3 YEARS PRIOR TO CURRENT YEAR</td>
<td>NUM</td>
<td>6</td>
</tr>
<tr>
<td>AADT FOR 4 YEARS PRIOR TO CURRENT YEAR</td>
<td>NUM</td>
<td>6</td>
</tr>
</tbody>
</table>
Roadway Information (RIFI) File Layout (continued)

<table>
<thead>
<tr>
<th>LABEL</th>
<th>TYPE</th>
<th>LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>AADT FOR 5 YEARS PRIOR TO CURRENT YEAR</td>
<td>NUM</td>
<td>6</td>
</tr>
<tr>
<td>AADT FOR 6 YEARS PRIOR TO CURRENT YEAR</td>
<td>NUM</td>
<td>6</td>
</tr>
<tr>
<td>AADT FOR 7 YEARS PRIOR TO CURRENT YEAR</td>
<td>NUM</td>
<td>6</td>
</tr>
<tr>
<td>AADT FOR 8 YEARS PRIOR TO CURRENT YEAR</td>
<td>NUM</td>
<td>6</td>
</tr>
<tr>
<td>AADT FOR 9 YEARS PRIOR TO CURRENT YEAR</td>
<td>NUM</td>
<td>6</td>
</tr>
<tr>
<td>DAILY VEHICLE MILES FOR CURRENT YEAR</td>
<td>NUM</td>
<td>8</td>
</tr>
<tr>
<td>DESIGN YEAR</td>
<td>NUM</td>
<td>2</td>
</tr>
<tr>
<td>YEARLY ADT INCREASE FACTOR</td>
<td>NUM</td>
<td>4.2</td>
</tr>
<tr>
<td>ESTIMATED AADT FOR DESIGN YEAR</td>
<td>NUM</td>
<td>6</td>
</tr>
<tr>
<td>ESTIMATED DESIGN YEAR DAILY VEH. MILES</td>
<td>NUM</td>
<td>8</td>
</tr>
<tr>
<td>DESIGN HOUR'S % OF THE 24 HR AADT</td>
<td>NUM</td>
<td>3.1</td>
</tr>
<tr>
<td>DIRECTIONAL DISTRIBUTION IN DHV</td>
<td>NUM</td>
<td>2</td>
</tr>
<tr>
<td>% TRUCKS IN AADT</td>
<td>NUM</td>
<td>3.1</td>
</tr>
<tr>
<td>% TRUCKS IN DHV</td>
<td>NUM</td>
<td>3.1</td>
</tr>
<tr>
<td>AVG 10 HEAVIEST WHEEL LOADS (IN 100 LBS.)</td>
<td>NUM</td>
<td>3</td>
</tr>
<tr>
<td>% TANDEM AXLES IN AHWLD w FIELD</td>
<td>NUM</td>
<td>2</td>
</tr>
<tr>
<td># OF WHEEL LOADS 1/2 8000 LBS</td>
<td>NUM</td>
<td>5</td>
</tr>
<tr>
<td>18K FLEX. PAVEMENT ANALYSIS (IN 1000'S)</td>
<td>NUM</td>
<td>5</td>
</tr>
<tr>
<td>18K RIGID PAVEMENT ANALYSIS (IN 1000'S)</td>
<td>NUM</td>
<td>5</td>
</tr>
<tr>
<td>DESIGN HOUR VOLUME</td>
<td>NUM</td>
<td>5</td>
</tr>
<tr>
<td>CONTROL-SECTION LENGTH (NEAREST .001)</td>
<td>NUM</td>
<td>5.3</td>
</tr>
<tr>
<td>PRIORITY HIGHWAY SYSTEM</td>
<td>CHAR</td>
<td>2</td>
</tr>
<tr>
<td>PRIORITY HIGHWAY NUMBER</td>
<td>NUM</td>
<td>4</td>
</tr>
<tr>
<td>CONTROL-SECTION LENGTH (NEAREST .1)</td>
<td>NUM</td>
<td>3.1</td>
</tr>
<tr>
<td>CONTROL-SECTION VEHICLE MILES</td>
<td>NUM</td>
<td>16</td>
</tr>
</tbody>
</table>
PROGRAM LISTING

* File name: TRAFUPD.FRG
* Written by: Victor Wong
* Created on: April 8, 1988
* Last updated: April 8, 1988
* Purpose: To use new RI2-TLOG data to update Texas Flexible Pavement Traffic Database.

* warn user of this time-consuming process
CLEAR
RES = ""
@ 10,16 SAY "This process will update the TRAFFIC database by"
@ 11,16 SAY "retrieving new data from RI2-TLOG file. Because"
@ 12,16 SAY "of the size of the data file, this process will"
@ 13,16 SAY "take a very long time (at least over night)!!" "
@ 15,16 SAY "Do you still want to proceed? (Y/N)" GET RES
READ

IF RES $ "yY"
* extract traffic information from RI2-TLOG data file
RUN \PAVEDB\EDITUPDT\TRAFFIC\STI.OG

* order simplified RI2-TLOG data by section identification number
DO \PAVEDB\EDITUPDT\TRAFFIC\SIDTLOG

* calculate the Traffic information from the TLOG data
DO \PAVEDB\EDITUPDT\TRAFFIC\LOGITRAF

* update the old Traffic database by adding TLOG Traffic data
DO \PAVEDB\EDITUPDT\TRAFFIC\NEWITRAF
ENDIF
RETURN
SUBPROGRAM STLOG.PAS - PROGRAM FLOW DIAGRAM

FIGURE 20
Program Name: STLOG.PAS

Purpose: To simplify the TLOG data by extracting only fields that are required to calculate the values for the Traffic Database File.

Procedures/Edit:

1. The subprogram produces a simplified TLOG data file (STLOG.DIM) from the complete data set (TLOGxx.DAT). The extracted data is stored in a blank-delimited format.

Input Files(s):

1. TLOG data file (TLOG.DAT).

Output Files(s):

1. Simplified TLOG data file (STLOG.DIM).
Traffic Update
Subprogram 1: STLOG

STLOG Delimited File Record Layout

File Name: STLOG.DIM

<table>
<thead>
<tr>
<th>Description</th>
<th>Size/Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Section number</td>
<td>4N</td>
</tr>
<tr>
<td>Beginning Mile Point</td>
<td>6.3N</td>
</tr>
<tr>
<td>Ending Mile Point</td>
<td>6.3N</td>
</tr>
<tr>
<td>Year of Current AADT</td>
<td>2N</td>
</tr>
<tr>
<td>Annual Average Daily Traffic, Current Year (AADT)</td>
<td>6N</td>
</tr>
<tr>
<td>AADT Increase Factor (x 0.01)</td>
<td>4N</td>
</tr>
<tr>
<td>Estimated AADT for Design Year</td>
<td>6N</td>
</tr>
<tr>
<td>Percent Trucks in AADT (x 0.1)</td>
<td>3N</td>
</tr>
<tr>
<td>Estimated 18K Flexible Pavement (x 1000)</td>
<td>5N</td>
</tr>
</tbody>
</table>
(* File name: STLOG.PAS
* Program name: stlog
* Project 2456: Texas Flexible Pavement Database Conversion
* TAMU/TTI
* Written by: Victor Wong
* Purpose: This program simplifies the data from TLOG file. The only data extracted is Control Section number, Beginning Mile Point (BMP), Ending Mile Point (EMP), Current year, Annual Average Daily Traffic data (AADT), Design year, Average Daily Traffic Increase Factor (ADT_INCR_FACTOR), Estimated Average Daily Traffic (EST_ADT), Percentage of traffic is Trucks (PERCENT_TRUCK), and Estimated 18KIP.
* Input File: TLOG text data file
* Output File: STLOG.DEL
* NOTE: This procedure only works for TLOG data file AFTER 1985.
)}

{>>> PROGRAM STLOG <<<}
program stlog;

{>>> variables declarations <<<}
var
 in_file, out_file: text; {input & output files}
 skip_junk_1 : string[7]; {control section number}
 cntl_section_no : string[6]; {beginning & ending mile points}
 bmp_1, emp_1 : string[2]; {mile points}
 bmp_2, emp_2 : string[3];
 skip_junk_2 : string[96];
 current_yr : string[2]; {current yr of adt data}
 aadt : array [1..10] of string[6];
 skip_junk_3 : string[8];
 design_yr : string[2]; {design year}
 adt_incr_factor : string[4]; {act increment factor}
 est_adt : string[6]; {estimated adt}
 skip_junk_4 : string[13];
 percent_truck : string[3]; {percent truck}
 skip_junk_5 : string[13];
 est_18K : string[5]; {estimated 18k}
 count : integer;
 ok: boolean;
 krec, rec: integer;

{>>> beginning of STLOG.PAS <<<}
begin
 Clrscr;
gotoxy (20,10);
write ('<< STLOG running ... >>');
gotoxy (20,11);
write (' Simplifying the TLOG data.');

assign (in file, '"pavedb\tlog.dat"');
reset (in_file);

assign (out file, '"pavedb\editupdt\traffic\stlog.dlm"');
rewrite (out_file);

krec:= 0;
rec:= 0;

gotoxy (20,15);
write ('Extracting data from TLOG data file ... ');

gotoxy (20,16);
write (krec:3, ',', rec:3, ' records extracted');

{--- do record by record until end of file for in_file---}
while not eof (in_file) do
 begin
 {read in control section number}
 read (in_file, skip_junk_1, cntl_section_no);

 {read the rest of the info}
 if cntl_section_no is present
 if (cntl_section_no <> '000000')
 and (cntl_section_no <> '0')
 and (cntl_section_no <> '')
 then
 begin
 read (in_file, bmp_1, bmp_2);
 read (in_file, emp_1, emp_2);
 read (in_file, skip_junk_2, current_yr);

 {if current year is non-zero then continue}
 if current_yr <> '00' then
 begin
 for count:= 1 to 10 do
 read (in_file, aadt[count]);
 read (in_file, skip_junk_3, design_yr);
 read (in_file, adm_incr_factor, est_adt);
 read (in_file, skip_junk_4, percent_truck);
 readln (in_file, skip_junk_5, est_18K);

 {write out info}
 write (out_file, cntl_section_no, '"bmp_1",'');
 write (out_file, bmp_2, '"emp_1","emp_2"');
 if (design_yr <= '99') and (design_yr > '80') then
 write (out_file, ' 19', design_yr)
 else

write (out_file, ' 20', design_yr);
if (current_yr <= '99') and (current_yr > '80') then
 write (out_file, ' 19', current_yr)
else
 write (out_file, ' 20', current_yr);
write (out_file, ' ', aadt[1]);
write (out_file, ' ', adt_incr_factor, ' ', est_adt);
writeln (out_file, ' ', percent_truck, ' ', est_18K);

if (rec < 999) then
 begin
 rec := rec + 1;
 gotoxy (24,16);
 write (rec:3);
 end
else
 begin
 krec := krec + 1;
 gotoxy (20,16);
 write (krec:3);
 rec := 0;
 gotoxy (24,16);
 write (rec:3);
 end;
end; (if)
end; (if)
end; (while)

close input and output files
close (in_file);
close (out_file);

gotoxy (20,18);
write ('<< STLOG done. >>');
end. (simplify_tlog_data)
SUBPROGRAM SIDTLOG.PRG - PROGRAM FLOW DIAGRAM

STLOG.DLM
simplified TLOG data

SIDTLOG.PRG

STLOG.DBF

LOCATION.DBF

SIDTLOG.DBF

FIGURE 21
Program Name: SIDITLOG.FRG

Purpose: To use the simplified TLOG data to create a dBASE file containing TLOG data for the section identification numbers found in the Location file.

Procedures/Edits:

1. The TLOG data key is the control section number.
2. The Location database contains information about the control section number and the beginning and ending milepoint of section identification numbers.
3. The program creates a temporary SIDITLOG dBASE file. This file contains the TLOG data for section identification numbers. This is done by joining the simplified TLOG and Location data by the control section number and mile-point range.

Input File(s):
1. Simplified TLOG data file (STLOG.DLM).
2. Location database file (LOCATION.DBF).

I/O File(s):
1. dBASE file for storing the simplified TLOG data (STLOG.DBF).

Output File(s):
1. dBASE file with TLOG data under section identification number (SIDITLOG.DBF)
Traffic Update
Subprogram 2: SIDITLOG

STLOG dBASE File Record Layout

<table>
<thead>
<tr>
<th>Field</th>
<th>Key</th>
<th>Size/Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNTLSEC</td>
<td>*</td>
<td>6N</td>
<td>Control Section Number</td>
</tr>
<tr>
<td>TLOGBMP</td>
<td>*</td>
<td>6.3N</td>
<td>Beginning Mile Point</td>
</tr>
<tr>
<td>TLOGEMP</td>
<td>*</td>
<td>6.3N</td>
<td>Ending Mile Point</td>
</tr>
<tr>
<td>CURYR</td>
<td></td>
<td>4N</td>
<td>Year of Current AADT</td>
</tr>
<tr>
<td>ADT</td>
<td></td>
<td>6N</td>
<td>Average Daily Traffic</td>
</tr>
<tr>
<td>ADTINCR</td>
<td></td>
<td>4N</td>
<td>ADT Increase Factor</td>
</tr>
<tr>
<td>ESTADT</td>
<td></td>
<td>6N</td>
<td>Estimated ADT for Design Year</td>
</tr>
<tr>
<td>PCNIRK</td>
<td></td>
<td>3N</td>
<td>Percent Trucks in ADT</td>
</tr>
<tr>
<td>EST18K</td>
<td></td>
<td>5N</td>
<td>Estimated 18K Flexible Pavement</td>
</tr>
</tbody>
</table>
Traffic Update
Subprogram 2: SIDTLOG

SIDTLOG dBASE File Record Layout

File Name: SIDTLOG.DBF

<table>
<thead>
<tr>
<th>Field</th>
<th>Key</th>
<th>Size/Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID NO</td>
<td>*</td>
<td>4N</td>
<td>Section Identification Number</td>
</tr>
<tr>
<td>BEGMPT</td>
<td></td>
<td>6.3N</td>
<td>Beginning Mile Point</td>
</tr>
<tr>
<td>ENDMPT</td>
<td></td>
<td>6.3N</td>
<td>Ending Mile Point</td>
</tr>
<tr>
<td>TLOGBMP</td>
<td></td>
<td>6.3N</td>
<td>TLOG Beginning Mile Point</td>
</tr>
<tr>
<td>TLOGEMP</td>
<td></td>
<td>6.3N</td>
<td>TLOG Ending Mile Point</td>
</tr>
<tr>
<td>CURYR</td>
<td></td>
<td>4N</td>
<td>Year of Current ADT</td>
</tr>
<tr>
<td>ADT</td>
<td></td>
<td>6N</td>
<td>Average Daily Traffic</td>
</tr>
<tr>
<td>ADTINCR</td>
<td></td>
<td>4N</td>
<td>ADT Increase Factor</td>
</tr>
<tr>
<td>ESTADT</td>
<td></td>
<td>6N</td>
<td>Estimated ADT for Design Year</td>
</tr>
<tr>
<td>PCNTRK</td>
<td></td>
<td>3N</td>
<td>Percent Trucks in ADT</td>
</tr>
<tr>
<td>EST18K</td>
<td></td>
<td>5N</td>
<td>Estimated 18K Flexible Pavement</td>
</tr>
</tbody>
</table>
PROGRAM LISTING

* File name: SIDTLOG.PRG
* Program: sidtlog
* Project 2456: Texas Flexible Pavement Database Conversion
* TAMU/TTI
* Written by: Victor Wong
* Created on: April 13, 1988
* Last updated: August 8, 1988
* Purpose: DBASE III+ program to create the sidtlog.dbf file. The program will join the location.dbf and stlog.dbf files by the control section number. The goal is to have tlog information arranged in sid number instead of control section number.
* Input file(s): STLOG.DIM delimited TLOG data file
* Output file(s): STLOG.NDX index file, deleted when done
* I/O file(s): STLOG.DBF database to store the STLOG data
* SIDTLOG.DBF database with TLOG data by SID #

* inform the user that the program is running
? "<< SIDTLOG.PRG running ... >>"
? " Arranging TLOG data by Section Identification Number."

* set flags
SET SAFETY OFF

* prepare the stlog database
USE \PAVEDB\EDITUPDT\TRAFFIC\STLOG
ZAP
APPEND FROM \PAVEDB\EDITUPDT\TRAFFIC\STLOG.DIM DELIMITED WITH BLANK
INDEX ON CNSTSEC TO \PAVEDB\EDITUPDT\TRAFFIC\STLOG
CLOSE ALL

* select files to be used
SELECT A
USE \PAVEDB\FILES\LOCATION
SELECT B
USE \PAVEDB\EDITUPDT\TRAFFIC\STLOG INDEX \PAVEDB\EDITUPDT\TRAFFIC\STLOG
SELECT C
USE \PAVEDB\EDITUPDT\TRAFFIC\SIDTLOG
ZAP

* for every location record find the tlog info
SELECT A
DO WHILE .NOT. EOF()
 IF A->ACTVFLAG

 * find the same control section in stlog file
 SELECT B

 END

END

445
IF (A->SECTION/10) >= 1
 ACNTISEC = INT(VAL(STR(A->CONTROL,4) + STR(A->SECTION,2)))
ELSE
 ACNTISEC = INT(VAL(STR(A->CONTROL,4) + "0";
 + LIRIM(STR(A->SECTION,2))
)
ENDIF
SEEK ACNTISEC

IF FOUND()
 * if found then for all the stlog record of that control
 * section
DO WHILE CNTISEC = ACNTISEC
 * check to see if the stlog record's mile point range
 * is within the range of location's
 IF ((TLOGEMP>=A->BEGMPNT) .AND. (TLOGEMP<A->ENDMPNT));
 .OR. ((TLOGEMP>=A->BEGMPNT) .AND. (TLOGEMP<A->ENDMPNT));
 .OR. ((TLOGEMP=A->BEGMPNT) .AND. (TLOGEMP<A->ENDMPNT));
 .OR. ((TLOGEMP=A->BEGMPNT) .AND. (TLOGEMP>=A->ENDMPNT));
 * if so, append a new sidtlog record with the info
 SELECT C
 APPEND BLANK
 REPLACE SID_NO WITH A-> SID_NO
 REPLACE BEGMPNT WITH A-> BEGMPNT
 REPLACE ENDMNT WITH A-> ENDMNT
 REPLACE TLOGEMP WITH B-> TLOGEMP
 REPLACE TLOGEMP WITH B-> TLOGEMP
 REPLACE DESYR WITH B-> DESYR
 REPLACE CURYR WITH B-> CURYR
 REPLACE ADT WITH B-> ADT
 REPLACE ADTINCR WITH B-> ADTINCR
 REPLACE ESTADT WITH B-> ESTADT
 REPLACE PCNTRK WITH B-> PCNTRK
 REPLACE EST18K WITH B-> EST18K
ENDIF
 * skip to next stlog record
SELECT B
 SKIP
 ENDDO
 ENDOF
ENDIF
 * skip to next location record
SELECT A
 SKIP
ENDDO
 * close all the files
CLOSE ALL
 * erase intermediate file
ERASE \PAVEDB\EDITUPDT\TRAFFIC\STLOG.NDX
 * reset flags
SET SAFETY ON
 * inform the user that the program is done
? "<< SIDLOG.PRG done. >>"
Diagram 4. Program flow for subprogram LOGTRAF.

FIGURE 22
Traffic Update
Subprogram 3: LOGIRAF

PROGRAM SPECIFICATION

Program Name: LOGIRAF.FRG

Purpose: To calculate the annual average daily traffic, the percent of trucks, and the cumulative 18 keal for the Traffic dBASE file by processing the TLOG data of each section identification number.

Procedures/Edits:

1. The TLOG data for section identification numbers is found in SIDTLOG.DBF.

2. The program calculates traffic values needed to update the Traffic database. These values of a new year are stored in dBASE LOGIRAF.DBF.

Input File(s): 1. dBASE file containing TLOG data for each section identification number (SIDTLOG.DBF).

Output File(s):

1. dBASE file with TLOG data under section identification number (SIDTLOG.DBF)
Traffic Update
Subprogram 3: LOGTraf

LOGTraf dBASE File Record Layout

<table>
<thead>
<tr>
<th>Field</th>
<th>Key</th>
<th>Size/Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID NO</td>
<td>*</td>
<td>4N</td>
<td>Section Identification Number</td>
</tr>
<tr>
<td>YEAR</td>
<td>*</td>
<td>4N</td>
<td>Year</td>
</tr>
<tr>
<td>AADT1WAY</td>
<td></td>
<td>6N</td>
<td>Average Daily Traffic (one-way)</td>
</tr>
<tr>
<td>A18KEAL</td>
<td></td>
<td>9N</td>
<td>Annual Cumulative 18KEAL one way</td>
</tr>
<tr>
<td>way</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCTTRK</td>
<td></td>
<td>4N</td>
<td>Percent Trucks in ADT</td>
</tr>
</tbody>
</table>

NOTE: 18 KEAL is 18000 lbs. equivalent axle load. This figure is calculated using the AASHTO Equivalency factors which convert any weighted truck axle to a number of equivalent of 18000 lbs. single axles. The basics for the equivalency is the observed pavement damage done by different axle loads at the AASHTO road Test (1959-1960).
* File name: LOGTRAFF.PRG
* Created by: Victor Wong
* Written on: Apr 13, 1988
* Last updated: Apr 13, 1988
* Purpose: To calculate the adt, 18KIP and percent truck values for test sections from sidtlog.dbf. The result will be stored in logtraf.dbf
* I/O file(s): LOGTRAFF.DBF tlog traffic data base
* Input file(s): SIDTLOG.DBF tlog data base keyed on sid_no

* inform the user that the program is running
? "<< LOGTRAFF.PRG running ... >>"
? "Calculating the traffic data from the TLOG data."

* set flags
SET SAFETY OFF

* open files
SELECT A
USE \PAVEDB\EDITUPDT\TRAFFIC\LOGTRAFF
ZAP
SELECT B
USE \PAVEDB\EDITUPDT\TRAFFIC\SIDTLOG

* while not eof for sidtlog
SELECT B
DO WHILE .NOT. EOF()
 * variables initializations
 PREV_SID = SID_NO
 ACUM_PROP = 0.0
 ACUM_PCNTRK = 0.0
 ACUM_TRAF = 0.0
 ACUM_18K = 0.0

 * while it is still the same sid number
 DO WHILE SID_NO = PREV_SID
 * prior adjustment to some field values
 ADT_INCR = ADTINCR/100.0
 PCNT_TRK = PCNTRK/10.0 * 0.01
 EST_18K = EST18K * 1000.0
 CUR_YR = CUR_YR

 IF EST_18K <> 0.0
 * calculate the 18KIP and adt values for that control section
 TRK_18K = ((ESTADT + ADT)/4) * 365.25 * (DESYR - CUR_YR) * ;
 PCNT_TRK
 IF TRK_18K <> 0.0
 TRK_18K = EST_18K/TRK_18K
 ENDF
TRAF_ADJ = (ADT/2) * 12 * 30.4375

* calculate the proportion of the control section to the test section
SEC_PROP =
(MIN(TLOGEMP, ENDPNT) - MAX(TLOGEMP, BEGMPNT))/(ENDPNT - BEGMPNT)
ACUM_PROP = ACUM_PROP + SEC_PROP

* calculate the accumulated traffic, 18kip and percent truck values
* for the control sections
ACUM_TRAF = ACUM_TRAF + (SEC_PROP * TRAF ADT)
ACUM_18K = ACUM_18K + (SEC_PROP * TRAF ADT * PCNT_TRK) * TRK_18K
ACUM_PCNTRK = ACUM_PCNTRK + (PCNT_TRK * 100 * SEC_PROP)

ENDIF

* skip to the next control section
SKIP
ENDDO

* if the acum_prop is not zero
IF ACUM_PROP <> 0.0
 TLOG ADT = 0.5 + ACUM_TRAF/(ACUM_PROP * 365.25)
 TLOG_18K = 0.5 + ACUM_18K/ACUM_PROP
 TLOG_PCNTRK = ACUM_PCNTRK/ACUM_PROP
ELSE
 TLOG ADT = 0.0
 TLOG_18K = 0.0
 TLOG_PCNTRK = 0.0
ENDIF

* find the location of the sid no in logtraf.dbf and store the result
SELECT A
APPEND BLANK
REPLACE SID NO WITH PREV_SID
REPLACE YEAR WITH CUR_YR
REPLACE AADT_AWAY WITH TLOG ADT
REPLACE A18K_AWAY WITH TLOG_18K
REPLACE PCTRK_AWAY WITH TLOG_PCNTRK

* get back with sidtlog.dbf
SELECT B
ENDDO

* close all files
CLOSE ALL

* reset flags
SET SAFETY ON

* inform the user that the program is done
? "<< LOGTRAF.PRG done. >>"
SUBPROGRAM NEWTRAF.PRG - PROGRAM FLOW DIAGRAM

LOGTRAF.DBF

NEWTRAF.PRG

TRAFFIC.DBF

FIGURE 23
Traffic Update
Subprogram 4: NEWTRAF

PROGRAM SPECIFICATIONS

Program Name: NEWTRAF.PRG

Purpose: To use the new traffic data in the LOGTRAF dBASE file to update the Traffic database file.

Procedures/Edits:

1. The updating is done by appending records from the LOGTRAF dBASE file to TRAFFIC.DBF.

2. The Traffic database file is sorted by section identification number and the year after the appending of new data.

Input File(s):

1. Database file containing traffic values for a new year (LOGTRAF.DBF).

Output File(s):

1. Traffic database file (TRAFFIC.DBF).
PROGRAM LISTING

* File Name: NEWIRAF.PRG
* Written by: Victor Wong
* Created on: April 13, 1988
* Last updated: April 13, 1988
* Purpose: A DBASE III + program that updates the traffic.dbf (after 1985) file with the logtraf.dbf file.
* Input file(s): LOGTRAF.DBF
* Output file(s): TRAFFIC.BK (backup for TRAFFIC.DBF)
* I/O file(s): TRAFFIC.DBF

* inform the user that newtraf is running
? "<< NEWIRAF.PRG running ... >>"
? " Updating the Traffic Database with data calculated from TLOG."

* set flags
SET SAFETY OFF

* make a backup of the old traffic database
COPY FILE \PAVEDB\FILES\TRAFFIC.DBF TO \PAVEDB\FILES\TRAFFIC.BK

* append the new traffic data
USE \PAVEDB\FILES\TRAFFIC
APPEND FROM \PAVEDB\EDITUPDT\TRAFFIC\LOGTRAF

* sort the traffic database according to sid no and year
SORT TO \PAVEDB\FILES\TEMPTRAF.ON SID_NO, YEAR
CLOSE ALL

* rename the new traffic database to traffic.dbf
ERASE \PAVEDB\FILES\TRAFFIC.DBF
RENAME \PAVEDB\FILES\TEMPTRAF.DBF TO \PAVEDB\FILES\TRAFFIC.DBF

* erase intermediate files
ERASE \PAVEDB\FILES\TEMPTRAF.DBF

* set flags
SET SAFETY ON

* inform the user that the program is done
? "<< NEWIRAF.PRG done ... >>"
CHAPTER 5

APPLICATIONS SUBSYSTEM
The Applications Subsystem draws on the monitor an exponential decay curve for performance versus accumulated 18 KEAL where performance is indicated by PSI or area of distress for alligator cracking or rutting; creates a 'distress' file which contains the data needed to construct the curve; and builds a file which can be used to develop performance models.

The Distress File is a subset of data from the master files. It was created to substantially decrease the processing time for constructing the curves and for building the Model Files. The Distress File is also used to calculate values for the Model File. In addition to the values created from the Distress File, the Model File also includes a subset of data from the master files. It too was created to substantially reduce the processing time involved in developing performance models. The Model File can be directly processed by SAS. For additional information refer to Volume 1 of this report.

This chapter is divided into the following four sections:

- Application Driver
- Graph Accumulated 18 KIP vs Distress or PSI
- Building Model File
- Create Distress File

Each section contains the following information:

- Program Narrative
- Program Flow Diagram
- Program Specification
- Menu Screens
- Program Listings
Section 1: Application Driver
Applications Subsystem Driver Program Flow

FIGURE 24
Application Driver
Program Narrative

The Application Subsystem main driver program (APPLICAT.PRG) initiates the programs which create the Distress & Model Files and the program which draws the 18 KIP vs Distress or PSI graphs on the screen.

In addition to driving the applications subsystem, APPLICAT.PRG also draws the menu for the application subsystem. When the user chooses an option on the applications menu, the appropriate program is called. If Option 1 (Graph Accumulated 18 KIP vs Distress or PSI) is chosen, program GRAPH18K is called. Option 2 (Build Model File) calls program MODEL.PRG while Option 3 (Build Distress File) calls program DISTRESS.PRG and DISPVISL.PRG. The program APPLICAT.PRG is in the subdirectory \PAVEDB\APPLICAT.
Program Name: APPLICAT.PRG

Purpose: To display the Application Menu Screen and to call the appropriate programs.

Procedures/Edits:

The following are the procedures:
1) Graph the 18 KIP vs Distress or PSI (GRAPH18K.PRG).
2) Build the Model File (MODEL.PRG).
3) Create the Distress file (DISTRESS.PRG & DISTVISL.PRG).

Input/Output Files:

None

Programs Called (See Program Flow Diagram):
- GRAPH18K.PRG
- MODEL.PRG
- DISTRESS.PRG
- DISTVISL.PRG
Above is Main Menu of the Texas Flexible Pavement System.

When Option 4 - Application is chosen, the application driver program APPLICAT.PRG is called. The applications driver then draws the next screen 4.0.
PROGRAM LISTING

* File name: APPLICAT.PRG
* Program name: application
* Project 2456: Texas Flexible Pavement Database
* TAMU/TTI
* Written by: Victor Wong
* Created on: July 14, 1988
* Last updated: July 26, 1988
* Purpose: To call on application programs.

* set flag
SET SAFETY OFF

* initialize variables
REP = .T.

* repeat option menu until escape key is pressed
DO WHILE REP
 OPTION = ""
 * redisplay menu until valid option or escape is entered
 DO WHILE .NOT. (OPTION $ "123") .AND. REP
 * option menu
 CLEAR
 @ 5,24 SAY "TEXAS FLEXIBLE PAVEMENT DATABASE"
 @ 6,31 SAY "APPLICATIONS MENU"
 @ 9,15 SAY "1) Graph Accumulated 18KIP vs Distress or PSI"
 @ 10,15 SAY "2) Create Model File"
 @ 11,15 SAY "3) Create Distress File"
 @ 14,45 SAY "Option ===> " GET OPTION PICTURE "X"
 @ 4,9 TO 16,70 DOUBLE

 * read option
 READ

 * set repeat flag to false if escape key is pressed
 IF READKEY() = 12
 REP = .F.
 ENDIF

 * warning for invalid option entry
 IF .NOT. (OPTION $ "123") .AND. REP
 @20,10 SAY "Enter only 1, 2 or 3."
 WAIT
 @20,10 SAY ""
 ENDIF
 ENDDO

* carry out option
IF REP
 DO CASE
CASE OPTION = "1"
 DO \pavedb\applicat\graph18k\GRAPH18K
CASE OPTION = "2"
 DO \pavedb\applicat\model\MODEL
CASE OPTION = "3"
 CLEAR
 MRUN = " "
 @ 10, 5 SAY "This program is going to create the Distress Database"
 @ 11, 5 SAY " File. It will take the approximately 35 HOURS to run."
 @ 13, 5 SAY "The DISTRESS file makes use of the monitoring data."
 @ 14, 5 SAY " the latest data is required, please run the Pavement Update"
 @ 15, 5 SAY " Condition Data Program (Option 2 on the Edit & Update"
 @ 16, 5 SAY " Menu) before this program."
 @ 19, 5 SAY "Do you want to continue (Y/N) ? " GET MRUN
 IF MRUN = "Y"
 DO \pavedb\EDITUPDT\DISTRESS\DISTRESS
 DO \pavedb\EDITUPDT\DISTRESS\DISTVISL
 CLEA TYPE
 ENDCASE
 ENDDO
 RELEASE MRUN
 ENDIF
 ENDDO

* reset flags
SET SAFETY ON
RETURN
Section 2: Accumulated 18KIP vs Alligator Cracking/Rutting/PSI
GENERAL NARRATIVE

These programs graph the area of alligator cracking versus accumulated 18KIP, area of rutting versus accumulated 18KIP, and PSI versus accumulated 18 KIP for a selected section (SID). The graph is displayed on the monitor. The GRPH18K.PRG program prompts for the distress type and the section identification number. It then retrieves the 18KIP and distress information from DISTRESS.DBF calls GRPH18K.PAS to calculate the rho and beta value and constructs the graph. The program specifications give more detailed information about the programs. The programs and the DAT files are stored in the subdirectory PAVEDB\EDIT\UPDT\APPLICAT\GRPH18K.

The DBF files are stored in the subdirectory \PAVEDB\FILES. The NDX files are stored in the subdirectory \PAVEDB\FILES. The following are provided after this narrative:

- Program Flow Diagram
- Program Specification
 - GRPH18K.PRG
- Graph Menu Screen
- File Layout - DISTTYP.DBF
- File Layout - DISTTYP.DAT
- File Layout - DISTRESS.DAT
- Program Listing - GRPH18K.PRG
- Program Specification
 - GRPH18K.PAS
- Program Listings
 (in the order mentioned in the Program Specifications)
DISTRESS.DBF
DISTRESS database

Program Flow for Graphing 18KIP vs Area Distress or PSI

Option menu

GRAPH18K.PRG

DISTRESS.DAT

Intermediate DISTRESS data file

GRAPH18K.PAS

GRAPH18K.COM

Graph display

FIGURE 25
Program Specification 1

Program Name: GRAPH18K.PRG

Purpose: To display a menu containing options to graph accumulated 18KIP versus the area of distress for alligator cracking or rutting, or to graph accumulated 18KIP versus PSI. This program will find and pass to a file the distress and 18KIP information needed for the chosen section identification number. With the retrieved data, a program is called to perform the processing and graphing.

Procedure/Buils:

1. The graphing program will be done using Turbo Pascal. Thus, the information needed to calculate the rho and beta values and to fit the curve is passed to the Pascal program (GRAPH18K.PAS) through an intermediate data file (DISTRESS.DAT). The distress type is passed in the file DISTTYP.DAT.

2. The data needed for program GRAPH18K.PAS is retrieved by locating the data of the chosen section from the DISTRESS dBASE file. The Location File is checked to determine if the requested SID is a valid number.

Input Files:

1. Distress dBASE file and index (DISTRESS.DBF) (DISTRESS.NDX).

2. Location dBASE file and index (LOCATION.DBF) (LOCATION.NDX).

3. Distress Type DBASE file (DISTTYP.DBF).

Intermediate Files:

1. Intermediate distress data file (DISTRESS.DAT).

2. Intermediate distress type file (DISTTYP.DAT).

Programs Called: GRAPH18K.PAS
Accumulated 18KIP vs Alligator Cracking/Rutting/PSI

Program Specification 1
Graph Menu Screen

TEXAS FLEXIBLE PAVEMENT DATABASE
GRAPH 18K VS DISTRESS OR PSI

1) 18KIP vs Alligator Cracking
2) 18KIP vs Rutting
3) 18KIP vs PSI

Option ➡
SID Number ➡ ___
** Accumulated 18 KIP vs Alligator Cracking/Rutting/PSI

Program Specification 1
File Layout

<table>
<thead>
<tr>
<th>Field</th>
<th>Size/Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISSTYP</td>
<td>1C</td>
<td>Graph Option</td>
</tr>
</tbody>
</table>
Accumulated 18 KIP vs Alligator Cracking/Rutting/PSI

Program Specification 1
File Layout

File Name: DISTTYP.DAT

<table>
<thead>
<tr>
<th>Column</th>
<th>Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Graph Option</td>
</tr>
</tbody>
</table>
Accumulated 18KIP vs Alligator Cracking/Rutting/PSI

Program Specification 1
File Layout

File Name: DISTRESS.DAT

<table>
<thead>
<tr>
<th>Columns</th>
<th>Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 4</td>
<td>Section Identification Number</td>
</tr>
<tr>
<td>5 - 6</td>
<td>Year</td>
</tr>
<tr>
<td>7 - 17</td>
<td>Annual Cumulative 18KIP Equivalent Axle Load</td>
</tr>
<tr>
<td>18</td>
<td>Patching Area Distress Value</td>
</tr>
<tr>
<td>19</td>
<td>Rutting Area Distress Value</td>
</tr>
<tr>
<td>20</td>
<td>Alligator Cracking Area Distress Value</td>
</tr>
<tr>
<td>21 - 27</td>
<td>Serviceability Index Mean Value</td>
</tr>
</tbody>
</table>
Accumulated 18KIP vs Alligator Cracking/Rutting/PSI

Program Specification 1
Program Listing

* File name: GRAPH18K.PRG
* Program name: graph18k
* Project 2456: Texas Flexible Pavement Database
* TAMU/TTI
* Written by: Victor Wong
* Created on: July 25, 1988
* Last updated: August 1, 1988
* Purpose: To set up menu for graphing 18KIP vs certain type of area distress or PSI.

* set up databases
SELECT A
USE \pavedb\files\LOCATION INDEX \pavedb\indexes\LOCATION
SELECT B
USE \pavedb\files\DISTRESS INDEX \pavedb\indexes\DISTRESS SELECT C
USE \pavedb\files\DISTTYP

* initialize variables
PRIVATE REP
PRIVATE OPTION
REP = .T.

* repeat option menu until escape key is pressed
DO WHILE REP
 OPTION = " "
 SID = A->SID NO
 * redisplay menu until valid option/SID or escape key
 DO WHILE .NOT. (OPTION $ "123") .AND. REP
 * option menu
 CLEAR
 @ 5,23 SAY "TEXAS FLEXIBLE PAVEMENT DATABASE"
 @ 7,23 SAY " GRAPH 18KIP VS DISTRESS OR PSI"
 @ 10,25 SAY "1) 18KIP vs Alligator Cracking"
 @ 11,25 SAY "2) 18KIP vs Rutting"
 @ 12,25 SAY "3) 18KIP vs PSI"
 @ 14,25 SAY " Option ==> ";
 GET OPTION PICTURE "X"
 @ 15,25 SAY " SID Number ==> ";
 GET SID PICTURE "9999"
 @ 3,9 TO 18,70 DOUBLE
 * read option
 READ
 * set repeat flag to false if escape key is pressed
 IF READKEY() = 12

476
REP = .F.
ENDIF

* warning for invalid option
IF .NOT. (OPTION "$ 123") .AND. REP @20,10 SAY "Enter only 1, 2 or 3."
 WAIT
 @20,10 SAY ""
ENDIF

ENDDO

* carry out option
IF REP
 SELECT A
 SEEK SID
 IF .NOT. FOUND()
 GO TO 1
 @20,10 SAY "Invalid SID Number."
 WAIT
 @20,10 SAY ""
 ELSE
 * copy the distress information of the sid number to
 * a temporary file
 SELECT B
 SEEK STR(SID,4)
 IF FOUND()
 COPY TO \pavedb\applicat\graph18k\DISTRESS.DAT ;
 FIELDS SID NO,YEAR,A18KEAL,PATCH,RIUI,ALLGCR,SIMEAN;
 WHILE SID NO=SID TYPE SDF
 SELECT C
 GO TO 1
 REPLACE DISTTYP WITH OPTION
 COPY TO \pavedb\applicat\graph18k\DISTTYP.DAT;
 RECORD 1 TYPE SDF
 ELSE
 @20,10 SAY "Cannot find SID number in DISTRESS file."
 WAIT
 @20,10 SAY ""
 ENDIF
 * perform the graphing
 RUN \pavedb\applicat\graph18k\GRAPH18K
 ENDIF
 ENDDO

* close databases
CLOSE ALL

RETURN
Accumulated 18KIP vs Alligator Cracking/Rutting/PSI

Program Specification 2

Program Name: GRAPH18K.PAS

Purpose: To graph the area of distress curve for alligator cracking/rutting or the PSI curve for the section identification number the user chooses. The curve is plotted after the program finds the rho and beta values of the curve.

Edit/Procedure Information:

1. This graphing program is written in Turbo Pascal. The information needed to calculate the rho and beta values, and to fit the curve is passed from the program GRAPH18K.PRG through an intermediate data file (DISTRESS.DAT). The distress type to be graphed is passed in DISTTYP.DAT

2. The equation for the area distress curve of alligator cracking and rutting is

\[\% \text{ area distress} = \exp \left(- \frac{\text{rho}}{\text{accumulated 18KIP}} \right)^{\beta} \]

Refer to the program comments for additional information about solving for rho and beta.

3. The equation for the PSI curve is

\[\text{PSI} = \text{initial PSI} - (\text{initial PSI} - \text{final PSI}) \times \exp \left(- \frac{\text{rho}}{\text{accumulated 18KIP}} \right)^{\beta} \]

Refer to the program comments for additional information about solving for rho and beta.

4. The area of distress data for alligator cracking and rutting is collected using five discrete values representing the percentage of area of distress. The value "9" stands for missing data, and "0" stands for no area of distress. Otherwise, the following shows how the other three values are assigned:
5. The program attempts to compensate for an irregular shape area of distress curve for alligator cracking/rutting where the irregularity is due to patching. The percentage area value for patching is added to the alligator cracking/rutting value. This eliminates the dropping portion of the curve due to decreased area distress resulting from patching. The coding assignments for patching are as shown below.

<table>
<thead>
<tr>
<th>Code</th>
<th>% Area</th>
<th>Distress</th>
<th>Plotting Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1 - 10</td>
<td></td>
<td>5.5</td>
</tr>
<tr>
<td>2</td>
<td>11 - 50</td>
<td></td>
<td>30.5</td>
</tr>
<tr>
<td>3</td>
<td>> 50</td>
<td></td>
<td>50.0</td>
</tr>
</tbody>
</table>

If the areas of distress still decreases after the patching has been added to the alligator cracking or rutting value, the point is dropped from the curve.

6. As in item 5, when the PSI improves, the point is dropped from the curve.

Input File(s):

1. Intermediate distress data file (DISTRESS.DAT)
2. Intermediate distress type file (DISTTYP.DAT)

PASCAL Procedures Called:

DECLARE.PAS
GRAPH.P
MYGRAPH.PAS
RHOBETA.PAS
FITCURVE.PAS
PLOTGRAPH.PAS
File Layouts:

1. DISTTYP.DAT (Refer to File Layout 2 in Program Specification 1).

2. DISTRESS.DAT (Refer to File Layout 3 in Program Specification 1).
Accumulated 18KIP vs Alligator Cracking/Rutting/PSI

Program Specification 2
Program Listing

(* File name: GRAPH18K.PAS
* Program name: graph18k
* Project 2456: Texas Flexible Pavement Database Conversion
* TAMU/TTI
* Written by: Victor Wong
* Created on: Feb 19, 1988
* Last updated: June 27, 1988
* Purpose: This program creates an onscreen menu
* inquiring user for the type of distress and
* sid number. It then call a procedure to find
* the distress information of the sid number
* from the distress database file. With the
* information, the procedure will process and
* plot the value on an onscreen graph. *)

{>> PROGRAM GRAPH18K <<} program graph18k;

{>>> constant declaration <<<} const
 color = 15;
 blank = ' ';
 psi_final = 1.5;
 debug_flag = true;

{>>> type declaration <<<} {$I \pavedb\applicat\graphl8k\declare}

{>>> variable declaration <<<} var
 {--- variables for menu ---}
 distress_type : integer;
 response_ok, continue: boolean;
 response : char;

 {--- variables for data processing ---}
 data_file: text;

 (input data format)
 sid_no: string[4]; {sid number 4N}
 year: string[2]; {year 2N}
 al8keal: string[11]; {18kip 11N}
 patching: string[1]; {patching 1N}
 rutting: string[1]; {rutting 1N}
allgcark: string[1]; {alligator crack 1N}
simean: string[7]; {simean 7.5N}

:variables needed for conversion of data from strings into
(whith the data)
index: integer;
char_at_index: string[1];
err_code, integer; {error code for string to
err_code1, integer; {number conversion}
err_code2: integer; {psi value}
psi_value: real; {patching value}
patch_value, integer; {patching value}
putting_value, integer; {putting value}
allgcark_value: integer; {alligator crack value}
patch_area, integer; {patching area}
putting_area, integer; {putting area}
allgcark_area: real; {alligator crack area}
al8k1, al8k2, integer; {if al8keal = aa bbb ccc ddd}
al8k3, al8k4, integer; {then a18k1=aa,18k2=bbb, }
a18k1_carry, integer; { 81k3=ccc,18k4=ddd }
a18k2_carry, integer; {carry from the digit group }
a18k3_carry, integer; {for addition }
accum_18k1, integer; {accumulated 18k value by }
accum_18k2, integer; {digit group }
accum_18k3, integer; {
accum_18k4: integer; {flag saying if the digit }
 integer; {group = 0 }
 boolean; {portions of the a18keal str}
al8keal1: string[2];
al8keal2, string[3];
al8keal3,
al8keal4: string[3];

:variables needed for graph
psi_max, real; {maximum psi value}
psi_initial: real; {initial psi value}
psi_initial_str: string[10]; {input string for initial psi}
psi, integer; {psi value}
y: y_array_type; {y value (allgcark/putt value)}
x, x_array_type; {x value (accum. 18k value})
factor: factor_type;
y_factor, y_type;
x_factor, x_type;
y_min, y_max, y_type;
x_min, x_max, x_type;
title, title_type;
x_label,
begin
 (* clear the screen *)
 ClrScr;

(*--- initialize some variables---*)
accum_18k1:= 0;
accum_18k2:= 0;
accum_18k3:= 0;
accum_18k4:= 0;

(*find the distress type*)
assign (data_file, '\pavedb\applicat\graph18k\disttyp.dat');
reset (data_file);
readln (data_file, distress_type);
close (data_file);

(*set up input file for data*)
assign (data_file, '\pavedb\applicat\graph18k\distress.dat');
reset (data_file);

count:= 0; (*initialize the count of valid data to 0*)
psi max:= 0.0; (*initialize the maximum psi value to 0.0*)
patch_area:= 0.005; (*initialize the patch area to 0.0*)

(*while not eof*)
(*read data, accumulate 18kip value*)
(*and store valid distress or psi value*)
while not eof (data_file)
do begin
 readln (data_file, sid_no, year, al8keal, patching, rutting, allgcrrk, simean);
end

(convert the al8keal string value to 3 integer values)
(so that the concatenation of al8k1, al8k2 and al8k3)
(will give the whole 18keal value)
(if the err_code is non-zero, it means that digits
are missing at those positions and it is the same as
(having zeros there)
(the positions of leading zeros are indicated by the

{split al8keal value string into 4 sections }
{{xx,xxx,xxx,xxx}}
al8keal1:= copy(al8keal,1,2);
al8keal2:= copy(al8keal,3,3);
al8keal3:= copy(al8keal,6,3);
al8keal4:= copy(al8keal,9,3);

{delete leading blank spaces of al8kealx string}
(and store convert the string to integer al8kx values)
index:= 1;
char_at_index:= copy(al8keal1,index,1);
while (char_at_index = blank) and (index < 2) do begin
 index:= index + 1;
 char_at_index:= copy(al8keal1,index,1);
end;
if index < 2 then
 val (copy(al8keal1,index,3-index),al8k1,err_code)
else if char_at_index <> blank then
 val (copy(al8keal1,index,3-index),al8k1,err_code)
else
 begin
 al8k1:= 0;
 al8k1_zero:= true;
 end;

index:= 1;
char_at_index:= copy(al8keal2,index,1);
while (char_at_index = blank) and (index < 3) do begin
 index:= index + 1;
 char_at_index:= copy(al8keal2,index,1);
end;
if index < 3 then
 val (copy(al8keal2,index,4-index),al8k2,err_code)
else if char_at_index <> blank then
 val (copy(al8keal2,index,4-index),al8k2,err_code)
else
 begin
 al8k2:= 0;
 al8k2_zero:= true;
 end;

index:= 1;
char_at_index:= copy (al8keal3,index,1);
while (char_at_index = blank) and (index < 3) do
begin
 index:= index + 1;
 char_at_index:= copy (al8keal3,index,1);
end;
if index < 3 then
 val (copy(a18keal3,index,4-index),a18k3,err_code)
else if char_at_index <> blank then
 val (copy (al8keal3,index,4-index),a18k3,err_code)
else
 begin
 a18k2:= 0;
 a18k3_zero:= true;
 end;

 index:= 1;
char_at_index:= copy (al8keal4,index,1);
while (char_at_index = blank) and (index < 3) do
begin
 index:= index + 1;
 char_at_index:= copy (al8keal4,index,1);
end;
if index < 3 then
 val (copy(a18keal4,index,4-index),a18k4,err_code)
else if char_at_index <> blank then
 val (copy (al8keal4,index,4-index),a18k4,err_code)
else
 begin
 a18k4:= 0;
 a18k4_zero:= true;
 end;

 (if the a18keal value is not zero continue processing)
if not (a18k1_zero and a18k2_zero and a18k3_zero and
 a18k4_zero) then
begin
 (increment the accumulated 18kip value)
 accum_18k4:= accum_18k4 + a18k4;
 a18k4_carry:= accum_18k4 div 1000;
 accum_18k4:= accum_18k4 mod 1000;
 accum_18k3:= accum_18k3 + a18k3 + a18k4_carry;
 a18k3_carry:= accum_18k3 div 1000;
 accum_18k3:= accum_18k3 mod 1000;
 accum_18k2:= accum_18k2 + a18k2 + a18k3_carry;
 a18k2_carry:= accum_18k2 div 1000;
 accum_18k2:= accum_18k2 mod 1000;
 accum_18k1:= accum_18k1 + a18k1 + a18k2_carry;

 (--- check which distress type we are using ---)
 (--- and do the necessary processing ---)
 case distress_type of
 1: {alligator cracking}
begin
{convert alligator crack data from string to integer}
val (allgcrrk, allgcrrk_value, err_code1);

{convert patching data from string to integer}
val (patching, patch_value, err_code2);

{if the conversion is successful}
if (err_code1 = 0) and (err_code2 = 0) then

{check if the value is valid i.e. <> 9}
if (allgcrrk_value <> 9) then
begin

{increment valid data count}
count := count + 1;

{determine the percentage of alligator
(cracking area)}
case allgcrrk_value of
 0: allgcrrk_area := 0.005;
 1: allgcrrk_area := 0.055;
 2: allgcrrk_area := 0.305;
 3: allgcrrk_area := 0.50;
end;

{determine the percentage of patching
(area)}
if patch_value <> 9 then
 case patch_value of
 0: patch_area := 0.005;
 1: patch_area := 0.055;
 2: patch_area := 0.305;
 3: patch_area := 0.50;
 end;

{take the sum of the two area %}
{as the value to be plotted}
y[count] := (allgcrrk_area + patch_area);
if y[count] >= 1.0 then
 y[count] := 0.985;

{store the new accumulated 18kip value}
{in x arrays}
x1[count] := accum_18k1;
x2[count] := accum_18k2;
x3[count] := accum_18k3;
x4[count] := accum_18k4;
end
else
begin
 if err_code1 <> 0 then
 begin
 gotoxy (22,14);
 end
 begin
 gotoxy (22,14);
 end
end
write ('***WARNING***');
write (' bad data encountered');
gotoxy (22,15);
write ('');
write ('INVALID CODE FOR ALLIGATOR ');
gotoxy (22,17);
write ('Still processing. ');
write (' Please wait ... ');
end;
if err_code2 <> 0 then
begin
gotoxy (22,14);
write ('***WARNING***');
write (' bad data encountered');
gotoxy (22,15);
write ('');
write ('INVALID CODE FOR PATCHING');
gotoxy (22,17);
write ('Still processing. ');
write (' Please wait ... ');
end;
end;
end;

2: {rutting}
begin
{convert rutting data from string to integer}
val (rutting, rutting_value, err_code1);
{convert patching data from string to integer}
val (patching, patch_value, err_code2);
{if the conversion is successful}
if (err_code1 = 0) and (err_code2 = 0) then
{check if the value is valid i.e. <> 9}
if (rutting_value <> 9) then
begin
{increment valid data count}
count:= count + 1;
{determine the percentage of rutting}
{area}
case rutting_value of
 0: rutting_area:= 0.005;
 1: rutting_area:= 0.13;
 2: rutting_area:= 0.38;
 3: rutting_area:= 0.50;
end;
{determine the percentage of patching}
{area}
if patch_value <> 9 then
 case patch_value of
 0: patch_area:= 0.005;
 1: patch_area:= 0.055;
 2: patch_area:= 0.305;
 3: patch_area:= 0.5;
 end;

 {take the sum of the two area %}
 {as the value to be plotted }
 y[count]:= (rutting_area + patch_area);
 if y[count] >= 1.0 then
 y[count]:= 0.985;

 {store the new accumulated 18kip value}
 {in x arrays}
 x1[count]:= accum_18k1;
 x2[count]:= accum_18k2;
 x3[count]:= accum_18k3;
 x4[count]:= accum_18k4;
end
else
 begin
 if err_code1 <> 0 then
 begin
 gotoxy (22,14);
 write ('***WARNING*** ");
 write ('bad data encountered');
 gotoxy (22,15);
 write ('');
 write ('INVALID CODE FOR RUTTING "');
 gotoxy (22,17);
 write ('Still processing. ');
 write ('Please wait ...');
 end;
 if err_code2 <> 0 then
 begin
 gotoxy (22,14);
 write ('***WARNING*** ");
 write ('bad data encountered');
 gotoxy (22,15);
 write ('');
 write ('INVALID CODE FOR PATCHING "');
 gotoxy (22,17);
 write ('Still processing. ');
 write ('Please wait ...');
 end;
 end;
 end;

3: (psi)
 begin
 {convert psi data from string to real}
 val (simean,psi_value,err_code);
{if the conversion is successful}
if (err_code = 0) then

if psi_value <> 9.99999 then
begin
 count := count + 1;

 {store the psi value in the psi array}
 if psi_value = 0.0 then
 psi[count] := 0.0005
 else
 psi[count] := psi_value;

 {check for the maximum psi value}
 if psi_value > psi_max then
 psi_max := psi_value;

 {store the new accumulated 18kip value}
 {in x arrays}
 x1[count] := accum_18k1;
 x2[count] := accum_18k2;
 x3[count] := accum_18k3;
 x4[count] := accum_18k4;
end
else
if err_code <> 0 then
begin
 gotoxy (22,14);
 write ('***WARNING*** ');
 write ('bad data encountered');
 gotoxy (22,15);
 write ('');
 write ('INVALID PSI VALUE ');
 gotoxy (22,17);
 write ('Still processing. ');
 write ('Please wait ...');
end;
end;
end; (case)
end; (if)
end;

{close input file}
close (data_file);

{ask user for an estimated initial psi value}
{the input value has to be larger than or }
{equal to the existing maximum psi value}
response_OK := false;
psi_initial := 4.5;
if distress_type = 3 then
begin
 {ask for the estimated initial psi value}
clrscr; {clear the screen}
HiRes; {set high resolution graphics}
DrawBox (80,56,560,144);
gotoxy (21,10);
write ('The program needs to know the estimated');
gotoxy (21,11);
write ('initial PSI value. (> ',psi_max:4:2,')');
gotoxy (21,13);
write ('Initial PSI value (RETURN = 4.5) -> ');

(keep prompting for estimated initial psi value)
(if the input is smaller than the maximum psi value)
repeat
 psi_initial:= 4.5;
gotoxy (57,13);
write (' ');
gotoxy (57,13);
readln (psi_initial_str);
val (psi_initial_str,psi_initial,err_code);
if (err_code <> 0) then
 begin
 gotoxy (21,14);
 write ('Input must be numeric!');
 end
else
 begin
 if psi_initial >= psi_max then
 response_ok:= true
 else
 begin
 gotoxy (21,14);
 write ('Value too small! Please reenter.');
 end;
 end;
until response_ok;

(transform the psi value to a distress value)
for i:= 1 to count do
 y[count]:= ((psi_initial-psi[count]) /
 (psi_initial-psi_final)) /10;

TextMode; {clear screen and back to text mode}
end; {if}

(find a suitable accumulated 18kip factor for the)
(y axis on the graph)
case distress_type of
 1, 2: y_factor:= 'x 1';
 3: y_factor:= 'x 1';
end; {case}

(find a suitable accumulated 18kip factor for the x axis)
(on the graph)
(NOTE: 18 kip values are taken as the 3 most significant digits i.e. a number 1,234,567 will be expressed as 123 x 10^4)

if accum_18k3=0 then
 begin
 x_factor:= 'x 1';
 for i:= 1 to count do x[i]:= x4[i];
 end
else if accum_18k2 = 0 then
 begin
 if (a18k3 div 100) > 0 then
 begin
 x_factor:= 'x 10^3';
 for i:= 1 to count do x[i]:= x3[i];
 end
 else if (a18k3 div 10) > 0 then
 begin
 x_factor:= 'x 10^2';
 for i:= 1 to count do x[i]:= x3[i]*10 + x4[i] div 100;
 end
 else
 begin
 x_factor:= 'x 10';
 for i:= 1 to count do x[i]:= x3[i]*100 + x4[i] div 10;
 end;
 end
else if accum_18k1 = 0 then
 begin
 if (a18k2 div 100) > 0 then
 begin
 x_factor:= 'x 10^6';
 for i:= 1 to count do x[i]:= x2[i];
 end
 else if (a18k2 div 10) > 0 then
 begin
 x_factor:= 'x 10^5';
 for i:= 1 to count do x[i]:= x2[i]*10 + x3[i] div 100;
 end
 else
 begin
 x_factor:= 'x 10^4';
 for i:= 1 to count do x[i]:= x2[i]*100 + x3[i] div 10;
 end;
 end
else
 begin
 if (a18k1 div 10) > 0 then
 begin
 x_factor:= 'x 10^8';
 for i:= 1 to count do
\[
x[i] := x1[i] * 10 + x2[i] \div 100;
\]
end
else
begin
x factor := 'x 10^{-7}';
for i := 1 to count do
 x[i] := x1[i] * 100 + x2[i] \div 10;
end;
end;

{set axis parameter before plotting the graph}
{set the appropriate values for y axis scale}
case distress_type of
 1, 2 : begin
 y_min := 0.0;
 y_max := 1.0;
 y_interval := 0.25;
 end;
 3 : begin
 y_min := 0.0;
 y_max := 5.0;
 y_interval := 1.0;
 end;
end;

{set the appropriate values for x axis scale}
if (x[count] \div 10) = 0 then
begin
 x_min := 10;
 x_max := 0;
 x_interval := 1;
end
else
begin
 x_min := 0;
 (NOTE: the value 100 in the following equation for)
 (\ x max makes the curve more centered)
 (\ changing 100 to 10 will make the curve to)
 (\ shift more to the right and the range of)
 (\ the x scale to be smaller)
 x_max := ((x[count] \div 100) + 1) * 100;
 x_interval := x_max \div 10;
end;

{set title, id and label}
case distress_type of
 1 : begin
 title := 'ALLIGATOR CRACK vs ACCUMULATED 18KIP';
 id_string := 'SID #: ' + sid_no;
 x_label := 'accumulated 18kip';
 y_label := '% area distress';
 end;
 2 : begin
 title := 'RUTTING vs ACCUMULATED 18KIP';
 end;
id_string:= 'SID #: ' + sid_no;
x_label:= 'accumulated 18kip';
y_label:= '% area distress';
end;
3: begin
 title:= 'PSI vs ACGUMULATED 18KIP';
 id_string:= 'SID #: ' + sid_no;
 x_label:= 'accumulated 18kip';
 y_label:= 'psi';
end;
end; {case}

{plot the graph and points}
case distress_type of
 1, 2: PlotGraph (title,id_string,x_label,y_label,
 x_factor,y_factor,x,y,psi,psi_initial,
 count, x_min, x_max, x_interval,
 y_min, y_max, y_interval,d);
 3: PlotGraph (title,id_string,x_label,y_label,
 x_factor,y_factor,x,y,psi,psi_initial,
 count, x_min, x_max, x_interval,
 y_min, y_max, y_interval,p);
end; {case}

{>>> ending of program <<<}
end.
[* File Name: DECLARE.PAS]

```pascal
type (type declarations needed for PlotGraph parameters)
title_type = string [60];
id_type = string [12];
label_type = string [30];
factor_type = string [10];
x_type = integer;
y_type = real;
x_array_type = array [1..72] of x_type;
y_array_type = array [1..72] of y_type;
graph_type = (d, p);
```
program Listing

{ * File name: MYGRAPH.PAS
 * Written by: Victor Wong
 * Created on: Feb 19, 1988
 * Last updated: Mar 3, 1988
 }

{>>> PROCEDURE: DRAWBOX (X1, Y1, X2, Y2) <<<}
{>>> This procedure draws a box using pixel coordinates (X1,Y1) as <<<}
{>>> the top left corner and (X2, Y2) as the bottom right corner. <<<}

procedure DrawBox (xl, yl, x2, y2: integer);
begin
 Draw (xl, yl, xl, y2, 1);
 Draw (xl, y2, x2, y2, 1);
 Draw (x2, y2, x2, yl, 1);
 Draw (x2, yl, xl, yl, 1);
end;

{>>>> PROCEDURE: PLOTPONT (X, Y, OPTION) <<<}
{>>>> This procedure plots a point on the screen as one of the point <<<}
{>>>> options available using the given x and y coordinates. <<<}

procedure PlotPoint (x, y, option: integer);
begin
 case option of
 1: begin {cross}
 Draw (x-2, y-2, x+2, y+2, 1);
 Draw (x-2, y+2, x+2, y-2, 1);
 end;
 2: begin {plus}
 Draw (x-2, y, x+2, y, 1);
 Draw (x, y-2, x, y+2, 1);
 end;
 3: begin {asterisk}
 Draw (x-2, y, x+2, y, 1);
 Draw (x-2, y-2, x+2, y+2, 1);
 Draw (x-2, y+2, x+2, y-2, 1);
 end;
 4: begin {square}
 Draw (x-1, y-1, x+1, y-1, 1);
 Draw (x-1, y, x+1, y, 1);
 Draw (x-1, y+1, x+1, y+1, 1);
 end;
 end;
end;
Accumulated 18KIP vs Alligator Cracking/Rutting/PSI

Program Specification 2
Program Listing

{ *
* File name: RHOBETA.PAS
* Written by: Victor Wong
* Written on: Feb 23, 1988
* Last updated: Mar 8, 1988
* Procedure name: find rho beta
* Purpose: To find the rho and beta values for area or
* severity distress types.
* *
* Methodology: Equation being used is as follows.
* *
 rho beta
 distress = exp (- (-----))
 traffic

 When rho = traffic,
 *
 beta
 distress = exp (- (1))
 = exp (-1)
 = 0.367

 To find the rho for a distress vs traffic curve,
 this methodology takes the first point as the reference
 and does a linear estimate of where the rho should be
 for each following point. For each of the rhos, the
 beta can be found by solving the above equation. After
 considering all the points, the maximum beta value is
 taken and the corresponding rho is accepted. These two
 values will be the final rho and beta for the curve.

 The linear estimation for the rho value is determined as
 follows.

 rho estimation for a point

 distress when rho equals traffic - distress of point 1
 = ---
 distress of the point - distress of point 1

 x (traffic for the point - traffic of point 1) + traffic (1):

 0.367 - distress (1)
 i.e. rho(i)= ----------------------
 distress(i) - distress(1)
By rearranging the distress vs traffic equation, we get

\[\ln (-\ln (\text{distress})) \]
\[\beta = \frac{-\ln (\text{distress})}{\ln (\rho)} \]
\[\ln (\text{traffic}) \]

(Note that distress value is less than one. Thus
\[-\ln (\text{distress}) \] will give a positive number. Otherwise,
\[\ln (-\ln (\text{distress})) \] may be undefined.)

```
procedure find_rhobeta
(traffic: x_array_type; {traffic values}
distress: y_array_type; {distress values}
no_of_pt: integer; {no of traffic-distress pairs}
var final_rho, final_beta: real);
{>>> variables declaration <<<}
var
denominator,
rho,
max_beta: real;
index,
i: integer;
rho_of_pt,
beta_of_pt: array[1..72] of real;
{>>> beginning of the procedure find_rhobeta<<<}
begin
{If there is number of points is zero or less,
then rho and beta values are zeros.}
if (no_of_pt = 0) or (no_of_pt < 1) then begin
rho := 0.0;
beta := 1.0;
end
{If number of points = 88,
then rho = the first value in the traffic area
beta = 0.5.}
else if (no_of_pt = 88) then begin
rho := traffic[1];
beta := 0.5;
```
(If number of points = 99, then \(\rho = 17.5 \times 12.0 \) \(\beta = 1.0 \).)

else if (no_of_pt = 99) then
begin
 \(\rho := 17.5 \times 12.0; \)
 \(\beta := 1.0; \)
end

(If number of points is greater than zero and not 88 or 99, then apply the methodology described above to find the \(\rho \) and \(\beta \).)

else
begin
\{initialize the rhos and betas for the points to zero\}
for \(i := 1 \) to no_of_pt do
begin
 rho_of_pt[i] := 0.0;
 beta_of_pt[i] := 0.0;
end;

\{for all the \(n \) points, find the rhos and betas\}
for \(i := 2 \) to no_of_pt do
begin
 denominator := 1.0 \times (distress[i] - distress[1]);
 if (denominator <> 0.0) then
 begin
 rho_of_pt[i] := (0.367 - distress[1])/denominator
 \times (traffic[i]\textendash traffic[1]) + traffic[1];
 if rho_of_pt[i] > 0.0 then
 begin
 beta_of_pt[i] := - \ln (1.0 \times distress[i]);
 beta_of_pt[i] := \ln (beta_of_pt[i]) / \ln (rho_of_pt[i]/traffic[i]);
 end;
 end;
end;

\{find the maximum of the betas\}
max_beta := beta_of_pt[1];
index := 1;
for \(i := 2 \) to no_of_pt do
 if max_beta < abs (beta_of_pt[i]) then
 begin
 max_beta := beta_of_pt[i];
 index := i;
 end;

\{choose the maximum beta and the rho value corresponding to the beta\)
rho:= rho_of_pt[index];
beta:= max_beta;
end;

{return the final values for rho and beta}
final_rho:= rho;
final_beta:= beta;

{>>> ending of the procedure find_rho_beta <<<}
end;
procedure fitcurve (x: x_array_type;
y: y_array_type;
no_of_pts: integer;
x_min, x_max, x_interval: x_type;
y_min, y_max, y_interval: y_type;
psi_initial: real;
distress_or_psi: graph_type);

{>>> constant declaration <<<}
const
 window_border_space = 10;
 window_width_space = 60;
 pixels_per_line = 8;
 pixels_per_char = 8;
 y_axis_lines = 8;

{>>> variable declaration <<<}
var
 rho, beta: real;

 {--- variables necessary for defining graph window ---}
 x_right, x_left,
y_top, y_bottom: integer;

 {--- variables necessary for drawing the curve ---}
 spaces_per_interval,
 lines_per_interval: integer;
 delta_x: x_type;
 x_begin, x_end: x_type;
 y_begin, y_end: y_type;
 x_begin_coord,
 x_end_coord,
y_begin_coord,
 y_end_coord : integer;
 response: char;
 y_valid: boolean;

{>>> beginning of procedure fitcurve <<<}
begin

{--- find the rho and beta of the curve ---}
{--- detail on the equation of the curve---}
{--- is in file RHOBETA ---}
find_rho_beta (x, y, no_of_pts, rho, beta);

{--- process only when rho is positive ---}
if rho > 0 then
begin
{tell user to wait for curve fitting}
GotoXY (30,8);
write ('Wait !! Fitting the curve.');

{--- set window boundary ---}
y_top:= 8 * pixels_per_line;
y_bottom:= 17 * pixels_per_line;
x_left:= window_border_space * pixels_per_char;
x_right:= (window_width_space+window_border_space) * pixels_per_char;

{--- set the axis interval ---}
spaces_per_interval:= window_width_space
div ((x_max-x_min) div x_interval);
lines_per_interval:= y_axis_lines div
round((y_max-y_min)/y_interval);

{--- initialize variables needed for drawing the curve ---}
{--- incrementally ---}
delta x := x_interval div 2;
x_begin:= 1;
x_end:= x_begin + delta_x;
y_end:= 0;

{--- keep drawing the curve incrementally as long as ---}
{--- the x coordinate does not exceed the maximum x ---}
{--- value and the y coordinate does not exceed the ---}
{--- maximum y value ---}
while (x_end < x_max) and (y_end < y_max) do
begin
if distress_or_psi = d then
begin
{this demonstrates how the curve equation is being
transformed to the one which is used in this program

\[
y = \exp \left(- \frac{\rho}{x} \right) \beta
\Rightarrow \ln y = - \left(\frac{\rho}{x} \right) \beta
\Rightarrow \ln (\ln y) = \beta \ln \left(\frac{\rho}{x} \right)
\Rightarrow \ln (\ln y) = \beta \ln \left(\frac{\rho}{x} \right) \quad \text{since } \ln y \leq 0
\Rightarrow \ln y = - \exp \left(\beta \ln \left(\frac{\rho}{x} \right) \right) \quad \text{since } \ln y \leq 0
\Rightarrow y = \exp \left(- \exp \left(\beta \ln \left(\frac{\rho}{x} \right) \right) \right)
\}

{use the equation to calculate the y value of the}
{starting point of a curve segment}
y_begin:= beta * ln (rho/x_begin);

501
if \(y_{\text{begin}} < 88 \) then
begin
\[
y_{\text{begin}} := \exp (y_{\text{begin}});
\]
if \(y_{\text{begin}} < 88 \) then
\[
y_{\text{begin}} := \exp (-y_{\text{begin}})
\]
else
\[
y_{\text{begin}} := 0;
\]
end
else
\[
y_{\text{begin}} := 0;
\]
if \(y_{\text{begin}} < 0.005 \) then \(y_{\text{begin}} := 0 \);

{use the equation to calculate the \(y \) value of the ending}
{of a curve segment}
\[
y_{\text{end}} := \beta \times \ln \left(\frac{\rho}{x_{\text{end}}} \right);
\]
if \(y_{\text{end}} < 88 \) then
begin
\[
y_{\text{end}} := \exp (y_{\text{end}});
\]
if \(y_{\text{end}} < 88 \) then
\[
y_{\text{end}} := \exp (-y_{\text{end}})
\]
else
\[
y_{\text{end}} := 0;
\]
end
else
\[
y_{\text{end}} := 0;
\]
if \(y_{\text{end}} < 0.005 \) then \(y_{\text{end}} := 0 \);
end;

if \text{distress}_or_psi = p \) then
begin
{this demonstrates how the curve equation is being
transformed to the one which is used in this program}
\[
\rho \beta \\
0 \quad 0 \quad f \\
18 \text{kip}
\]
or
\[
y = \psi_{\text{initial}} - (\psi_{\text{initial}} - 1.5) \exp(- (\rho/x)^{\beta})
\]
\[
\Rightarrow (\psi_{\text{initial}} - y) = \exp (- (\rho/x)^{\beta})
\]
\[
\frac{(\psi_{\text{initial}} - y)}{(\psi_{\text{initial}} - 1.5)}
\]
\[
\Rightarrow (\psi_{\text{initial}} - y) = \exp (- \exp (\beta \times \ln (\rho/x)))
\]
\[
\frac{(\psi_{\text{initial}} - y)}{(\psi_{\text{initial}} - 1.5)}
\]
\[
\Rightarrow y = (\psi_{\text{initial}} - y) - \\
(\psi_{\text{initial}} - 1.5) \times
\exp (- \exp (\beta \times \ln (\rho/x)))
\]
}
(use the equation to calculate the y value of the starting point of a curve segment)
y_begin := beta * ln (rho/x_begin);
if y_begin < 88 then
 begin
 y_begin := exp (y_begin);
 if y_begin < 88 then
 y_begin := psi_initial -
 (psi_initial-1.5) * exp (- y_begin)
 else
 y_begin := psi_initial;
 end
else
 y_begin := psi_initial;
if y_begin < 0.005 then y_begin := 0;

(use the equation to calculate the y value of the ending point of a curve segment)
y_end := beta * ln (rho/x_end);
if y_end < 88 then
 begin
 y_end := exp (y_end);
 if y_end < 88 then
 y_end := psi_initial -
 (psi_initial-1.5) * exp (- y_end)
 else
 y_end := psi_initial;
 end
else
 y_end := psi_initial;
if y_end < 0.005 then y_end := 0;
end;

(calculate the window coordinates using the x and y values)
x_begin_coord := trunc (x_begin * ((spaces_per_interval * pixels_per_char) / x_interval));
y_begin_coord := trunc (y_begin * ((lines_per_interval * pixels_per_line) / y_interval));
x_end_coord := trunc (x_end * ((spaces_per_interval * pixels_per_char) / x_interval));
y_end_coord := trunc (y_end * ((lines_per_interval * pixels_per_line) / y_interval));

(if the y coordinate is 0, increment it by 1 pixel so that the curve will line up with the x axis since the x axis is 1 to 2 pixels from the window boundary)
if y_begin_coord = 0 then y_begin_coord := 1;
if y_end_coord = 0 then y_end_coord := 1;
(draw the curve segemnt)
Draw (x_begin_coord,
 y_bottom- y_top- y_begin_coord,
 x_end_coord,
 y_bottom- y_top- y_end_coord, 1);

(increment the x value)
 x_begin:= x_end;
 x_end:= x_begin + delta_x;
en;

(-- take message off the screen --)
GotoXY (30,8);
write ('');
en
else
begin
 GotoXY (30,8);
 write ('Sorry !!! Cannot fit curve due to');
 GotoXY (30,9);
 write ('decreasing distress values. 'Rho, Beta);
en;

(>>> end of procedure fitcurve <<<)
Procedure PlotGraph (title: title_type;
id: id_type;
x_label, y_label : label_type;
x_factor,
y_factor: factor_type;
x_values: x_array_type;
y_values: y_array_type;
psi_values: y_array_type;
psi_initial: real;
no_values: integer;
x_min,
x_max,
x_interval: x_type;
y_min,
y_max,
y_interval: y_type;
distress_or_psi: graph_type
);
begin

{ clear the screen first }-
ClrScr;

{ set the screen mode }-
{ high resolution 640 x 200 with black background and one color }-
HiRes;

{ set x and y boundaries for the graph window }-
y_top:= 8 * pixels_per_line;
y_bottom:= 17 * pixels_per_line;
x_left:= window border_space * pixels_per_char;
x_right:= (window width_space+window border space) * pixels_per_char;

{ output id on the left top corner }-
Writeln;
Write (' ',id);

{ output centered title to screen }-
indention:= (char_per_line - length (title)) div 2 -length(id);
for i:= 1 to indention do
 Write (blank);
Writeln (title);

{ output y axis lable to screen }-
for i:= 1 to 3 do Writeln;
Writeln (' ', y_label);
Writeln (' (', y_factor, ')');
Writeln;

{ output y axis values }-
no_y_intervals:= trunc ((y_max - y_min) / y_interval);
if no_y_intervals <= y_axis_lines then
 begin
 lines_per_interval:= y_axis_lines div no_y_intervals;
 for i:= 1 to (y_axis_lines mod no_y_intervals) do writeln;
 for i:= no_y_intervals downto 1 do
 begin
 for j:= 1 to (window border_space-y ndx width-2) do
 write (blank);
 write ((y_interval*i+y_min):y ndx width:2);
 end;
 end;

506
for j:= 1 to lines_per_interval do writeln;
end;
for j:= 1 to (window_border_space-y_ndx_width-2) do
write (blank);
writeln (y_min:y_ndx_width:2);
end;

{— output x axis values —}
 writeln;
for i:= 1 to (window_border_space-x_ndx_width) do
 write (blank);
no_x_intervals:= (x_max - x_min) div x_interval;
write (x_min:x_ndx_width);
spaces_per_interval:= window_width_space
 div no_x_intervals;
if spaces_per_interval > x_ndx_width then
begin
for i:= 1 to (spaces_per_interval-x_ndx_width) do
 write (blank);
for i:= 1 to no_x_intervals do
begin
 write ((x_interval*i+x_min):x
width);
for j:= 1 to (spaces_per_interval-x_ndx_width) do
 write (blank);
end;
 writeln;
end;

{— output x axis label to screen —}
 writeln;
indention:= (char_per_line - length (x_label)) div 2;
for i:= 1 to indentation do
 Write (blank);
Write (x_label);
for i:= 1 to indentation do
 Write (blank);
Write ('(', x_factor, ')');

{— output prompt to ask user to return to main menu —}
 writeln;
indention:= (char_per_line - 40) div 2;
for i:= 1 to indentation do
 Write (blank);
Write ('< Press RETURN to return to menu ... >');

{— draw the box for the screen output —}
 DrawBox (1,1,639,199);

Draw (1,3*pixels_per_line,639,3*pixels_per_line,1);
Draw (1,22*pixels_per_line,639,22*pixels_per_line,1);

{— define graph output window —}
 GraphWindow (x_left, y_top, x_right, y_bottom);
(-- draw y axis --)
Draw (1,1,1,(y_bottom-y_top-1),1);

(-- draw x axis --)
Draw (1,(y_bottom-y_top-1), (x_right-x_left-1),
 (y_bottom-y_top-1),1);

(-- plot points --)
for i:= 1 to no_values do
begin
 x_value:= x_values[i] * (spaces_per_interval *
 pixels_per_char) div x_interval;
 case distress_or_psi of
 d: y_value:= trunc ((y_values[i] *
 (lines_per_interval
 * pixels_per_line) / y_interval));
 p: y_value:= trunc ((psi_values[i] *
 (lines_per_interval
 * pixels_per_line) / y_interval));
 end;
 if y_value = 0
 then y_value:= (y_bottom - y_top)-2
 else y_value:= (y_bottom -y_top)- y_value;
 PlotPoint (x_value, y_value,1);
end;

(-- fit curve to points --)
FitCurve (x_values, y_values, no_values, x_min, x_max,
 x_interval, y_min, y_max, y_interval,
 psi_initial, distress_or_psi);

(-- wait for user to respond to prompt --)
Read (response);

(-- return to text mode and clear screen --)
TextMode;
ClrScr;

end;

(>>> ending of procedure PlotGraph <<<<)
Section 3: Building Model File
GENERAL NARRATIVE

This option allows the user to build a model file which may be used for roadway analysis. The model file contains various information collected from many system database files. This includes location, distress, layer, environmental, traffic and deflection data. Because of the amount of data involved, processing all this information is time-consuming. To allow the flexibility of building the model file section by section, this option provides an alternative to process the above-mentioned data groups individually. However, it is advisory to use the automatic process in most cases to avoid unnecessary confusion.

MODEL.PRG is the driver program for building the model file. The program specifications for the programs called by MODEL.PRG follow the MODEL.PRG program listing. Unless otherwise indicated in a program specification, the DBF files are stored in the subdirectory \PAVEDB\FILES, the NDX files are stored in the subdirectory \PAVEDB\INDEXES, and the DAT files are stored in the subdirectory \PAVEDB\APPLICAT\MODEL. The programs are stored in the subdirectory \PAVEDB\APPLICAT\MODEL unless indicated otherwise in a program specification.
Program Flow for Building Model File Automatically by Choosing Option 1 of Mode.Prg Menu

FIGURE 26
Program Flow for Building Model File by Individual Data Files by Choosing Option 2 of Model.prg Menu.
Program Specification 1

Program Name: MODEL.PRG

Purpose: To set up a menu for the option to build a model file. This program will ask the user to choose between two menu options: 1) To build the model file automatically, or 2) To build the model file by Individual data files.

Edit/Procedure Information:

1. The automatic option should be the one taken under most conditions. It will extract all the necessary data for the model file from various database files in the system.

2. The individual data files option should be taken with caution. It allows the user to extract information for the model file individually.

Input File(s):

1. Location database file (LOCATION.DBF) and index file (LOCATION.NDX).

2. Distress database file (DISTRESS.DBF) and index file (DISTRESS.NDX).

3. Layer database file (LAYER.DBF) and index file (LAYNDX.NDX).

4. Weather database file (WEATHER.DBF) and index file (WEATHER.NDX).

5. Environment database file (ENV.DBF) and index file (ENV.NDX).

6. Traffic database file (TRAFFIC.DBF) and index file (TRAFFIC.NDX).

7. Subgrade database file (SUBGRADE.DBF) and index file (SUBGNDX.NDX).

8. Shoulder database file (GEOSHO.DBF) and index file (GEONDX.NDX).
9. Surface database file (SURFACE.DBF) and index file (SURFNDX.NDX).

10. District temperature database file (DISTTEMP.DBF) and index file (DISTTEMP.NDX).

11. Dynaflec database file (DYNAFLID.DBF) and index file (DYNAFLID.NDX).

12. Falling weight database file (FALLWGT.DBF) and index file (FALLWGT.NDX).

Intermediate and Input/Output File(s):

1. Temporary distress database file (TEMP_DIS.DBF).

2. Temporary layer database file (TEMP_IAY.DBF).

3. Intermediate distress data file (DISTRESS.DAT).

5. Intermediate base thickness data file (BASETHCK.DAT).

Output File(s):

1. Model database file (MODEL.DBF).

dBASE Program Called:

MODELING.PRG
MOD_LOC.PRG
MODL_DIS.PRG
MODL_IAY.PRG
MODL_WEH.PRG
MODL_ENV.PRG
MODL_TRF.PRG
MODL_SUB.PRG
MODL_SHO.PRG
MODL_SUF.PRG
MODL_TMP.PRG
MODL_DYN.PRG
MODL_FAL.PRG
Building Model File

Program Specification 1
Model Menu Screen

TEXAS FLEXIBLE PAVEMENT DATABASE
BUILDING MODEL FILE

1) Build Model File Automatically
2) Build Model File by Individual Data Files

Option → _
Building Model File

Program Specification 1
Intermediate and Input/Output File Layout 1

File Name: TEMP_DIS.DBF

<table>
<thead>
<tr>
<th>Field</th>
<th>Key</th>
<th>Field Name</th>
<th>Type</th>
<th>Width</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>SID NO</td>
<td>Numeric</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>PAVETYP</td>
<td>Numeric</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>ALLG_RHO</td>
<td>Numeric</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>ALLG_BETA</td>
<td>Numeric</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>RJT_RHO</td>
<td>Numeric</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>RJT_BETA</td>
<td>Numeric</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>PSI_RHO</td>
<td>Numeric</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>PSI_BETA</td>
<td>Numeric</td>
<td>7</td>
<td>4</td>
</tr>
</tbody>
</table>
Building Model File

Program Specification 1
Intermediate and Input/Output File Layout 2

File Name: TEMP_LAY.DBF

<table>
<thead>
<tr>
<th>Field</th>
<th>Key</th>
<th>Field Name</th>
<th>Type</th>
<th>Width</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>SID NO</td>
<td>Numeric</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>BASETYPE</td>
<td>Numeric</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>BASETHCK</td>
<td>Numeric</td>
<td>7</td>
<td>2</td>
</tr>
</tbody>
</table>
Building Model File

Program Specification 1
Intermediate and Input/Output File Layout 3

File Name: DISTRESS.DAT

<table>
<thead>
<tr>
<th>Columns</th>
<th>Size/Type</th>
<th>Variables</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 4</td>
<td>4N</td>
<td>Section Identification Number</td>
<td></td>
</tr>
<tr>
<td>5 - 6</td>
<td>2N</td>
<td>Year</td>
<td></td>
</tr>
<tr>
<td>7 - 17</td>
<td>11N</td>
<td>Annual Cumulative 18KIP Equivalent Axle Load</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1N</td>
<td>Patching Area Distress Value</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1N</td>
<td>Rutting Area Distress Value</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1N</td>
<td>Alligator Cracking Area Distress Value</td>
<td></td>
</tr>
<tr>
<td>21 - 27</td>
<td>7.5N</td>
<td>Serviceability Index Mean Value</td>
<td></td>
</tr>
</tbody>
</table>

519
Building Model File

Program Specification 1
Intermediate and Input/Output File Layout 4

File Name: RHOBETA.DAT

<table>
<thead>
<tr>
<th>Columns</th>
<th>Size/Type</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 2</td>
<td>2N</td>
<td>Pave Type</td>
</tr>
<tr>
<td>3 - 9</td>
<td>7.4N</td>
<td>Rho Value for Alligator Cracking Area Distress Curve</td>
</tr>
<tr>
<td>10 - 16</td>
<td>7.4N</td>
<td>Beta Value for Alligator Cracking Area Distress Curve</td>
</tr>
<tr>
<td>17 - 23</td>
<td>7.4N</td>
<td>Rho Value for Rutting Area Distress Curve</td>
</tr>
<tr>
<td>24 - 30</td>
<td>7.4N</td>
<td>Beta Value for Rutting Area Distress Curve</td>
</tr>
<tr>
<td>31 - 37</td>
<td>7.4N</td>
<td>Rho Value for PSI Curve</td>
</tr>
<tr>
<td>38 - 44</td>
<td>7.4N</td>
<td>Beta Value for PSI Curve</td>
</tr>
</tbody>
</table>
Building Model File

Program Specification 1
Intermediate and Input/Output File Layout 5

File Name: BASETHCK.DAT

<table>
<thead>
<tr>
<th>Columns</th>
<th>Size/Type</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 4</td>
<td>4N</td>
<td>Section Identification Number</td>
</tr>
<tr>
<td>5 - 6</td>
<td>2N</td>
<td>Structure Number</td>
</tr>
<tr>
<td>7 - 8</td>
<td>2N</td>
<td>Layer Number</td>
</tr>
<tr>
<td>9 - 10</td>
<td>2N</td>
<td>Layer Description</td>
</tr>
<tr>
<td>11 - 12</td>
<td>2N</td>
<td>Layer Material</td>
</tr>
<tr>
<td>13 - 17</td>
<td>5.2N</td>
<td>Center Thickness of Layer</td>
</tr>
</tbody>
</table>
Building Model File

Program Specification 1
Program Listing

* File name: MODEL.PRG
* Program name: model
* Project 2456: Texas Flexible Pavement Database
* TAMU/TTI
* Written by: Victor Wong
* Created on: July 14, 1988
* Last updated: July 26, 1988
* Purpose: To call on modeling programs.

* initialize variables
PRIVATE OPTION
PRIVATE REP
REP = .T.

* repeat option menu if escape key is not pressed
DO WHILE REP
OPTION = ""
* redisplay menu until invalid option or escape is entered
DO WHILE .NOT. (OPTION $ "12") .AND. REP
* option menu
CLEAR
@ 6,24 SAY "TEXAS FLEXIBLE PAVEMENT DATABASE"
@ 7,24 SAY "BUILDING MODEL FILE"

@ 11,15 SAY "1) Build Model File Automatically"
@ 12,15 SAY "2) Build Model File by Individual Data Files"

@ 14,42 SAY "Option == GET OPTION PICTURE "X"
@ 3,9 TO 18,70 DOUBLE

* read option
READ

* set repeat flag to false if escape key is pressed
IF READKEY() = 12
REPLACE = .F.
ENDIF

* warning for invalid option entry
IF .NOT. (OPTION $ "12") .AND. REP
@20,10 SAY "Enter only 1 or 2."
WAIT
@20,10 SAY ""
ENDIF
ENDDO

* carry out the option
IF REP
DO CASE
 CASE OPTION = "1"
 ANS = " "
 DO WHILE .NOT. (ANS $ "yYnN")
 CLEAR
 ANS = "$N"
 @10,20 SAY "This process will take more than 2 hours."
 @11,20 SAY "Do you still want this option?(Y/N) ";
 GET ANS PICTURE "X"
 READ
 ENDDO
 IF (ANS $ "y")
 DO \pavedb\applicat\model\MODL LOC
 DO \pavedb\applicat\model\MODL DIS
 DO \pavedb\applicat\model\MODL LAY
 DO \pavedb\applicat\model\MODL WEA
 DO \pavedb\applicat\model\MODL ENV
 DO \pavedb\applicat\model\MODL TRF
 DO \pavedb\applicat\model\MODL SUB
 DO \pavedb\applicat\model\MODL SHO
 DO \pavedb\applicat\model\MODL SUF
 DO \pavedb\applicat\model\MODL TMP
 DO \pavedb\applicat\model\MODL DYN
 DO \pavedb\applicat\model\MODL_FAL
 ENDIF
 CASE OPTION = "2"
 DO \pavedb\applicat\model\MODELING
 ENDCASE
ENDCASE
ENDDO
RETURN
Building Model File
Program Specification 2

Program Name: MODELING.PRG

Purpose: To set up a menu for building the model file by extracting information from individual group of data.

Edit/Procedure Information:

1. This program calls the appropriate subprograms to extract information from various system database files.

dBASE Programs Called:

MODL LOC.PRG
MODL DIS.PRG
MODL LAY.PRG
MODL WEA.PRG
MODL ENV.PRG
MODL TRF.PRG
MODL SUB.PRG
MODL SHO.PRG
MODL SUF.PRG
MODL TMP.PRG
MODL DYN.PRG
MODL FAL.PRG
Building Model File

Program Specification 2
Model Menu Screen

TEXAS FLEXIBLE PAVEMENT DATABASE
BUILD MODEL FILE BY INDIVIDUAL DATA FILES

1) Retrieve Location Data
2) Retrieve Rho and Beta Values for
 Alligator Carcking, Rutting and PSI
3) Retrieve Layer Data
4) Retrieve Environmental Data
5) Retrieve Traffic Data
6) Retrieve Surface Deflection Data

Option ➔
Building Model File

Program Specification 2
Program Listing

* File name: MODELING.PRG
* Program name: modeling
* Project 2456: Texas Flexible Pavement Database
* TAMU/TTI
* Written by: Victor Wong
* Created on: July 14, 1988
* Last updated: July 26, 1988
* Purpose: To call on modeling programs individually.

* initialize variables
PRIVATE OPTION
PRIVATE REP
REP = .T.
* repeat option menu if escape key is not pressed
DO WHILE REP
 OPTION = " "
 * redisplay menu until valid option or escape is pressed
 DO WHILE .NOT. (OPTION $ "123456") .AND. REP
 CLEAR
 @ 5,24 SAY "TEXAS FLEXIBLE PAVEMENT DATABASE"
 @ 6,20 SAY "BUILD MODEL FILE BY INDIVIDUAL DATA FILES"
 @ 9,20 SAY "1) Retrieve Location Data"
 @ 10,20 SAY "2) Retrieve Rho and Beta Values for"
 @ 11,20 SAY "3) Alligator Cracking, Rutting and PSI"
 @ 12,20 SAY "4) Retrieve Layer Data"
 @ 13,20 SAY "5) Retrieve Environmental Data"
 @ 14,20 SAY "6) Retrieve Traffic Data"
 @ 15,20 SAY "7) Retrieve Surface Deflection Data"
 @ 17,42 SAY "Option = " " GET OPTION PICTURE "X"
 @ 3,9 TO 20,70 DOUBLE
 * read option
 READ
 * set repeat flag to false if escape key is pressed
 IF READKEY() = 12
 REP = .F.
 ENDDIF
 * warning for invalid option entry
 IF .NOT. (OPTION $ "123456") .AND. REP
 @20,10 SAY "Enter only 1 through 6."
 WAIT
 @20,10 SAY " "
 ENDDIF
 ENDDO
* carry out the option
IF REP
 DO CASE
 CASE OPTION = "1"
 CLEAR
 @10,15 SAY "This option will delete the most recent model file,"
 @11,15 SAY "and rebuild the model file."
 ANS = "N"
 @12,15 SAY "Do you still want to choose this option? (Y/N)";
 GET ANS PICTURE "X"
 READ
 IF (ANS="y") .OR. (ANS="y")
 CLEAR
 @10,18 SAY "Retrieving Location Data for Model File..."
 DO \pavedb\applicat\model\MODL_LOC
 ENDIF
 CASE OPTION = "2"
 CLEAR
 @10,15 SAY "Retrieving Rho and Beta Values for Model File..."
 DO \pavedb\applicat\model\MODL_DIS
 CASE OPTION = "3"
 CLEAR
 @10,20 SAY "Retrieving Layer Data for Model File..."
 DO \pavedb\applicat\model\MODL_LAY
 DO \pavedb\applicat\model\MODL_SUB
 DO \pavedb\applicat\model\MODL_SHO
 DO \pavedb\applicat\model\MODL_SUF
 ENDIF
 CASE OPTION = "4"
 CLEAR
 @10,15 SAY "Retrieving Environmental Data for Model File..."
 DO \pavedb\applicat\model\MODL_WEAT
 DO \pavedb\applicat\model\MODL_ENV
 DO \pavedb\applicat\model\MODL_IMP
 ENDIF
 CASE OPTION = "5"
 CLEAR
 @10,20 SAY "Retrieving Traffic Data for Model File..."
 DO \pavedb\applicat\model\MODL_TRF
 CASE OPTION = "6"
 CLEAR
 @10,14 SAY "Retrieving Surface Deflection Data for Model File..."
 DO \pavedb\applicat\model\MODL_DYN
 DO \pavedb\applicat\model\MODL_FAL
 ENDCASE
 ENDF CASE
 ENDDO
RETURN
Building Model File
Program Specification 3

Program Name: MODL_LOC.PRG

Purpose: To find the location data for the model file.

Edit/Procedure Information:
1. The program takes each active section identification number in the location database and inspects its most recent widening flag from the geometric shoulder database. It ignores the section if the program cannot find the section in the geometric and shoulder database file or the widening flag value is two.
2. If the section should not be ignored, copy the section identification number, highway prefix, highway district and county number to the model file.
3. When this program is run, it destroys the old contents in the model file (MODEL.DBF).

Input File(s):
1. Location database file (LOCATION.DBF) with index file (LOCATION.NDX).
2. Geometric shoulder database file (GEOSH.0BF) with index file (GEONDX.NDX).

Output File(s):
1. Model database file (MODEL.DBF).

File Layout(s):
1. LOCATION.DBF (See Appendix A.)
2. GEOSH.0BF (See Appendix A.)
3. MODEL.DBF (See Appendix A.)
Program Flow for Modl_Loc.Prg

FIGURE 28
Building Model File

Program Specification 3
Program Listing

* File name: MODL_LOC.PRG
* Program name: modl_loc
* Project 2456: Texas Flexible Pavement Database
* TAMU/TII
* Written by: Victor Wong
* Created on: June 29, 1988
* Last updated: July 14, 1988
* Purpose: To find location data for the model file.

* open files
SELECT A
USE \pavedb\files\LOCATION INDEX \pavedb\indexes\LOCATION
SELECT B
USE \pavedb\files\MODEL
ZAP
SELECT C
USE \pavedb\files\GEOSSH_INDEX \pavedb\indexes\GEONDX

* for each active sid number in the location file
SELECT A
DO WHILE .NOT. EOF()
 * see if the most recent widening flag of this section, if it exists
 * in the database; ignore if it is 2
 SELECT C
 SEEK STR(A->SID_NO, 4)
 IF FOUND()
 DO WHILE SID_NO = A->SID_NO
 SKIP
 SKIP -1
 IF WIDENFIG = 2
 IGNORE = .T.
 ELSE
 IGNORE = .F.
 ENDIF
 ELSE
 IGNORE = .T.
 ENDIF
 ENDWHILE
 ENDIF

 * continue if this section should not be ignored
 IF .NOT. IGNORE
 SELECT B
 APPEND BLANK

 * copy the sid number
 REPLACE SID_NO WITH A->SID_NO

 * copy the highway type
REPLACE HWYTYPE WITH A->HWYPREFX

* copy the district number
REPLACE HWYDIST WITH A->HWYDIST

* copy the county number
REPLACE CTYNUM WITH A->CTYNUM
ENDIF

* skip to the next sid number in location file
SELECT A
SKIP
ENDDO

* close files
CLOSE ALL
Building Model File
Program Specification 4

Program Name: MODL_DIS.PRG

Purpose: To find the distress data for the model file.

Edit/Procedure Information:

1. For each section identification number in the model file, this program will try to find the data in the distress database file. If there is such section in the distress file, the SID number, year, annual cumulative 18KIP equivalent axle load value, area of distress value for patching, rutting, and alligator cracking, serviceability index mean value, and the pavement type are written to an intermediate file (DISTRESS.DAT).

2. With the intermediate file, the program will call an external Turbo Pascal program (MODL_R_B.PAS) to find the rho and beta values of the distress and psi curves. The Pascal program returns the values through another intermediate file (RHOBETA.DAT).

3. MODL_DIS.PRG then reads the rho and beta values from RHOBETA.DAT into an intermediate database file (TEMP_DIS.DBF). The values are in turn copied into the model file.

Input File(s):

1. Distress database file (DISTRESS.DBF) with index file (DISTRESS.NDX).

Intermediate and Input/Output File(s):

1. Temporary distress database file (TEMP_DIS.DBF).
2. Intermediate distress data file (DISTRESS.DAT).
3. Intermediate rho/beta value data file (RHOBETA.DAT).

Output File(s):

1. Model database file (MODEL.DBF).
Program Flow for Modl_Dis.Prg

FIGURE 29
Building Model File

Program Specification 4
Program Listing

* File name: MODL_DIS.PRG
* Program name: modl_dis
* Project 2456: Texas Flexible Pavement Database
* TAMU/TII
* Written by: Victor Wong
* Created on: June 29, 1988
* Last updated: July 26, 1988
* Purpose: To find the rho and beta values for rutting, alligator cracking and psi.

* open files
SELECT A
USE \pavedb\files\MODEL
SELECT B
USE \pavedb\files\DISTRESS INDEX \pavedb\indexes\DISTRESS
SELECT C
USE \pavedb\files\TEMP_DIS
ZAP

* for each sid number in the model file
SELECT A
DO WHILE .NOT. EOF()
* find the data in the distress database file
SELECT B
SEEK STR(A->SID_NO,4)

* if it is found
IF FOUND()
 * copy the data to a column arranged file
 COPY TO \pavedb\applicat\model\DISTRESS.DAT ;
 FIELDS SID NO,YEAR,ALIKEAL,PATCH, RUIT, ALLGCR,;
SIMEAN,PAVETYP WHILE SID_NO=A->SID_NO TYPE SDF

 * run the Turbo Pascal program to find the rho and beta
RUN \pavedb\applicat\model\MODL_R_B

 * copy data to model file
SELECT C
APPEND FROM \pavedb\applicat\model\RHOBETA..DAT TYPE SDF
SELECT A
REPLACE PAVETYP WITH C->PAVETYP
REPLACE ALIG RHO WITH C->ALIG RHO
REPLACE ALIG BETA WITH C->ALIG BETA
REPLACE RUIT RHO WITH C->RUIT RHO
REPLACE RUIT BETA WITH C->RUIT BETA
REPLACE PSI RHO WITH C->PSI RHO
REPLACE PSI BETA WITH C->PSI BETA
ENDIF

* skip to the next sid number in model file
SELECT A
SKIP
ENDDO

* close files
CLOSE ALL
Building Model File

Program Specification 4
Program Listing

(* File name: MODL_R_B.PAS
 * Program name: model_rho_beta
 * Project 2456: Texas Flexible Pavement Database Conversion
 * TAMU/TTI
 * Written by: Victor Wong
 * Created on: June 29, 1988
 * Last updated: July 14, 1988
 * Purpose: To find the rho's and beta's of alligator
 * cracking, rutting and PSI for the model file.
 * Input file: DISTRESS.DAT
 * Output file: RHOBETA.DAT *)

{>>> PROGRAM MODL R B <<<}
program model_rho_beta;

{>>> constant declaration <<<}
const
 blank = ' ';
 psi_initial = 4.5;
 psi_final = 1.5;

{>>> type declaration <<<}
{$I \pavedb\applicat\graph18k\declare}

{>>> variable declaration <<<}
var
 {--- variables for data processing ---}
data_file: text;

{input data format}
sid_no: string[4]; {sid number 4N}
year: string[2]; {year 2N}
al8keal: string[11]; {18kip 11N}
patching: string[1]; {patching 1N}
rutting: string[1]; {rutting 1N}
allgcruk: string[1]; {alligator crack 1N}
simean: string[7]; {simean 7.5N}
pavetyp: string[2]; {pavement type 2N}

{variables needed for conversion of data from strings into } {error code for string to}
{numbers and variables needed for any numeric manipulation} {number conversion}
err_code,
err_code1,
err_code2: integer; {sid no value)
sid_no_value,
psi_value: real;
patch_value,
putting_value,
allgcrk_value: integer;
patch_area,
putting_area,
allgcrk_area: real;
a18k1, a18k2,
a18k3, a18k4,
a18k1_carry,
a18k2_carry,
a18k3_carry,
a18k4_carry,
accum_18k1,
accum_18k2,
accum_18k3,
accum_18k4: integer;
a18k1_zero,
a18k2_zero,
a18k3_zero,
a18k4_zero: boolean;
a18keal1: string[2];
a18keal2,
a18keal3,
a18keal4: string[3];
allg_y,
rutt_y,
psi_y: y_array_type;
rutt_x,
psi_x,
a11g_x1,
a11g_x2,
a11g_x3,
a11g_x4,
rutt_x1,
rutt_x2,
rutt_x3,
rutt_x4,
psi_x1,
psi_x2,
psi_x3,
psi_x4: x_array_type;
c: char;
i: integer;
char_at_index: char;
index: integer;
found: boolean;
allg_count,
nutt_count,
psi_count: integer;
outfile: text;

(>>> include files <<<)
($I \pavedb\applicat\grapiiak\rhobeta)
 {file with procedure to calculate}
 (rho and beta)

(>>> beginning of program <<<)
begin

(--- open the distress data file ---)
assign (data_file, '\pavedb\applicat\model\distress.dat');
reset (data_file);

(--- initialize some variables---)
accum_18k1:= 0;
accum_18k2:= 0;
accum_18k3:= 0;
accum_18k4:= 0;

readln (data_file, sid_no, year, a18keal, patching, rutting,
 allgcrk, simean, pavetyp);
allg_count:= 0; {initialize the count of valid data to 0}
mutt_count:= 0; {initialize the count of valid data to 0}
psi_count:= 0; {initialize the count of valid data to 0}
patch_area:=0.005; {initialize the patch area to 0.0}

{while not eof}
{read data, accumulate 18kip value }
{and store valid distress or psi value}
while not eof(data_file) do
 begin
 {convert the a18keal string value to 3 integer values}
 {so that the concatenation of a18k1, a18k2 and a18k3 }
 {will give the whole 18keal value}
 {if the err_code is non-zero, it means that digits }
 {are missing at those positions and it is the same as}
 {having zeros there}
 {the positions of leading zeros are indicated by the }
 {a18kX_zero flag}

 {split a18keal value string into 4 sections }
 {((xx,xxx,xxx,xxx))}
 a18keal1:= copy(a18keal,1,2);
a18keal2:= copy(a18keal,3,3);
a18keal3:= copy(a18keal,6,3);
a18keal4:= copy(a18keal,9,3);
(delete leading blank spaces of a18kealx string)
(and store convert the string to integer a18kx values)

index:= 1;
char_at_index:= copy (a18keal1,index,1);
while (char_at_index = blank) and (index < 2) do begin
 index:= index + 1;
 char_at_index:= copy (a18keal1,index,1);
end;
if index < 2 then
 val (copy(a18keal1,index,3-index),a18k1,err_code)
else if char_at_index <> blank then
 val (copy (a18keal1,index,3-index),a18k1,err_code)
else
 begin
 a18k1:= 0;
 a18k1_zero:= true;
 end;

index:= 1;
char_at_index:= copy (a18keal2,index,1);
while (char_at_index = blank) and (index < 3) do begin
 index:= index + 1;
 char_at_index:= copy (a18keal2,index,1);
end;
if index < 3 then
 val (copy(a18keal2,index,4-index),a18k2,err_code)
else if char_at_index <> blank then
 val (copy (a18keal2,index,4-index),a18k2,err_code)
else
 begin
 a18k2:= 0;
 a18k2_zero:= true;
 end;

index:= 1;
char_at_index:= copy (a18keal3,index,1);
while (char_at_index = blank) and (index < 3) do begin
 index:= index + 1;
 char_at_index:= copy (a18keal3,index,1);
end;
if index < 3 then
 val (copy(a18keal3,index,4-index),a18k3,err_code)
else if char_at_index <> blank then
 val (copy (a18keal3,index,4-index),a18k3,err_code)
else
 begin
 a18k3:= 0;
 a18k3_zero:= true;
 end;

index:= 1;
char at index := copy (a18keal4, index, 1);
while (char at index = blank) and (index < 3) do
begin
 index := index + 1;
 char at index := copy (a18keal4, index, 1);
end;
if index < 3 then
 val (copy(a18keal4, index, 4-index), a18k4, err code)
else if char at index <> blank then
 val (copy (a18keal4, index, 4-index), a18k4, err code)
else
begin
 a18k4 := 0;
 a18k4_zero := true;
end;

(if the a18keal value is not zero continue processing)
if not (a18k1_zero and a18k2_zero and a18k3_zero and
 a18k4_zero) then
begin
 (increment the accumulated 18kip value)
 accum_18k4 := accum_18k4 + a18k4;
 a18k4_carry := accum_18k4 div 1000;
 accum_18k4 := accum_18k4 mod 1000;
 accum_18k3 := accum_18k3 + a18k3 + a18k4_carry;
 a18k3_carry := accum_18k3 div 1000;
 accum_18k3 := accum_18k3 mod 1000;
 accum_18k2 := accum_18k2 + a18k2 + a18k3_carry;
 a18k2_carry := accum_18k2 div 1000;
 accum_18k2 := accum_18k2 mod 1000;
 accum_18k1 := accum_18k1 + a18k1 + a18k2_carry;

 (for each distress type)
 (do the necessary processing)
 (alligator cracking)
 (convert alligator crack data from string to)
 (integer)
val (allgcrk, allgcrk_value, err_code1);

 (convert patching data from string to integer)
val (patching, patch_value, err_code2);

 (if the conversion is successful)
if (err_code1 = 0) and (err_code2 = 0) then
begin
 (check if the value is valid i.e. <> 9)
 if (allgcrk_value <> 9) then
begin
 (increment valid data count)
 allg_count := allg_count + 1;

 (determine the percentage of alligator)
 (cracking area)
case allgcrk_value of
 0: allgcrk_area:= 0.005;
 1: allgcrk_area:= 0.055;
 2: allgcrk_area:= 0.305;
 3: allgcrk_area:= 0.50;
end;

(determine the percentage of patching)
(area)
if patch_value <> 9 then
 case patch_value of
 0: patch_area:= 0.005;
 1: patch_area:= 0.055;
 2: patch_area:= 0.305;
 3: patch_area:= 0.50;
 end;

{take the sum of the two area %}
{as the value to be plotted}
allg_y[allg_count] := (allgcrk_area +
 patch_area);
if allg_y[allg_count] >= 1.0 then
 allg_y[allg_count] := 0.985;

{store the new accumulated 18kip value}
{in x arrays}
allg_x1[allg_count]:= accum_18k1;
allg_x2[allg_count]:= accum_18k2;
allg_x3[allg_count]:= accum_18k3;
allg_x4[allg_count]:= accum_18k4;
end
else
begin
 if err_code1 <> 0 then
 begin
 gotoxy (22,14);
 write ('***WARNING***');
 write (' bad data encountered');
 gotoxy (22,15);
 write ('');
 write ('INVALID CODE FOR ALLIGATOR ');
 write ('CRACKING ');
 gotoxy (22,17);
 write ('Still processing.');
 write (' Please wait ...');
 end;
 if err_code2 <> 0 then
 begin
 gotoxy (22,14);
 write ('***WARNING***');
 write (' bad data encountered');
 gotoxy (22,15);
 write ('');
 write ('INVALID CODE FOR PATCHING');
write ('
');
gotoxy (22,17);
write ('Still processing.
');
write (' Please wait ...');
end;
end;

{rutting}
{convert rutting data from string to integer}
val (rutting,rutting_value,err_code1);

{convert patching data from string to integer}
val (patching,patch_value,err_code2);

{if the conversion is successful}
if (err_code1 = 0) and (err_code2 = 0) then begin
{check if the value is valid i.e. <> 9}
if (rutting_value <> 9) then begin
{increment valid data count}
rutt_count:= rutting_count + 1;

{determine the percentage of rutting}
{area}
case rutting_value of
0: rutting_area:= 0.005;
1: rutting_area:= 0.13;
2: rutting_area:= 0.38;
3: rutting_area:= 0.50;
end;

{determine the percentage of patching}
{area}
if patch_value <> 9 then begin
{as the value to be plotted }
case patch_value of
0: patch_area:= 0.005;
1: patch_area:= 0.055;
2: patch_area:= 0.305;
3: patch_area:= 0.5;
end;

{take the sum of the two area %}
{store the new accumulated 18kip value}
rutt_y[rutt_count]:= (rutting_area + patch_area);
if rutty[rutt_count] >= 1.0 then rutty[rutt_count]:= 0.985;

{store the new accumulated 18kip value}
in x arrays
rutt_x1[rutt_count]:= accum_18k1;
rutt_x2[rutt_count]:= accum_18k2;
ruttx[3][ruttx_count]:= accum_18k3;
ruttx[4][ruttx_count]:= accum_18k4;
end
else
begin
if err_code1 <> 0 then
begin
gotoxy (22,14);
write ("***WARNING*** ");
write ('bad data encountered');
gotoxy (22,15);
write ('');
write ('INVALID CODE FOR RUITING ");
gotoxy (22,17);
write ('Still processing. ");
write ('Please wait ...');
end;
if err_code2 <> 0 then
begin
gotoxy (22,14);
write ("***WARNING*** ");
write ('bad data encountered');
gotoxy (22,15);
write ('');
write ('INVALID CODE FOR PATCHING ");
gotoxy (22,17);
write ('Still processing. ");
write ('Please wait ...');
end;
end;
end;

{psi}
{convert psi data from string to real}
val (simean,psi_value,err_code);

{if the conversion is successful}
if (err_code = 0) then
begin
if psi_value <> 9.99999 then
begin
psi_count:= psi_count + 1;
{store the psi value in the psi array}
if psi_value = 0.0 then
psi[psi_count]:= 0.0005
else
psi[psi_count]:= psi_value;
{transform the psi value to a distress value}
psi_y[psi_count]:= ((psi_initial -
psi[psi_count]) / (psi_initial -
psi_final))/10;
end;
(store the new accumulated 18kip value)
(in x arrays)
psi_{x1}[\psi\text{-count}] := \text{accum}_18k1;
psi_{x2}[\psi\text{-count}] := \text{accum}_18k2;
psi_{x3}[\psi\text{-count}] := \text{accum}_18k3;
psi_{x4}[\psi\text{-count}] := \text{accum}_18k4;
end
else
begin
 if err_code <> 0 then
 begin
 gotoxy (22,14);
 write ('***WARNING*** ');
 write ('bad data encountered');
 gotoxy (22,15);
 write ('');
 write ('INVALID PSI VALUE ');
 gotoxy (22,17);
 write ('Still processing. ');
 write ('Please wait ...');
 end;
end;
end; (if)

if not eof(data_file) then readln(data_file, sid_no, year, a18kreal, patching, rutting, allgcrk, simean, pavetyp); end;

(find a suitable accumulated 18kip factor for the x axis)
(on the graph)
(NOTE: 18 kip values are taken as the 3 most significant)
(digits i.e. a number 1,234,567 will be expressed as 123 x 10^4)
if accum_18k3=0 then begin
 for i:= 1 to allg_count do allg_x[i]:= allg_x4[i];
 for i:= 1 to rutt_count do rutt_x[i]:= rutt_x4[i];
 for i:= 1 to psi_count do psi_x[i]:= psi_x4[i];
end
else if accum_18k2 = 0 then begin
 if (a18k3 \text{ div} 100) > 0 then begin
 for i:= 1 to allg_count do allg_x[i]:= allg_x3[i];
 for i:= 1 to rutt_count do rutt_x[i]:= rutt_x3[i];
 for i:= 1 to psi_count do psi_x[i]:= psi_x3[i];
 end
 else if (a18k3 \text{ div} 10) > 0 then begin
 for i:= 1 to allg_count do
 allg_x[i]:= allg_x3[i]\times 10 + allg_x4[i] \text{ div} 100;
 for i:= 1 to rutt_count do
 rutt_x[i]:= rutt_x3[i]\times 10 + rutt_x4[i] \text{ div} 100;
 end
end;
allg_x[i] := rutt_x3[i]*10 + rutt_x4[i] div 100;
for i:= 1 to psi_count do
 allg_x[i] := psi_x3[i]*10 + psi_x4[i] div 100;
end
else
 begin
 for i:= 1 to allg_count do
 allg_x[i] := allg_x3[i]*100 + allg_x4[i] div 10;
 for i:= 1 to rutt_count do
 allg_x[i] := rutt_x3[i]*100 + rutt_x4[i] div 10;
 for i:= 1 to psi_count do
 allg_x[i] := psi_x3[i]*100 + psi_x4[i] div 10;
 end
else if accum_18k1 = 0 then
 begin
 if (a18k2 div 100) > 0 then
 begin
 for i:= 1 to allg_count do allg_x[i] := allg_x2[i];
 for i:= 1 to rutt_count do rutt_x[i] := rutt_x2[i];
 for i:= 1 to psi_count do psi_x[i] := psi_x2[i];
 end
 else if (a18k2 div 10) > 0 then
 begin
 for i:= 1 to allg_count do
 allg_x[i] := allg_x2[i]*10 + allg_x3[i] div 100;
 for i:= 1 to rutt_count do
 rutt_x[i] := rutt_x2[i]*10 + rutt_x3[i] div 100;
 for i:= 1 to psi_count do
 psi_x[i] := psi_x2[i]*100 + psi_x3[i] div 100;
 end
 else
 begin
 for i:= 1 to allg_count do
 allg_x[i] := allg_x1[i]*10 + allg_x2[i] div 100;
 for i:= 1 to rutt_count do
 rutt_x[i] := rutt_x1[i]*10 + rutt_x2[i] div 100;
 for i:= 1 to psi_count do
 psi_x[i] := psi_x1[i]*10 + psi_x2[i] div 100;
 end
 end
else if accum_18k1 = 0 then
 begin
 if (a18k2 div 100) > 0 then
 begin
 for i:= 1 to allg_count do allg_x[i] := allg_x2[i];
 for i:= 1 to rutt_count do rutt_x[i] := rutt_x2[i];
 for i:= 1 to psi_count do psi_x[i] := psi_x2[i];
 end
 else if (a18k2 div 10) > 0 then
 begin
 for i:= 1 to allg_count do
 allg_x[i] := allg_x2[i]*10 + allg_x3[i] div 100;
 for i:= 1 to rutt_count do
 rutt_x[i] := rutt_x2[i]*10 + rutt_x3[i] div 100;
 for i:= 1 to psi_count do
 psi_x[i] := psi_x2[i]*100 + psi_x3[i] div 100;
 end
 else
 begin
 for i:= 1 to allg_count do
 allg_x[i] := allg_x1[i]*10 + allg_x2[i] div 100;
 for i:= 1 to rutt_count do
 rutt_x[i] := rutt_x1[i]*10 + rutt_x2[i] div 100;
 for i:= 1 to psi_count do
 psi_x[i] := psi_x1[i]*10 + psi_x2[i] div 100;
 end
 end
else
 begin
 if (a18k1 div 10) > 0 then
 begin
 for i:= 1 to allg_count do
 allg_x[i] := allg_x1[i]*10 + allg_x2[i] div 100;
 for i:= 1 to rutt_count do
 rutt_x[i] := rutt_x1[i]*10 + rutt_x2[i] div 100;
 for i:= 1 to psi_count do
 psi_x[i] := psi_x1[i]*10 + psi_x2[i] div 100;
 end
else
 begin

545
for i:= 1 to allg_count do
 allg_x[i]:= allg_x1[i]*100 + allg_x2[i] div 10;
for i:= 1 to rutt_count do
 rutt_x[i]:= rutt_x1[i]*100 + rutt_x2[i] div 10;
for i:= 1 to psi_count do
 psi_x[i]:= psi_x1[i]*100 + psi_x2[i] div 10;
end
end;

Find_rho_beta (allg_x,allg_y,allg_count,allg_rho,
 allg_beta);
Find_rho_beta (rutt_x,rutt_y,rutt_count,rutt_rho,
 rutt_beta);
Find_rho_beta (psi_x,psi_y,psi_count,psi_rho,psi_beta);
assign (outfile, '\pavedb\applicat\model\rhobeta.dat');
rewrite (outfile);
writeln (outfile, sid_no,pavetyp,allg_rho:7:4,
 allg_beta:7:4,allg_count:4,allg_x:7:4,allg_y:7:4,
 rutt_x:7:4,rutt_y:7:4,rutt_count:4,
 rutt_rho:7:4,rutt_beta:7:4,
 psi_x:7:4,psi_y:7:4,psi_count:4,
 psi_rho:7:4,psi_beta:7:4);
close(outfile);
close (data file);
(>>> ending of program <<<)
end.
Building Model File
Program Specification 5

Program Name: MODL_IAY.PRG

Purpose: To find the layer data for the model file.

Edit/Procedure Information:

1. For each section identification number in the model file, the program finds the section in the layer file. If it is found, the data needed to find the total thickness of the most recent same material base layers is copied to an intermediate file (BASETHCK.DAT).

2. A Turbo Pascal program (BASETHCK.PAS) will take the data in BASETHCK.DAT and find the most recent base layer. Then it will keep adding the thickness of other base layers that have the same material code number. It does so by backtracking through the layers starting with the highest layer number. It stops when it encounter a base layer with a different material than the latest base layer, or the earliest layer is encountered.

3. The total base layer thickness is then passed back to the MODL_IAY.PRG program by writing the result in the intermediate file (BASETHCK.DAT). The type of base material is also passed in the file. The dBASE program (MODL_IAY.PRG) will copy the result to a temporary database file (TEMP_IAY.DBF) and then to the model file.

Input File(s):

1. Layer database file (LAYER.DBF) with index file (LAYER.NDX).

Intermediate and Input/Output File(s):

1. Temporary layer database file (TEMP_IAY.DBF).

2. Intermediate base thickness data file (BASETHCK.DAT).

Output File(s):

1. Model database file (MODEL.DBF).
Building Model File

Program Specification 5

File Layout(s):

1. LAYER.DBF (See Appendix A)

2. TEMP_LAY.DBF (Refer to Intermediate and Input/Output File Layout 2 in Program Specification 1.)

3. BASETHCK.DAT (Refer to Intermediate and Input/Output File Layout 5 in Program Specification 1.)

4. MODEL.DBF (See Appendix A)

Programs Called:

BASETHCK.PAS
Program Flow for Mod1_Lay.Prg

FIGURE 30
Building Model File

Program Specification 5
Program Listing

* File name: MODL LAY.PRG
* Program name: modl_lay
* Project 2456: Texas Flexible Pavement Database
* TAMU/TIT
* Written by: Victor Wong
* Created on: June 29, 1988
* Last updated: July 26, 1988
* Purpose: To find the layer data for the model file.

* open files
SELECT A
USE \pavedb\files\MODEL
SELECT B
USE \pavedb\files\LAYER INDEX \pavedb\indexes\LAYNDX
SELECT C
USE \pavedb\files\TEMP_LAY

* for each sid number in the model file
SELECT A
DO WHILE .NOT. EOF()
 * find the sid number in layer file
 SELECT B
 SEEK STR(A->SID_NO,4)

 * if found
 IF FOUND()
 * copy the data to a column arranged file
 COPY TO \pavedb\applicat\model\BASEI'CK.DAT ;
 FIELDS SID_NO,STRUCTNUM,LAYNUM,LAYDESC,LAYMATCL,CENTI'CK ;
 WHILE SID_NO=A->SID_NO TYPE SDF

 * run a Turbo Pascal program to find the base thickness
 RUN \pavedb\applicat\model\BASEI'CK

 CLEAR
 @10,19 SAY "Retrieving Layer Data for Model File..."

 * copy the result to a temporary file
 SELECT C
 ZAP
 APPEND FROM \pavedb\applicat\model\BASEI'CK.DAT TYPE SDF

 * copy the result to the model file
 SELECT A
 REPLACE BASEI'CK WITH C->BASEI'CK
 REPLACE BASEI'YP WITH C->BASEI'YPE

ENDIF
* next sid number in the model file
SELECT A
SKIP
ENDDO

* close files
CLOSE ALL
(* File name: BASETHCK.PAS
* Program name: find_base_thickness
* Project 2456: Texas Flexible Pavement Database
* TAMU/TTI
* Written by: Victor Wong
* Created on: July 13, 1988
* Last updated: July 26, 1988
* Purpose: To find the total thickness of the most recent
* base material.
* Input file(s): basethck.dat
* Output file(s): basethck.dat)

program find_base_thickness;

type
dataitem = record
 sid no: string[4];
 strnum: string[2];
 laynum: string[2];
 laydesc: string[2];
 laymatcl: string[2];
 centthk: string[5];
end;

var
datafile: text;
base_thick,
total_base_thick: real;
err_code,
of_records,
index: integer;
data: array[1..30] of dataitem;
base_type,
previous_laynum: string[2];
ext_loop,
most_recent_base: boolean;

begin
 assign (datafile, '\pavedb\applcat\model\basethck.dat');

 (*---read in data needed for the solution*
 reset (datafile);
 index:= 0;
 while not eof(datafile) do
 begin
 index:= index + 1;
with data[index] do
begin
readln (datafile, sid_no, strnum, laynum, laydesc, laymatcl, centthk);
if centthk[1] = ' ' then centthk[1] := '0';
end;
end;
no_of_records := index;
close(datafile);

{---find the total thickness of the most base material}
{initializations}
previous_laynum := '0';
most_recent_base := true;
exit_loop := false;
index := no_of_records;
total_base_thick := 0.0;

{for all the layers starting backwards}
while (index >= 1) and (not exit_loop) do
with data[index] do
begin
{if the layer number is different from the previous one} if laynum <> previous_laynum then
begin
{if the layer is a base}
if laydesc = '5' then
begin
{if the base layer is the most recent one}
if most_recent_base then
begin
{make note of the base type}
base_type := laymatcl;
{the next base layer will not be the most recent}
most_recent_base := false;
{increment the total base thickness}
val (centthk, base_thick, err_code);
total_base_thick := total_base_thick + base_thick;
end
end
else
begin
{if the base material is the same as the most recent one}
if laymatcl = base_type then
begin
{increment the total base thickness}
val (centthk, base_thick, err_code);
total_base_thick := total_base_thick + base_thick;
end
end
end
end
end

else
 {exit the loop}
 exit_loop := true;
end;
end;
end;

{increment the index}
previous_laynum := laynum;
index := index - 1;
end;

{output the solution}
rewrite (datafile);
writeln (datafile, data[1].sid_no, base_type,
total_base_thick:7:2);
close (datafile); end.
Building Model File

Program Specification 6

Program Name: MODL_WEA.PRG

Purpose: To find the weather data for the model file.

Edit/Procedure Information:

1. For each section identification number in the model file, the program determines if the record for the county in which the section resides exists in the weather database file (WEATHER.DBF). If so, the program finds the annual total freeze thaw cycle values and the mean precipitation values. This is done by summing the monthly values for that county.

2. The result is copied to the model file.

Input File(s):

1. Weather database file (WEATHER.DBF) with index file (WEATHER.NDX).

Output File(s):

1. Model database file (MODEL.DBF).

File Layout(s):

1. WEATHER.DBF (See Appendix A)
2. MODEL.DBF (See Appendix A)
Program Flow for Modl_Wea.Prg

FIGURE 31
Building Model File

Program Specification 6
Program Listing

* File name: MODL.WEA.PRG
* Program name: modl_wea
* Project 2456: Texas Flexible Pavement Database
* TAMU/TTI
* Written by: Victor Wong
* Created on: June 29, 1988
* Last updated: July 26, 1988
* Purpose: To find the weather data for the model file.

* open files
SELECT A
USE \pavedb\files\MODEL
SELECT B
USE \pavedb\files\WEATHER INDEX \pavedb\indexes\WEATHER

* for each active sid number in the model file
SELECT A
DO WHILE .NOT. EOF()
 * find the data in the weather database file
 SELECT B
 SEEK STR(A->CNTNUM,3)

 * copy the data to the model database file
 IF FOUND()
 * calculate the annual total freeze thaw cycles and
 * mean precipitation values
 TOT_F_T = 0
 TOT_M_P = 0
 DO WHILE CNTNUM = A->CNTNUM
 TOT_F_T = TOT_F_T + TFTCMN
 TOT_M_P = TOT_M_P + PRECMN
 SKIP
 ENDDO
 REPLACE A->TFTCMN WITH TOT_F_T
 REPLACE A->PRECMN WITH TOT_M_P
 ENDIF

 * skip to the next sid number in model file
 SELECT A
 SKIP
ENDDO

* close files
CLOSE ALL
Building Model File

Program Specification 7

Program Name: MODL_ENV.PRG

Purpose: To find the environment data for the model file.

Edit/Procedure Information:

1. For each section identification number in the model file, the program determines if the record for the county in which the section resides exists in the environment database file (ENV.DBF). If so, the program copies the Thornthwaite index value to the model file.

Input File(s):

1. Environment database file (ENV.DBF) with index file (ENV.NDX).

Output File(s):

1. Model database file (MODEL.DBF).

File Layout(s):

1. ENV.DBF (See Appendix A)
2. MODEL.DBF (See Appendix A)
Program Flow for Modl_Env.Prg.

FIGURE 32
Building Model File

Program Specification 7
Program Listing

* File name: MODL_ENV.PRG
* Program name: modl_env
* Project 2456: Texas Flexible Pavement Database
* TAMU/TTI
* Written by: Victor Wong
* Created on: June 29, 1988
* Last updated: July 26, 1988
* Purpose: To find the environmental data for the model file.

* open files
SELECT A
USE \pavedb\files\MODEL
SELECT B
USE \pavedb\files\ENV INDEX \pavedb\indexes\ENV

* for each sid number in the model file
SELECT A
DO WHILE .NOT. EOF()
 * find the data in the env database file
 SELECT B
 SEEK A->CNVNUM

 * copy the data to the model database file
 IF FOUND()
 * copy the mean thornthwaite index
 REPLACE A->THORNMIN WITH THORNMIN
 ENDIF

 * skip to the next sid number in model file
 SELECT A
 SKIP
ENDDO

* close files
CLOSE ALL
Building Model File

Program Specification 8

Program Name: MODL_TRF.PRG

Purpose:

To find the traffic data for the model file.

Edit/Procedure Information:

1. For each section identification number in the model file, the program determines if the section exists in the traffic database file (TRAFFIC.DBF). If so, the program finds the latest average daily traffic (ADT) value and copies it to the model file.

Input File(s):

1. Traffic database file (TRAFFIC.DBF) with index file (TRAFFIC.NDX).

Output File(s):

1. Model database file (MODEL.DBF).

File Layout(s):

1. TRAFFIC.DBF (See Appendix A)
2. MODEL.DBF (See Appendix A)
Program Flow for Modl_Trf.Prg.

FIGURE 33
Building Model File

Program Specification 8
Program Listing

* File name: MODL TRF.PRG
* Program name: modl_trf
* Project 2456: Texas Flexible Pavement Database
* TAMU/TII
* Written by: Victor Wong
* Created on: June 29, 1988
* Last updated: July 26, 1988
* Purpose: To find the traffic data for the model file.

* open files
SELECT A
USE \pavedb\files\MODEL
SELECT B
USE \pavedb\files\TRAFFIC INDEX \pavedb\indexes\TRAFFIC

* for each active sid number in the location file
SELECT A
DO WHILE .NOT. EOF()
 * find the data in the traffic database file
 SELECT B
 SEEK STR(A->SID_NO,4)

 * copy the data to the model database file
 IF FOUND()
 * copy the most recent one way ADT value
 DO WHILE SID_NO = A->SID_NO
 SKIP
 ENDDO
 SKIP -1
 REPLACE A->CURADT WITH AADT1WAY
 ENDF

 * skip to the next sid number in model file
 SELECT A
 SKIP
ENDD0

* close files
CLOSE ALL
Building Model File

Program Specification 9

Program Name: MODL_SUB.PRG

Purpose: To find the subgrade data for the model file.

Edit/Procedure Information:

1. For each section identification number in the model file, the program determines if the section exists in the subgrade database file (SUBGRADE.DBF). If so, the program finds the subgrade layer in the layer database file (LAYER.DBF) and copies the layer material code number for the subgrade to the model file. The percentage passing 200 sieve value in the subgrade database file is also copied to the model file.

Input File(s):

1. Subgrade database file (SUBGRADE.DBF) with index file (SUBGNDX.NDX).

Output File(s):

1. Model database file (MODEL.DBF).

File Layout(s):

1. SUBGRADE.DBF (See Appendix A)
2. MODEL.DBF (See Appendix A)
Program Flow for Modl_Sub.Prg.

FIGURE 34
Program Specification 9
Program Listing

* File name: MODL_SUB.PRG
* Program name: modl_sub
* Project 2456: Texas Flexible Pavement Database
* TAMU/TTI
* Written by: Victor Wong
* Created on: June 29, 1988
* Last updated: July 26, 1988
* Purpose: To find the subgrade data for the model file.

* open files
SELECT A
USE \pavedb\files\MODEL
SELECT B
USE \pavedb\files\SUBGRADE INDEX \pavedb\indexes\SUBGNDX
SELECT C
USE \pavedb\files\LAYER INDEX \pavedb\indexes\LAYNDX

* for each sid number in the model file
SELECT A
DO WHILE .NOT. EOF()
 * find the data in the subgrade database file
 SELECT B
 SEEK STR(A->SID_NO,4)

 * copy the data to the model database file
 IF FOUND()
 * copy the subgrade material type from layer file
 SELECT C
 SEEK STR(B->SID_NO,4)+STR(B->STRUCNUM,2)+STR(B->LAYNUM,2) IF FOUND()
 REPLACE A->SUBGRDITY WITH LAYMATCL
 ENDF

 * copy the percent passing 200 sieve
 SELECT B
 REPLACE A->PPSV200 WITH PPSV200

 * copy the liquid limit
 REPLACE A->LIQLIM WITH LIQLIM
 ENDF

 * skip to the next sid number in model file
 SELECT A
 SKIP
ENDDO

* close files
CLOSE ALL
Program Specification 10

Program Name: MODL SHO.PRG

Purpose: To find the geometric shoulder data for the model file.

Edit/Procedure Information:

1. For each section identification number in the model file, the program determines if the section exists in the geometric shoulder database file (GEOSHO.DBF). If so, the program finds the latest shoulder layer and copies the shoulder type value to the model file.

Input File(s):

1. Geometric shoulder database file (GEOSHO.DBF) with index file (GEONDX.NDX).

Output File(s):

1. Model database file (MODEL.DBF).

File Layout(s):

1. GEOSHO.DBF (Appendix A.)
2. MODEL.DBF (Appendix A.)
Program Flow for Modl_Sh o.Prg.

FIGURE 35
Program Specification 10
Program Listing

* File name: MODL_SHO.PRG
* Program name: modl_sho
* Project 2456: Texas Flexible Pavement Database
* TAMU/TTI
* Written by: Victor Wong
* Created on: June 29, 1988
* Last updated: July 26, 1988
* Purpose: To find the shoulder data for the model file.

* open files
SELECT A
USE \pavedb\files\MODEL
SELECT B
USE \pavedb\files\GEOSH0 INDEX \pavedb\indexes\GEONDX

* for each sid number in the model file
SELECT A
DO WHILE .NOT. EOF()
 * find the data in the shoulder database file
 SELECT B
 SEEK STR(A->SID_NO,4)
 * copy the data to the model database file
 IF FOUND()
 * go to the most recent surface
 DO WHILE SID_NO = A->SID_NO
 SKIP
 ENDDO
 SKIP -1
 ELSE
 * copy the shoulder surface type
 REPLACE A->SHOSFTYP WITH SHOSFTYP
 ENDIF
 * skip to the next sid number in model file
 SELECT A
 SKIP
ENO DO

* close files
CLOSE ALL
Building Model File

Program Specification 11

Program Name: MODL_SUF.PRG

Purpose: To find the surface data for the model file.

Edit/Procedure Information:

1. For each section identification number in the model file, the program determines if the section exists in the surface database file (SURFACE.DBF). If so, the program finds the surface layers in the layer database file (AYER.DBF). The program then adds up the center thickness of the layers. After all the surface layers for a SID have been processed, the program copies the total surface thickness value to the model file and begins processing the next SID.

Input File(s):

1. Surface database file (SURFACE.DBF) with index file (SURFNDX.NDX).

2. Layer database file (AYER.DBF) with index file (AYNNDX.NDX).

Output File(s):

1. Model database file (MODEL.DBF).

File Layout(s):

1. SURFACE.DBF (See Appendix A.)

2. LAYER.DBF (See Appendix A.)

3. MODEL.DBF (See Appendix A.)
Program Flow for Modl_Suf.Prg.
Building Model File

Program Specification 11
Program Listing

* File name: MODL_SUF.PRG
* Program name: modl_suf
* Project 2456: Texas Flexible Pavement Database
* TAMU/TTI
* Written by: Victor Wong
* Created on: June 29, 1988
* Last updated: July 26, 1988
* Purpose: To find the surface data for the model file.

* open files
SELECT A
USE \pavedb\files\MODEL
SELECT B
USE \pavedb\files\SURFACE INDEX \pavedb\indexes\SURFNDX
SELECT C
USE \pavedb\files\LAYER INDEX \pavedb\indexes\LAYNDX

* for each sid number in the model file
SELECT A
DO WHILE .NOT. EOF()
 * find the data in the surface database file
 SELECT B
 SEEK STR(A->SID_NO,4)

 * copy the data to the model database file
 IF FOUND()
 * copy the total thickness of surface layers from layer
 * file
 TOT S T = 0
 PREV LAY = 0
 DO WHILE SID NO = A->SID NO
 SELECT C
 SEEK STR(B->SID NO,4)+STR(B->STRUCNUM,2)+ ;
 STR(B->LAYNUM,2)
 IF FOUND() .AND. (CENTHK <> 99.99) .AND.;
 (LAYNUM <> PREV LAY)
 TOT S T = TOT S T + CENTHK
 PREV LAY = LAYNUM
 ENDIF
 END SELECT C
 SKIP
 ENDDO
 REPLACE A->SURFTHCK WITH TOT S T

 * copy the percent asphalt for most recent surface layer
 SELECT B
 SKIP -1
 REPLACE A->ASAPPLRT WITH ASAPPLRT
ENDIF

* skip to the next sid number in model file
SELECT A
SKIP
ENDDO

* close files
CLOSE ALL
Building Model File

Program Specification 12

Program Name: MODL_TMP.PRG

Purpose: To find the district temperature data for the model file.

Edit/Procedure Information:

1. For each section identification number in the model file, the program determines if the district in which the section resides exists in the district temperature database file (DISTTEMP.DBF). If so, the program copies the temperature constant value to the model file.

Input File(s):

1. District temperature database file (DISTTEMP.DBF) with index file (DISTTEMP.NDX).

Output File(s):

1. Model database file (MODEL.DBF).

File Layout(s):

1. DISTTEMP.DBF (See Appendix A.)
2. MODEL.DBF (See Appendix A.)
Program Flow for Modl_Tmp.Prg.

FIGURE 37
Building Model File

Program Specification 12
Program Listing

* File name: MODL_TMP.PRG
* Program name: modl_tmp
* Project 2456: Texas Flexible Pavement Database
* TAMU/TTI
* Written by: Victor Wong
* Created on: June 29, 1988
* Last updated: July 26, 1988
* Purpose: To find the district temperature constant for *
model file.

* open files
SELECT A
USE \pavedb\files\MODEL
SELECT B
USE \pavedb\files\DISTTEMP INDEX \pavedb\indexes\DISTTEMP

* for each sid number in the model file
SELECT A
DO WHILE .NOT. EOF()
 * find the data in the district temperature database file
 SELECT B
 SEEK A->HWYDIST

 * copy the data to the model database file
 IF FOUND()
 SELECT A
 REPLACE TEMPOONS WITH B->TEMPOONS
 ENDIF

 * skip to the next sid number in model file
 SELECT A
 SKIP
ENDO

* close files
CLOSE ALL
Building Model File
Program Specification 13

Program Name: MODL_DYN.PRG

Purpose: To find the dynaflect data for the model file.

Edit/Procedure Information:

1. For each section identification number in the model file, the program determines if the section exists in the dynaflect database file (DYNAFLID.DBF). If so, the program finds the average of each sensor reading and copies the results to the model file.

Input File(s):

1. Dynaflec database file (DYNAFLID.DBF) with index file (DYNAFLID.NDX).

Output File(s):

1. Model database file (MODEL.DBF).

File Layout(s):

1. DYNAFLID.DBF (See Appendix A.)
2. MODEL.DBF (See Appendix A.)

FIGURE 38
* File name: MODL_DYN.PRG
* Program name: modl_dyn
* Project 2456: Texas Flexible Pavement Database
* TAMU/TTI
* Written by: Victor Wong
* Created on: June 29, 1988
* Last updated: July 26, 1988
* Purpose: To find the dynaflec data for the model file.

* open files
SELECT A
USE \pavedb\files\MODEL
SELECT B
USE \pavedb\files\DYNALID INDEX \pavedb\indexes\DYNALID

* for each SID number in model file
SELECT A
DO WHILE .NOT. EOF()
* find the data in the dynaflec database file
SELECT B
SEEK STR(A->SID_NO,4)

* copy the data to the model database file
IF FOUND()
 AV_SENS1RD = 0
 AV_SENS2RD = 0
 AV_SENS3RD = 0
 AV_SENS4RD = 0
 AV_SENS5RD = 0
* for all the stations
 DO WHILE SID_NO = A->SID_NO
 * calculate the average sensor reading
 AV_SENS1RD = AV_SENS1RD + SENS1RD
 AV_SENS2RD = AV_SENS2RD + SENS2RD
 AV_SENS3RD = AV_SENS3RD + SENS3RD
 AV_SENS4RD = AV_SENS4RD + SENS4RD
 AV_SENS5RD = AV_SENS5RD + SENS5RD
 SKIP
 ENDDO
 SELECT A
 REPLACE DYNALIC1 WITH AV_SENS1RD/14
 REPLACE DYNALIC2 WITH AV_SENS2RD/14
 REPLACE DYNALIC3 WITH AV_SENS3RD/14
 REPLACE DYNALIC4 WITH AV_SENS4RD/14
 REPLACE DYNALIC5 WITH AV_SENS5RD/14
ENDDIF
* skip to the next sid number in model file
 SELECT A
 SKIP
 ENDDO

* close files
CLOSE ALL
Building Model File
Program Specification 14

Program Name: MODL_FAL.PRG

Purpose: To find the falling weight data for the model file.

Edit/Procedure Information:

1. For each section identification number in the model file, the program determines if the section exists in the falling weight database file (FALLWGT.DBF). If so, the program finds the average of each sensor reading and copies the results to the model file.

Input File(s):

1. Falling weight database file (FALLWGT.DBF) with index file (FALLWGT.NDX).

Output File(s):

1. Model database file (MODEL.DBF).

File Layout(s):

1. FALLWGT.DBF (See Appendix A.)
2. MODEL.DBF (See Appendix A.)

FIGURE 39
Building Model File

Program Specification 14
Program Listing

* File name: MODL FAL.PRG
* Program name: modl_fal
* Project 2456: Texas Flexible Pavement Database
* TAMU/TTI
* Written by: Victor Wong
* Created on: June 29, 1988
* Last updated: July 26, 1988
* Purpose: To find falling weight data for the model file.

* open files
SELECT A
USE \pavedb\files\MODEL
SELECT B
USE \pavedb\files\FALWEIGHT INDEX \pavedb\indexes\FALWEIGHT
* for each sid number in the model file
SELECT A
DO WHILE .NOT. EOF()
 * find the data in the falling weight database file
 SELECT B
 SEEK STR(A->SID_NO,4)
 * copy the data to the model database file
 IF FOUND()
 * find the most recent layer
 DO WHILE SID_NO = A-> SID_NO
 SKIP
 ENDDO
 SKIP -1
 * calculate the average ssi reading
 AV_SSIGP1 = (SSIGP11+SSIGP21+SSIGP31+SSIGP41+SSIGP51) / 5
 AV_SSIGP2 = (SSIGP12+SSIGP22+SSIGP32+SSIGP42+SSIGP52) / 5
 AV_SSIGP3 = (SSIGP13+SSIGP23+SSIGP33+SSIGP43+SSIGP53) / 5
 AV_SSIGP4 = (SSIGP14+SSIGP24+SSIGP34+SSIGP44+SSIGP54) / 5
 AV_SSIGP5 = (SSIGP15+SSIGP25+SSIGP35+SSIGP45+SSIGP55) / 5
 ENDIF
 * skip to the next sid number in model file
 SELECT A
 SKIP
ENDDO

* close files
CLOSE ALL
Section 4: Create the Distress File
Program Narrative for Distress

The Applications program (APPLICAT.PRG) calls the distress program (DISTRESS.PRG and DISTIVISL.PRG) to create the Distress vs. 18 KEAL dBASE file. The file is created from the Master dBASE files - Location, Layer Identification, Traffic, Visual, Geometric and Shoulder Information and Serviceability Index. This file is used to create the 18 KIP graphs as well as to create the Model dBASE file. This program can be found in the subdirectory \PAVEDB\APPLICAT\DISTRESS. The files are stored in the subdirectory \PAVEDB\FILES. The indices are stored in the subdirectory \PAVEDB\INDEXES.
Program Flow for Distress.Prg

FIGURE 40

LOCATION.DBF
LAYER.DBF
TRAFFIC.DBF
GEOSHO.DBF

DISTRESS.PRG

DISTRESS.DBF

VISUAL.DBF
SI.DBF

DISTVISL.PRG
Distress vs. 18 Keal File

PROGRAM SPECIFICATION

Program Name: DISTRESS.PRG

Program Called: DISTVISL.PRG

Purpose: To create a dBASE III Distress vs 18 Keal File

Input Files:

<table>
<thead>
<tr>
<th>Geometric & Shoulder</th>
<th>Files</th>
<th>Indices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer Identification File</td>
<td>GEOSHO.DBF</td>
<td>GEONDX.NDX</td>
</tr>
<tr>
<td>Location File</td>
<td>LAYER.DBF</td>
<td>LAYNDX.NDX</td>
</tr>
<tr>
<td>Serviceability Index File</td>
<td>LOCATION.DBF</td>
<td>LOCSID.NDX</td>
</tr>
<tr>
<td>Traffic File</td>
<td>SI.DBF</td>
<td>SI.NDX</td>
</tr>
<tr>
<td>Visual File</td>
<td>TRAFFIC.DBF</td>
<td>TRAFFIC.NDX</td>
</tr>
</tbody>
</table>

Output Files:

Distress vs 18 Keal File (DISTRESS.DBF)
Distress vs. 18 KEAL File
File Layout

<table>
<thead>
<tr>
<th>Field</th>
<th>Key</th>
<th>Size/Type</th>
<th>Source</th>
<th>Note**</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID NO</td>
<td>*</td>
<td>4N</td>
<td>L</td>
<td></td>
<td>Section Identification Number</td>
</tr>
<tr>
<td>YEAR</td>
<td>*</td>
<td>2N</td>
<td>A</td>
<td></td>
<td>Year</td>
</tr>
<tr>
<td>A18KEAL</td>
<td></td>
<td>11N</td>
<td>T</td>
<td>1</td>
<td>Annual Cumulative 18 Keal oneway</td>
</tr>
<tr>
<td>RUTT</td>
<td></td>
<td>1N</td>
<td>V</td>
<td>2</td>
<td>Rutting Area</td>
</tr>
<tr>
<td>ALLGCR</td>
<td></td>
<td>1N</td>
<td>V</td>
<td>2</td>
<td>Alligator Cracking Area</td>
</tr>
<tr>
<td>PATCH</td>
<td></td>
<td>1N</td>
<td>V</td>
<td>2</td>
<td>Patch</td>
</tr>
<tr>
<td>SIMIAN</td>
<td></td>
<td>7.5N</td>
<td>SI</td>
<td>6</td>
<td>Serviceability Index Mean</td>
</tr>
<tr>
<td>CONYEAR</td>
<td></td>
<td>2N</td>
<td>LI</td>
<td>3</td>
<td>Year of Last Major Construction</td>
</tr>
<tr>
<td>CONMON</td>
<td></td>
<td>2N</td>
<td>LI</td>
<td>3</td>
<td>Month of Last Major Construction</td>
</tr>
<tr>
<td>PAVETYP</td>
<td></td>
<td>2N</td>
<td>G</td>
<td>4</td>
<td>Pavement Type</td>
</tr>
<tr>
<td>OVRYEAR</td>
<td></td>
<td>2N</td>
<td>LI</td>
<td>5</td>
<td>Year of Last HMAC Overlay</td>
</tr>
<tr>
<td>OVRMON</td>
<td></td>
<td>2N</td>
<td>LI</td>
<td>5</td>
<td>Month of Last HMAC Overlay</td>
</tr>
</tbody>
</table>

*L - LOCATION
T - TRAFFIC FILE
V - VISUAL FILE
LI - LAYER IDENTIFICATION FILE (LAYER)
G - GEOMETRIC & SHOULDER INFORMATION FILE (GEOSH)
SI - SERVICEABILITY INDEX FILE

**NOTE: The referenced note can be found on the following page.
Distress vs. 18 KEAL File
File Layout (continued)

NOTES:

A. A record is created for 1972 and for every year there after. (eg. If the year of the run is 1987, there is a record for 1972, 73, 74, 75. . . 87).

1. The 18 Keal is accumulated from the date of last major construction until and including 1972 for the first record. Every record there after only has the 18 Keal for that year.

2. This field is initialized to 9. The RUTTS, RUTIMD, and RUTTSV fields are checked. If a 1, 2, or 3 exists in one of these fields, a 1, 2, or 3 is put in RUTT. If zeros exist in all three fields, a zero is put in RUTT. If a VISUAL record does not exist for the year, a 9 is put in RUTT (Note: The single digit fields RUTTS, RUTIMD, and RUTTSV will have the values 000, 100, 200, 300, 010, 020, 030, 001, 002, or 003). The same process is followed for ALLGCRSL, ALLGCRMD, ALLGCRSV and PATCHFR, PATCHFR, PATCHGD.

3. If the last major construction was before January 1, 1973, the year and month of the most recent base layer is used. If the section (SID record) was constructed after December 31, 1972, the year and month of the subgrade is used.

4. The Pavement Type which corresponds to the year of the record is used.

5. The year and month of the most recent HMAC overlay for the year of the Distress vs 18 KIP record is used.

6. This field is initialized to 9.99999. So if a SI record does not exist, this field should has a value of 9.99999.
PROGRAM LISTING

*
* SUBSYSTEM: APPLICATIONS
* PROGRAM NAME: DISTRESS.PRG 5/23/88
* CALLED FROM: APPLICAT.PRG
* REVISED ON: 06/02/88
* PROJECT 2456 - TEXAS FLEXIBLE PAVEMENT DATABASE CONVERSION
* TAMU/TTI
* AUTHOR: TREVOR X. PEREIRA
* PURPOSE: TO CREATE THE DISTRESS VS 18 REAL FILE
*
* THE FOLLOWING FILES ARE NEEDED TO RUN THIS PROGRAM:
*
* GEOSHO.DBF GEONDX.NDX
* LAYER.DBF LAYNDX.NDX
* TRAFFIC.DBF TRAFFIC.NDX
*
SET TALK OFF
SET ECHO OFF
SET SAFETY OFF
CLEAR ALL
*
* assign databases to different work areas
SELECT 1
IF .NOT. FILE(\\PAVEDB\\FILES\\DISTRESS.DBF)
 ? "DISTRESS FILE not found. Please Check . . . "
 WAIT
 RETURN TO MASTER
ENDIF
IF .NOT. FILE(\\PAVEDB\\INDEXES\\DISTRESS.NDX)
 ? "DISTRESS INDEX not found. Please Check . . . "
 WAIT
 RETURN TO MASTER
ENDIF
USE \PAVEDB\\FILES\\DISTRESS INDEX \PAVEDB\\INDEXES\\DISTRESS
ZAP
SELECT 2
USE \PAVEDB\\FILES\\TRAFFIC INDEX \PAVEDB\\INDEXES\\TRAFFIC
SELECT 4
USE \PAVEDB\\FILES\\LAYER INDEX \PAVEDB\\INDEXES\\LAYNDX
SELECT 5
USE \PAVEDB\\FILES\\GEOSHO INDEX \PAVEDB\\INDEXES\\GEONDX
SELECT 7
USE \PAVEDB\\FILES\\LOCATION INDEX \PAVEDB\\INDEXES\\LOCSTID
*
* INITIALIZE VARIABLES
CLEAR
MYEAR = 1972
MYEAR2 = 72
@ 10, 10 SAY " "
MTEMP = " "
ACCEPT "Please enter the year of the run (19YY): " to MTEMP
MYEARRUN = VAL(MTEMP)
CLEAR
SET STAT ON
@ 10, 10 SAY "Processing. Please wait"

SELECT 7
GOTO TOP
DO WHILE .NOT. EOF()
 DO WHILE MYEARRUN >= MYEAR
 * Initialize variables
 STORE 9 TO MFLTT, MALGCR, MPATCH
 STORE 9.99999 TO MSIMEAN
 STORE 0 TO MA18KEAL
 STORE 9999 TO MSID_NO
 STORE 99 TO MCONYEAR, MCONMNOM, MPAYETYP, MOVRYEAR, MOVRMON

 * Getting Sid no from Location file
 MSID_NO = G->SID_NO
 MISTRUC = 1
 MIAY = 1
 IF .NOT. G->ACTVFLAG .AND. G->INACTYR < MYEAR2
 MYEAR = MYEAR + 1
 LOOP
 ENDIF

 * GET CONSTRUCTION YEAR & MONTH FROM LAYER IDENTIFICATION FILE
 SEIE 4
 SEEK STR(MSID_NO,4)+STR(MISTRUC,2)+STR(MIAY,2)
 IF FOUND()
 IF D->JOBCMPYR > 1972
 MCONYEAR = D->JOBCMPYR
 MCONMNOM = D->JOBCMPYMO
 MISTRUC = D->STRUCNUM
 ELSE
 DO WHILE D->SID_NO = MSID_NO
 SKIP
 ENDDO
 SKIP -1
 DO WHILE D->JOBCMPYR > MYEAR2
 SKIP -1
 ENDDO
 MISTRUC = D->STRUCNUM
 DO WHILE .NOT. EOF().AND. D->LAYDESC <> 5
 SKIP -1
 ENDDO
 IF D->SID_NO <> MSID_NO
 MCONYEAR = 0
 MCONMNOM = 0
 ELSE
 MCONYEAR = D->JOBCMPYR
 ENDIF
 ELSE
MCXHtDN = D->JOBCMYR
ENDIF
ENDIF
ELSE
MCXYEAR = 0
MCXMON = 0
MSTRUC = 0
ENDIF

* GET PAVEMENT TYPE FROM GEOMETRIC AND SHOULDER INFORMATION FILE
SEEK 5
SEEK STR(MSID_NO,4)+STR(MSTRUC,2)
IF FOUND()
 MPAVETYP = E->PAVETYP
 IF WIDENFIG = 2
 MYEAR = MYEAR + 1
 LOOP
ENDIF
ELSE
 MPAVETYP = 0
ENDIF

* Getting 18 Kip from Traffic Data
SELECT 2
IF MYEAR = 1972
 SEEK STR(MSID_NO,4)
 DO WHILE B->SID_NO = MSID NO .AND. B->YEAR < 1973
 MA18KEAL = MA18KEAL + B->A18KEAL
 SKIP
 ENDDO
ELSE
 SEEK STR(MSIDE_NO,4)+STR(MYEAR,4)
 IF FOUND()
 MA18KEAL = B->A18KEAL
 ENDIF
ENDIF

* GET OVERLAY INFORMATION FROM LAYER IDENTIFICATION FILE
SEEK 4
SEEK STR(MSIDE_NO,4)
IF FOUND()
 DO WHILE D->SID_NO = MSIDE NO
 SKIP
 ENDDO
 SKIP -1
 DO WHILE D->JOBCMYR > MYEAR2
 SKIP -1
 ENDDO
 DO WHILE D->LAYMATCL <> 1 .AND. D->LAYMATCL <> 2 .AND. D->LAYMATCL <> 4
 SKIP -1
 ENDDO
 IF D->SID_NO = MSIDE NO .AND. (D->LAYMATCL=1 .OR. D->LAYMATCL=2 .OR.
 D->LAYMATCL=4)
 MOVRYEAR = D->JOBCMYR

594
MOVROMON = D->JOBCMPNO
ELSE
 MOVRYEAR = 0
 MOVROMON = 0
ENDIF
ELSE
 MOVRYEAR = 0
 MOVROMON = 0
ENDIF

SELECT 1
APPEND BLANK
REPLACE SID NO WITH MSID NO
REPLACE YEAR WITH MYEAR2
REPLACE A18KEAL WITH MA18KEAL
REPLACE FUJT WITH MFUJT
REPLACE ALLGCR WITH MALLGCR
REPLACE PATCH WITH MPATCH
REPLACE SIMEAN WITH MSIMEAN
REPLACE CONYEAR WITH MOONYEAR
REPLACE COMMON WITH MCOMMON
REPLACE PAVETYP WITH MPAVETYP
REPLACE OVRYEAR WITH MOVRYEAR
REPLACE OVRMON WITH MOVROMON

MYEAR = MYEAR + 1
MYEAR2 = MYEAR2 + 1
ENDDO
MYEAR = 1972
MYEAR2 = 72
SELECT 7
SKIP
ENDDO
CLOSE DATABASES
CLEAR
DO \PAVEDB\EDITUPDT\DISTVISL
CLEAR ALL
SET STAT OFF
RETURN
PROGRAM LISTING

* SUBSYSTEM: APPLICATIONS
* PROGRAM NAME: DISTVISL.PRG 5/23/88
* REVISION ON: 07/01/88
* CALLED FROM: DISTRESS.PRG
* PROJECT 2456 - TEXAS FLEXIBLE PAVEMENT DATABASE CONVERSION
* TAMU/TTI
* AUTHOR: TREVOR X. PEREIRA
* PURPOSE: TO ADD THE VISUAL & SI INFORMATION TO THE
* DISTRESS VS 18 REAL FILE
*
* THE FOLLOWING FILES ARE NEEDED TO RUN THIS PROGRAM:
* SI.DBF SI.NDX
* VISUAL.DBF VISUAL.NDX
* VISIDIST.NDX (This File is not mandatory)
* DISTRESS.DBF DISTRESS.DBF
*
* assign databases to different work areas
SET SAFETY OFF
SELECT 1
USE \PAVEDB\FILES\DISTRESS INDEX \PAVEDB\INDEXES\DISTRESS

SELECT 2
USE \PAVEDB\FILES\VISUAL
INDEX ON STR(SID_NO,4)+STR(YEAR,2) TO \PAVEDB\INDEXES\VISIDIST

SELECT 3
USE \PAVEDB\FILES\SI
INDEX ON STR(SID_NO,4)+STR(YEAR,2) TO \PAVEDB\INDEXES\SIDIST

* INITIALIZE VARIABLES
SELE 1
GO TO TOP
STORE 9 TO MRUTT, MALLGCR, MPATCH
STORE 9.99999 TO MSIMEAN
MSID NO = A->SID NO
MYEAR2 = A->YEAR
DO WHILE .NOT. EOF()
 STORE 9 TO MRUTT, MALLGCR, MPATCH
 STORE 9.99999 TO MSIMEAN

* GET VISUAL INFORMATION
SELE 2
SEEK STR(MSID_NO,4)+STR(MYEAR2,2)
IF FOUND()
 DO CASE
 CASE RUTTSL <> 0
 MRUTT = B->RUTTSL
 CASE RUTIMD <> 0
 MRUTT = B->RUTIMD

596
CASE RUTISV <> 0
 MRUTT = B->RUTISV
OTHERWISE
 MRUTT = 0
ENDCASE
DO CASE
CASE ALLGCRSL <> 0
 MALLGCR = B->ALLGCRSL
CASE ALLGCRMD <> 0
 MALLGCR = B->ALLGCRMD
CASE ALLGCRSV <> 0
 MALLGCR = B->ALLGCRSV
OTHERWISE
 MALLGCR = 0
ENDCASE
DO CASE
CASE PATCHGD <> 0
 MPATCH = B->PATCHGD
CASE PATCHFR <> 0
 MPATCH = B->PATCHFR
CASE PATCHPR <> 0
 MPATCH = B->PATCHPR
OTHERWISE
 MPATCH = 0
ENDCASE
ELSE
 MRUTT = 9
 MALLGCR = 9
 MPATCH = 9
ENDIF

* GET SI INFORMATION
SELECT 3
SEEK STR(MSID_NO,4)+STR(MYEAR2,2)
IF FOUND()
 MSIMEAN = C->SIMEAN
ELSE
 MSIMEAN = 9.99999
ENDIF
SELECT 1
REPLACE RUTT WITH MRUTT
REPLACE ALLGCR WITH MALLGCR
REPLACE PATCH WITH MPATCH
REPLACE SIMEAN WITH MSIMEAN
SKIP
MSID NO = A->SID NO
MYEAR2 = A->YEAR
ENDDO
CLOSE DATABASES
CLEAR
SET SAFETY ON
RETURN
CHAPTER 6

DATABASE MAINTENANCE SUBSYSTEM
GENERAL NARRATIVE

The Database Maintenance programs permit the user to reindex files, change the installation defaults or backup all the files. These programs are selected from the Main Menu of the Flexible Pavement System and are called by the main program DBMAIN.PRG. See the Main Menu Program Flow Diagram (Figure 5) in Chapter 1.

The Reindex program (REINDEX.PRG) reindexes all the master files and some of the temporary files. All the files used are in the subdirectory \PAVEDB\FILES and the respective indices are in \PAVEDB\INDEXES. REINDEX.PRG is stored in \PAVEDB.

The Installation program (INSTDEFL.PRG) sets up the drive that is to be used, the floppy drive to backup files to and the defaults for the printers. The defaults are stored in a memory variable file in INSTALL.MEM. At the start of the program, the file is loaded into memory. The defaults can be changed at any time by going through the Installation Menu (choice 6 on the Main Menu). INSTDEFL.PRG and INSTALL.MEM are stored in \PAVEDB.

The Backup program (BACKUP.PRG) backs up all the master files to the floppy disk drive designated in the installation menu. This program is in \PAVEDB\BACKUP.
PROGRAM SPECIFICATION

Program Name: REINDEX.PRG

Purpose: To reindex all the master files.

Input/Output Files:

The following files are used along with their indices:

<table>
<thead>
<tr>
<th>Master Files/Table</th>
<th>Data File</th>
<th>Index File</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>LOCATION.DBF</td>
<td>LOCSD.NDX</td>
</tr>
<tr>
<td>Layer Identification</td>
<td>LAYER.DBF</td>
<td>LAYNDX.NDX</td>
</tr>
<tr>
<td>Geometric & Shoulder</td>
<td>GEOSHD.DBF</td>
<td>GEONDX.NDX</td>
</tr>
<tr>
<td>Surface</td>
<td>SURFACE.DBF</td>
<td>SURFNDX.NDX</td>
</tr>
<tr>
<td>Subgrade</td>
<td>SUBGRADE.DBF</td>
<td>SUBGNDX.NDX</td>
</tr>
<tr>
<td>Layer Thickness</td>
<td>LAYTHICK.DBF</td>
<td>LAYTNDX.NDX</td>
</tr>
<tr>
<td>Visual Rating</td>
<td>VISUAL.DBF</td>
<td>VISUAL.NDX</td>
</tr>
<tr>
<td>Serviceability Index</td>
<td>SI.DBF</td>
<td>SI.NDX</td>
</tr>
<tr>
<td>Falling Weight SSI</td>
<td>FALLIGHT.DBF</td>
<td>FALLIGHT.NDX</td>
</tr>
<tr>
<td>Dynaflect Measure</td>
<td>DYNAPLD.DBF</td>
<td>DYNAPLD.NDX</td>
</tr>
<tr>
<td>Skid Measurement</td>
<td>SKID.DBF</td>
<td>SKID.NDX</td>
</tr>
<tr>
<td>Environment</td>
<td>ENV.DBF</td>
<td>Env.NDX</td>
</tr>
<tr>
<td>Weather</td>
<td>WEATHER.DBF</td>
<td>WEATHER.NDX</td>
</tr>
<tr>
<td>Traffic</td>
<td>TRAFFIC.DBF</td>
<td>TRAFFIC.NDX</td>
</tr>
<tr>
<td>County Name Table</td>
<td>CNTYTBNO.DBF</td>
<td>CNTYTBNO.NDX</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temporary Files</th>
<th>Data File</th>
<th>Index File</th>
</tr>
</thead>
<tbody>
<tr>
<td>PES SSI</td>
<td>PESSSI.DBF</td>
<td>PESSSI.NDX</td>
</tr>
<tr>
<td>PES Skid</td>
<td>PESSSKD.DBF</td>
<td>PESSSKD.NDX</td>
</tr>
<tr>
<td>PES Visual</td>
<td>PESVISL.DBF</td>
<td>PESVISL.NDX</td>
</tr>
<tr>
<td>PES MRM</td>
<td>PESMRM.DBF</td>
<td>PESMRM.NDX</td>
</tr>
<tr>
<td>PES General</td>
<td>PESGEN.DBF</td>
<td>PESGEN.NDX</td>
</tr>
<tr>
<td>PES Scores</td>
<td>PESSCR.DBF</td>
<td>PESSCR.NDX</td>
</tr>
<tr>
<td>Location</td>
<td>LOCCHNG.DBF</td>
<td>LOCCHNG.NDX</td>
</tr>
<tr>
<td>Layer</td>
<td>LAYRCHNG.DBF</td>
<td>LAYRCHNG.NDX</td>
</tr>
<tr>
<td>Geometric and Shoulder</td>
<td>GEOSCHNG.DBF</td>
<td>GEOSCHNG.NDX</td>
</tr>
<tr>
<td>Layer Thickness</td>
<td>LAYTCHNG.DBF</td>
<td>LAYTCHNG.NDX</td>
</tr>
<tr>
<td>Surface</td>
<td>SURFCHNG.DBF</td>
<td>SURFCHNG.NDX</td>
</tr>
<tr>
<td>Subgrade</td>
<td>SUBGCHNG.DBF</td>
<td>SUBGCHNG.NDX</td>
</tr>
</tbody>
</table>

602
Program REINDEX

* SUBSYSTEM: DATABASE MAINTENANCE
* PROGRAM NAME: REINDEX.PRG 01/04/88
* MODIFIED ON: 10/21/88
* PROJECT 2456 - TEXAS FLEXIBLE PAVEMENT DATABASE CONVERSION
* TAMU/TTI
* AUTHOR: TREVOR X. PEREIRA
* PURPOSE: TO REINDEX ALL THE MASTER AND TEMPORARY
* FILES USED IN THE FLEXIBLE PAVEMENT SYSTEM
*

CLEAR
SET PATH TO \PAVEDB\FILES;\PAVEDB\INDEXES;\PAVEDB\EDITUPDT
SET STAT ON
SET ECHO Off
SET TALK Off
@ 3, 10 SAY "REINDEXING Files. Please Wait . . ."
? " "
? "Reindexing Layer File . . ."
USE LAYER INDE LAYNDX
REIN
? "Reindexing Layer Thickness File . . ."
USE LAYTHICK INDE LAYNDX
REIN
? "Reindexing Geometric & Shoulder File . . ."
USE GEOSHO INDE GEONDX
REIN
? "Reindexing Surface File . . ."
USE SURFACE INDE SURFNDX
REIN
? "Reindexing Subgrade File . . ."
USE SUBGRADE INDE SUBGNDX
REIN
? "Reindexing Serviceability Index File . . ."
USE SI INDE SI
REIN
USE VISUAL INDE VISUAL
REIN
? "Reindexing Skid File . . ."
USE SKID INDE SKID
REIN
? "Reindexing Dynafilet File . . ."
USE DYNAFLID INDE DYNAFLID
REIN
? "Reindexing Falling Weight File . . ."
USE FALLWGHT INDE FALLWGHT
REIN
? "Reindexing Environment File . . ."
USE ENV INDE ENV

603
REIN
? "Reindexing Weather File . . ."
USE WEATHER INDE WEATHER
REIN
? "Reindexing Location File . . ."
USE LOCATION INDE LOCSID
REIN
? "Reindexing Traffic File . . ."
USE TRAFFIC INDE TRAFFIC
REIN
? "Reindexing all PES Files . . ."
USE PESSSI INDE PESSSI
REIN
USE PESSKD INDE PESSKD
REIN
USE PESVISL INDE PESVISL
REIN
USE PESM RM INDE PESM RM
REIN
USE PESGEN INDE PESGEN
REIN
USE PESSCR INDE PESSCR
REIN

? "Reindexing all temporary Inventory Files . . ."
IF FILE('"PAVEDB\EDITUPDT\LAYRCHNG.DBF")
 USE LAYRCHNG INDE LAYRCHNG
 REIN
ENDIF
IF FILE('"PAVEDB\EDITUPDT\LocNCHNG.DBF")
 USE LOCNCHNG INDE LOCNCHNG
 REIN
ENDIF
IF FILE('"PAVEDB\EDITUPDT\LAYTCHNG.DBF")
 USE LAYTCHNG INDE LAYTCHNG
 REIN
ENDIF
IF FILE('"PAVEDB\EDITUPDT\GEOSCHNG.DBF")
 USE GEOSCHNG INDE GEOSCHNG
 REIN
ENDIF
IF FILE('"PAVEDB\EDITUPDT\SURFCHNG.DBF")
 USE SURFCHNG INDE SURFCHNG
 REIN
ENDIF
IF FILE('"PAVEDB\EDITUPDT\SUBGCHNG.DBF")
 USE SUBGCHNG INDE SUBGCHNG
 REIN
ENDIF
USE LAYR_NEW INDE LAYR_NEW
REIN
USE LOCN_NEW INDE LOCN_NEW
REIN
USE LAYT_NEW INDE LAYT_NEW
REIN
USE GEOS_NEW INDE GEOS_NEW
REIN
USE SURF_NEW INDE SURF_NEW
REIN
USE SUBG_NEW INDE SUBG_NEW
REIN
IF FILE("PAVEDB\FILES\DISTRESS")
 USE \PAVEDB\FILES\DISTRESS INDE \PAVEDB\INDEXES\DISTRESS
 REIN
ENDIF
CLOSE ALL
SET PATH TO
? "Reindexing done !!!"
WAIT
SET STAT OFF
PROGRAM SPECIFICATION

Program Name: INSIDEFL.PRG

Purpose: To set up the printer and drive defaults for the system.

Input/Output Files:

Memory Variable File - INSTALL.MEM
Program INSIDEFL

* * SUBSYSTEM: DATABASE MAINTENANCE
* PROGRAM NAME: INSIDEFL.PRG 09/19/88
* PROJECT 2456 - TEXAS FLEXIBLE PAVEMENT DATABASE CONVERSION
* TAMU/TTI
* AUTHOR: TREVOR X. PEREIRA
* PURPOSE: TO INSTALL THE MAIN MENU SYSTEM DEFAULTS
* AND STORE THEM TO A MEMORY VARIABLE FILE.
*

SET SAFETY OFF
CLEA
@ 3, 25 SAY "INSTALLATION MENU"
@ 6, 10 SAY "Please enter the drive being used (NORMALLY C)" GET IDRIVE
@ 7, 15 SAY "DO NOT specify drive 'A' or drive 'B'"
@ 9, 10 SAY "Please enter the drive you want to BACK UP files:" GET IDRIVE2
@ 10, 15 SAY "MUST specify 'A' or 'B' only"
@ 12, 10 SAY "Which port do you want to send the SUMMARY REPORT: " GET IPORT1
@ 13, 10 SAY " and other Landscape reports"
@ 14, 15 SAY "Specify LPT1, LPT2 or LPT3"
@ 16, 10 SAY "Which port do you want to send the INVENTORY UPDATE REPORT: "
GET IPORT2
@ 17, 15 SAY "Specify LPT1, LPT2 or LPT3"
READ
SET DEFAULT TO &IDRIVE
MDRIVE = IDRIVE
MDRIVE2 = IDRIVE2
MPORT1 = IPORT1
MPORT2 = IPORT2
SAVE TO \PAVEDB\INSTALL ALL LIKE I*
RELE ALL LIKE I*
SET SAFETY ON
RETURN
Program Specification

Program Name: BACKUP.PRG

Purpose: To backup the master files to floppy diskettes.

Input/Output Files:

The following files are used:

<table>
<thead>
<tr>
<th>Location</th>
<th>LOCATION.DBF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer Identification</td>
<td>LAYER.DBF</td>
</tr>
<tr>
<td>Geometric & Shoulder</td>
<td>GEOSHOT.DBF</td>
</tr>
<tr>
<td>Surface</td>
<td>SURFACE.DBF</td>
</tr>
<tr>
<td>Subgrade</td>
<td>SUBGRADE.DBF</td>
</tr>
<tr>
<td>Layer Thickness</td>
<td>LAYTHICK.DBF</td>
</tr>
<tr>
<td>Visual Rating</td>
<td>VISUAL.DBF</td>
</tr>
<tr>
<td>Serviceability Index</td>
<td>SVI.DBF</td>
</tr>
<tr>
<td>Falling Weight SSI</td>
<td>FALLWTGHT.DBF</td>
</tr>
<tr>
<td>Dynaflect Measure</td>
<td>DYNAPDL.DBF</td>
</tr>
<tr>
<td>Skid Measurement</td>
<td>SKID.DBF</td>
</tr>
<tr>
<td>Environment</td>
<td>ENV.DBF</td>
</tr>
<tr>
<td>Weather</td>
<td>WEATHER.DBF</td>
</tr>
<tr>
<td>Traffic</td>
<td>TRAFFIC.DBF</td>
</tr>
</tbody>
</table>
Program BACKUP

* SUBSYSTEM: BACKUP.PRG
* PROGRAM NAME: BACKUP.PRG 07/03/88
* MODIFIED ON: 09/20/88
* CALLED FROM: DEMAIN.PRG
* PROJECT 2456 - TEXAS FLEXIBLE PAVEMENT DATABASE CONVERSION
* TAMU/TII
* AUTHOR: TREVOR X. PEREIRA
* PURPOSE: TO BACKUP DATA TO FLOPPY DISKETTES

CLEAR
SET TYPE TO 0
STORE 0 TO MSIZE, NUMFIELDS, MHEADER, MOUNT, MDISKS, MBYTES
STORE 0 TO MLOCATION, MLAYER, MLAYTHICK, MGEOSHO, MSURFACE, MSUBGRADE,
MVISUAL
STORE 0 TO MDYNAFLD, MSL, MI'RAFFIC, MWEATHER, MFALILGH, MENV, MSKID
STORE "" TO MNULL
SET ESCAPE OFF
@ 10, 10 SAY "Calculating file sizes. Please Wait"

SET DEFAULT TO &M:DRIVE
MBACKDRV = MDRIVE2 + ":"
* Making sure the Master Files are present
IF .NOT. FILE('PAVEDB\FILES\LOCATION.DBF')
 ? "LOCATION file is not found. Please Check"
 WAIT
 RETURN TO MASTER
ENDIF
IF .NOT. FILE('PAVEDB\FILES\LAYER.DBF')
 ? "LAYER file is not found. Please Check"
 WAIT
 RETURN TO MASTER
ENDIF
IF .NOT. FILE('PAVEDB\FILES\LAYTHICK.DBF')
 ? "LAYTHICK file is not found. Please Check"
 WAIT
 RETURN TO MASTER
ENDIF
IF .NOT. FILE('PAVEDB\FILES\GEOSHO.DBF')
 ? "GEOSHO file is not found. Please Check"
 WAIT
 RETURN TO MASTER
ENDIF
IF .NOT. FILE('PAVEDB\FILES\SURFACE.DBF')
 ? "SURFACE file is not found. Please Check"
 WAIT
 RETURN TO MASTER
ENDIF
IF .NOT. FILE('PAVEDB\FILES\SUBGRADE.DBF')
? "SUBGRADE file is not found. Please Check . . ."
WAIT
RETURN TO MASTER
ENDIF
IF .NOT. FILE('PAVED\FILES\VISUAL.DBF')
? "VISUAL file is not found. Please Check . . ."
WAIT
RETURN TO MASTER
ENDIF
IF .NOT. FILE('PAVED\FILES\DYNAFLID.DBF')
? "DYNAFLID file is not found. Please Check . . ."
WAIT
RETURN TO MASTER
ENDIF
IF .NOT. FILE('PAVED\FILES\SI.DBF')
? "SI file is not found. Please Check . . ."
WAIT
RETURN TO MASTER
ENDIF
IF .NOT. FILE('PAVED\FILES\TRAFFIC.DBF')
? "TRAFFIC file is not found. Please Check . . ."
WAIT
RETURN TO MASTER
ENDIF
IF .NOT. FILE('PAVED\FILES\WEATHER.DBF')
? "WEATHER file is not found. Please Check . . ."
WAIT
RETURN TO MASTER
ENDIF
IF .NOT. FILE('PAVED\FILES\FALLGHT.DBF')
? "FALLGHT file is not found. Please Check . . ."
WAIT
RETURN TO MASTER
ENDIF
IF .NOT. FILE('PAVED\FILES\ENV.DBF')
? "ENV file is not found. Please Check . . ."
WAIT
RETURN TO MASTER
ENDIF
IF .NOT. FILE('PAVED\FILES\SKID.DBF')
? "SKID file is not found. Please Check . . ."
WAIT
RETURN TO MASTER
ENDIF

* Calculation file sizes of all files
USE \PAVED\FILES\LOCATION
STORE RECOUNT() * RECsize() TO MSIZE
MNULL = ""
DO WHILE MNULL < FIELD(MNUMFIELDS + 1)
 MNUMFIELDS = MNUMFIELDS + 1
ENDDO
MHEADER = (32 * MNUMFIELDS) + 34
MLOCATION = MSIZE + MHEADER + 20
MBYTES = MBYTES + MLOCATION
MDisks = 1

USE \PAVEDB\FILES\LAYER
MNUL = ""
STORE 0 TO MNUMFIELDS, MHEADER, MSIZE
STORE RECOUNT() * RECSIZE() TO MSIZE
DO WHILE MNUL < FIELD(MNUMFIELDS + 1)
 MNUMFIELDS = MNUMFIELDS + 1
ENDDO
MHEADER = (32 * MNUMFIELDS) + 34
MIAYER = MSIZE + MHEADER + 20
MBYTES = MBYTES + MIAYER
IF MBYTES > 360000
 MBYTES = MIAYER
 MDisks = MDisks + 1
ENDIF

USE \PAVEDB\FILES\LAYTHICK
MNUL = ""
STORE 0 TO MNUMFIELDS, MHEADER, MSIZE
STORE RECOUNT() * RECSIZE() TO MSIZE
DO WHILE MNUL < FIELD(MNUMFIELDS + 1)
 MNUMFIELDS = MNUMFIELDS + 1
ENDDO
MHEADER = (32 * MNUMFIELDS) + 34
MIAYTHICK = MSIZE + MHEADER + 20
MBYTES = MBYTES + MIAYTHICK
IF MBYTES > 360000
 MBYTES = MIAYTHICK
 MDisks = MDisks + 1
ENDIF

USE \PAVEDB\FILES\GEOSHO
MNUL = ""
STORE 0 TO MNUMFIELDS, MHEADER, MSIZE
STORE RECOUNT() * RECSIZE() TO MSIZE
DO WHILE MNUL < FIELD(MNUMFIELDS + 1)
 MNUMFIELDS = MNUMFIELDS + 1
ENDDO
MHEADER = (32 * MNUMFIELDS) + 34
MGEOSHO = MSIZE + MHEADER + 20
MBYTES = MBYTES + MGEOSHO
IF MBYTES > 360000
 MBYTES = MGEOSHO
 MDisks = MDisks + 1
ENDIF

USE \PAVEDB\FILES\SURFACE
MNUL = ""
STORE 0 TO MNUMFIELDS, MHEADER, MSIZE
STORE RECOUNT() * RECSIZE() TO MSIZE
DO WHILE MNUL < FIELD(MNUMFIELDS + 1)
 MNUMFIELDS = MNUMFIELDS + 1

611
ENDDO
MHEADER = (32 * MNUMFIELDS) + 34
MSURFACE = MSIZE + MHEADER + 20
MBYTES = MBYTES + MSURFACE
IF MBYTES > 360000
 MBYTES = MSURFACE
 MDISK = MDISK + 1
ENDIF

USE \PAVED\FILES\SUBGRADE
MNULL = ""
STORE 0 TO MNUMFIELDS, MHEADER, MSIZE
STORE RECOUNT() * RECSIZE() TO MSIZE
DO WHILE MNUMFIELDS < FIELD(MNUMFIELDS + 1)
 MNUMFIELDS = MNUMFIELDS + 1
ENDDO
MHEADER = (32 * MNUMFIELDS) + 34
MSUBGRADE = MSIZE + MHEADER + 20
MBYTES = MBYTES + MSUBGRADE
IF MBYTES > 360000
 MBYTES = MSUBGRADE
 MDISK = MDISK + 1
ENDIF

USE \PAVED\FILES\VISUAL
MNULL = ""
STORE 0 TO MNUMFIELDS, MHEADER, MSIZE
STORE RECOUNT() * RECSIZE() TO MSIZE
DO WHILE MNUMFIELDS < FIELD(MNUMFIELDS + 1)
 MNUMFIELDS = MNUMFIELDS + 1
ENDDO
MHEADER = (32 * MNUMFIELDS) + 34
MVISUAL = MSIZE + MHEADER + 20
MBYTES = MBYTES + MVISUAL
IF MBYTES > 360000
 MBYTES = MVISUAL
 MDISK = MDISK + 1
ENDIF

USE \PAVED\FILES\DYNAFLID
MNULL = ""
STORE 0 TO MNUMFIELDS, MHEADER, MSIZE
STORE RECOUNT() * RECSIZE() TO MSIZE
DO WHILE MNUMFIELDS < FIELD(MNUMFIELDS + 1)
 MNUMFIELDS = MNUMFIELDS + 1
ENDDO
MHEADER = (32 * MNUMFIELDS) + 34
MDYNAFLID = MSIZE + MHEADER + 20
MBYTES = MBYTES + MDYNAFLID
IF MBYTES > 360000
 MBYTES = MDYNAFLID
 MDISK = MDISK + 1
ENDIF
USE \PAVEDB\FILES\FALLWGT
MNULL = ""
STORE 0 TO MNUMFIELDS, MHEADER, MSIZE
STORE RECCOUNT() * RECSIZE() TO MSIZE
DO WHILE MNULL < FIELD(MNUMFIELDS + 1)
 MNUMFIELDS = MNUMFIELDS + 1
ENDDO
MHEADER = (32 * MNUMFIELDS) + 34
MFALLWGT = MSIZE + MHEADER + 20
MBYTES = MBYTES + MFALLWGT
IF MBYTES > 360000
 MBYTES = MFALLWGT
 MDISKS = MDISKS + 1
ENDIF

USE \PAVEDB\FILES\SI
MNULL = ""
STORE 0 TO MNUMFIELDS, MHEADER, MSIZE
STORE RECCOUNT() * RECSIZE() TO MSIZE
DO WHILE MNULL < FIELD(MNUMFIELDS + 1)
 MNUMFIELDS = MNUMFIELDS + 1
ENDDO
MHEADER = (32 * MNUMFIELDS) + 34
MSI = MSIZE + MHEADER + 20
MBYTES = MBYTES + MSI
IF MBYTES > 360000
 MBYTES = MSI
 MDISKS = MDISKS + 1
ENDIF

USE \PAVEDB\FILES\TRAFFIC
MNULL = ""
STORE 0 TO MNUMFIELDS, MHEADER, MSIZE
STORE RECCOUNT() * RECSIZE() TO MSIZE
DO WHILE MNULL < FIELD(MNUMFIELDS + 1)
 MNUMFIELDS = MNUMFIELDS + 1
ENDDO
MHEADER = (32 * MNUMFIELDS) + 34
MTRAFFIC = MSIZE + MHEADER + 20
MBYTES = MBYTES + MTRAFFIC
IF MBYTES > 360000
 MBYTES = MTRAFFIC
 MDISKS = MDISKS + 1
ENDIF

USE \PAVEDB\FILES\WEATHER
MNULL = ""
STORE 0 TO MNUMFIELDS, MHEADER, MSIZE
STORE RECCOUNT() * RECSIZE() TO MSIZE
DO WHILE MNULL < FIELD(MNUMFIELDS + 1)
 MNUMFIELDS = MNUMFIELDS + 1
ENDDO
MHEADER = (32 * MNUMFIELDS) + 34
MWEATHER = MSIZE + MHEADER + 20
MBYTES = MBYTES + MWEATHER
IF MBYTES > 360000
 MBYTES = MWEATHER
 MDISKS = MDISKS + 1
ENDIF

USE \PAVEDB\FILES\ENV
MNULL = ""
STORE 0 TO NUMFIELDS, MHEADER, MSIZE
STORE RECCOUNT() * RECSIZE() TO MSIZE
DO WHILE MNULL < FIELD(NUMFIELDS + 1)
 NUMFIELDS = NUMFIELDS + 1
ENDDO
MHEADER = (32 * NUMFIELDS) + 34
MENV = MSIZE + MHEADER + 20
MBYTES = MBYTES + MENV
IF MBYTES > 360000
 MBYTES = MENV
 MDISKS = MDISKS + 1
ENDIF

USE \PAVEDB\FILES\SKID
MNULL = ""
STORE 0 TO NUMFIELDS, MHEADER, MSIZE
STORE RECCOUNT() * RECSIZE() TO MSIZE
DO WHILE MNULL < FIELD(NUMFIELDS + 1)
 NUMFIELDS = NUMFIELDS + 1
ENDDO
MHEADER = (32 * NUMFIELDS) + 34
MSKID = MSIZE + MHEADER + 20
MBYTES = MBYTES + MSKID
IF MBYTES > 360000
 MDISKS = MDISKS + 1
ENDIF

USE
MGET = ""
@ 10, 05 SAY "You will need " + STR(MDISKS,3) + " blank formatted disk(s) of 360 K"
@ 12, 05 SAY "If you do not have the diskettes ready, press the Esc key."
@ 13, 05 SAY "Otherwise press any key to continue."
CLEA TYPE
READ
IF READKEY() = 12
 CLEAR
 RETURN TO MASTER
ELSE
 SET SAFETY ON
 CLEAR
 @ 5,0 SAY "Please wait. Backing up LOCATION files"
 IF FILE("\PAVEDB\FILES\BACKUP\LOCATION.DBF")
 DELE FILE \PAVEDB\FILES\BACKUP\LOCATION.DBF
 ENDIF
 COPY FILE \PAVEDB\FILES\LOCATION.DBF TO \PAVEDB\FILES\BACKUP\LOCATION.DBF
 SET DEFAULT TO &MBACKDRV
MDISKSPACE = DISKSPACE()
DO WHILE MDISKSPACE < MLAYER
 ? "Not enough space on diskette in drive " + MBACKDRV
 ? "Please replace with another diskette and press any key to continue"
 WAIT ""
 MDISKSPACE = DISKSPACE()
ENDDO
SET DEFAULT TO &Mdrive
COPY FILE \\PAVEDB\\FILES\\LOCATION.DBF TO &MBACKDRV\\LOCATION.DBF

? "Please wait. Backing up LAYER files . . ."
IF FILE('\\PAVEDB\\FILES\\BACKUP\\LAYER.DBF')
 DELETE FILE \\PAVEDB\\FILES\\BACKUP\\LAYER.DBF
ENDIF
COPY FILE \\PAVEDB\\FILES\\LAYER.DBF TO \\PAVEDB\\FILES\\BACKUP\\LAYER.DBF
SET DEFAULT TO &MBACKDRV
MDISKSPACE = DISKSPACE()
DO WHILE MDISKSPACE < MLAYER
 ? "Not enough space on diskette in drive " + MBACKDRV
 ? "Please replace with another diskette and press any key to continue"
 WAIT ""
 MDISKSPACE = DISKSPACE()
ENDDO
SET DEFAULT TO &Mdrive
COPY FILE \\PAVEDB\\FILES\\LAYER.DBF TO &MBACKDRV\\LAYER.DBF

? "Please wait. Backing up LAYTHICK files . . ."
IF FILE('\\PAVEDB\\FILES\\BACKUP\\LAYTHICK.DBF')
 DELETE FILE \\PAVEDB\\FILES\\BACKUP\\LAYTHICK.DBF
ENDIF
COPY FILE \\PAVEDB\\FILES\\LAYTHICK.DBF TO \\PAVEDB\\FILES\\BACKUP\\LAYTHICK.DBF
SET DEFAULT TO &MBACKDRV
MDISKSPACE = DISKSPACE()
DO WHILE MDISKSPACE < MLAYTHICK
 ? "Not enough space on diskette in drive " + MBACKDRV
 ? "Please replace with another diskette and press any key to continue"
 WAIT ""
 MDISKSPACE = DISKSPACE()
ENDDO
SET DEFAULT TO &Mdrive
COPY FILE \\PAVEDB\\FILES\\LAYTHICK.DBF TO &MBACKDRV\\LAYTHICK.DBF

? "Please wait. Backing up GEOSHO files . . ."
IF FILE('\\PAVEDB\\FILES\\BACKUP\\GEOsHO.DBF')
 DELETE FILE \\PAVEDB\\FILES\\BACKUP\\GEOsHO.DBF
ENDIF
COPY FILE \\PAVEDB\\FILES\\GEOsHO.DBF TO \\PAVEDB\\FILES\\BACKUP\\GEOsHO.DBF
SET DEFAULT TO &MBACKDRV
MDISKSPACE = DISKSPACE()
DO WHILE MDISKSPACE < MGEOsHO
 ? "Not enough space on diskette in drive " + MBACKDRV
 ? "Please replace with another diskette and press any key to continue"
 WAIT ""
 MDISKSPACE = DISKSPACE()
ENDIF
SET DEFAULT TO &MDRIVE
COPY FILE \PAVEDB\FILES\GEOSHO.DBF TO &MBACKDRV\GEOSHO.DBF

? "Please wait. Backing up SURFACE files . . ."
IF FILE('\PAVEDB\FILES\BACKUP\SURFACE.DBF')
 DELETE FILE \PAVEDB\FILES\BACKUP\SURFACE.DBF
ENDIF
COPY FILE \PAVEDB\FILES\SURFACE.DBF TO \PAVEDB\FILES\BACKUP\SURFACE.DBF
SET DEFAULT TO &MBACKDRV
MDISKSPACE = DISKSPACE()
DO WHILE MDISKSPACE < MSURFACE
 ? "Not enough space on diskette in drive " + MBACKDRV
 ? "Please replace with another diskette and press any key to continue"
 WAIT ""
 MDISKSPACE = DISKSPACE()
ENDDO
SET DEFAULT TO &MDRIVE
COPY FILE \PAVEDB\FILES\SURFACE.DBF TO &MBACKDRV\SURFACE.DBF

? "Please wait. Backing up SUBGRADE files . . ."
IF FILE('\PAVEDB\FILES\BACKUP\SUBGRADE.DBF')
 DELETE FILE \PAVEDB\FILES\BACKUP\SUBGRADE.DBF
ENDIF
COPY FILE \PAVEDB\FILES\SUBGRADE.DBF TO \PAVEDB\FILES\BACKUP\SUBGRADE.DBF
SET DEFAULT TO &MBACKDRV
MDISKSPACE = DISKSPACE()
DO WHILE MDISKSPACE < MSUBGRADE
 ? "Not enough space on diskette in drive " + MBACKDRV
 ? "Please replace with another diskette and press any key to continue"
 WAIT ""
 MDISKSPACE = DISKSPACE()
ENDDO
SET DEFAULT TO &MDRIVE
COPY FILE \PAVEDB\FILES\SUBGRADE.DBF TO &MBACKDRV\SUBGRADE.DBF

? "Please wait. Backing up VISUAL files . . ."
IF FILE('\PAVEDB\FILES\BACKUP\VISUAL.DBF')
 DELETE FILE \PAVEDB\FILES\BACKUP\VISUAL.DBF
ENDIF
COPY FILE \PAVEDB\FILES\VISUAL.DBF TO \PAVEDB\FILES\BACKUP\VISUAL.DBF
SET DEFAULT TO &MBACKDRV
MDISKSPACE = DISKSPACE()
DO WHILE MDISKSPACE < MVISUAL
 ? "Not enough space on diskette in drive " + MBACKDRV
 ? "Please replace with another diskette and press any key to continue"
 WAIT ""
 MDISKSPACE = DISKSPACE()
ENDDO
SET DEFAULT TO &MDRIVE
COPY FILE \PAVEDB\FILES\VISUAL.DBF TO &MBACKDRV\VISUAL.DBF

? "Please wait. Backing up DYNAFILECL files . . ."
IF FILE('\PAVEDB\FILES\BACKUP\DYNAFILECL.DBF')
DELE FILE \PAVEDB\FILES\BACKUP\DYNAFLID.DBF
ENDIF
COPY FILE \PAVEDB\FILES\DYNAFLID.DBF TO \PAVEDB\FILES\BACKUP\DYNAFLID.DBF
SET DEFAULT TO &MBACKDRV
MDISKSPACE = DISKSPACE()
DO WHILE MDISKSPACE < MDYNAFLID
? "Not enough space on diskette in drive " + MBACKDRV
? "Please replace with another diskette and press any key to continue"
WAIT " "
MDISKSPACE = DISKSPACE()
ENDDO
SET DEFAULT TO &MDRIVE
COPY FILE \PAVEDB\FILES\DYNAFLID.DBF TO &MBACKDRV\DYNAFLID.DBF

? "Please wait. Backing up SI files . . ."
IF FILE(\PAVEDB\FILES\BACKUP\SI.DBF')
DELE FILE \PAVEDB\FILES\BACKUP\SI.DBF
ENDIF
COPY FILE \PAVEDB\FILES\SI.DBF TO \PAVEDB\FILES\BACKUP\SI.DBF
SET DEFAULT TO &MBACKDRV
MDISKSPACE = DISKSPACE()
DO WHILE MDISKSPACE < MSI
? "Not enough space on diskette in drive " + MBACKDRV
? "Please replace with another diskette and press any key to continue"
WAIT " "
MDISKSPACE = DISKSPACE()
ENDDO
SET DEFAULT TO &MDRIVE
COPY FILE \PAVEDB\FILES\SI.DBF TO &MBACKDRV\SI.DBF

? "Please wait. Backing up TRAFFIC files . . ."
IF FILE(\PAVEDB\FILES\BACKUP\TRAFFIC.DBF')
DELE FILE \PAVEDB\FILES\BACKUP\TRAFFIC.DBF
ENDIF
COPY FILE \PAVEDB\FILES\TRAFFIC.DBF TO \PAVEDB\FILES\BACKUP\TRAFFIC.DBF
SET DEFAULT TO &MBACKDRV
MDISKSPACE = DISKSPACE()
DO WHILE MDISKSPACE < MTRAFFIC
? "Not enough space on diskette in drive " + MBACKDRV
? "Please replace with another diskette and press any key to continue"
WAIT " "
MDISKSPACE = DISKSPACE()
ENDDO
SET DEFAULT TO &MDRIVE
COPY FILE \PAVEDB\FILES\TRAFFIC.DBF TO &MBACKDRV\TRAFFIC.DBF

? "Please wait. Backing up WEATHER files . . ."
IF FILE(\PAVEDB\FILES\BACKUP\WEATHER.DBF')
DELE FILE \PAVEDB\FILES\BACKUP\WEATHER.DBF
ENDIF
COPY FILE \PAVEDB\FILES\WEATHER.DBF TO \PAVEDB\FILES\BACKUP\WEATHER.DBF
SET DEFAULT TO &MBACKDRV
MDISKSPACE = DISKSPACE()
DO WHILE MDISKSPACE < MWEATHER
? "Not enough space on diskette in drive " + MBACKDRV
? "Please replace with another diskette and press any key to continue"
WAIT " "
MDISKSPACE = DISKSPACE()
ENDDO
SET DEFAULT TO &Mdrive
COPY FILE \PAVEDB\FILES\WEATHER.DBF TO &MBACKDRV\WEATHER.DBF

? "Please wait. Backing up FALLIGHT files . . ."
IF FILE('\PAVEDB\FILES\BACKUP\FALLIGHT.DBF')
 DELETE FILE \PAVEDB\FILES\BACKUP\FALLIGHT.DBF
ENDIF
COPY FILE \PAVEDB\FILES\FALLIGHT.DBF TO \PAVEDB\FILES\BACKUP\FALLIGHT.DBF
SET DEFAULT TO &MBACKDRV
MDISKSPACE = DISKSPACE()
DO WHILE MDISKSPACE < MFALLIGHT
 ? "Not enough space on diskette in drive " + MBACKDRV
 ? "Please replace with another diskette and press any key to continue"
 WAIT " "
 MDISKSPACE = DISKSPACE()
ENDDO
SET DEFAULT TO &Mdrive
COPY FILE \PAVEDB\FILES\FALLIGHT.DBF TO &MBACKDRV\FALLIGHT.DBF

? "Please wait. Backing up ENV files . . ."
IF FILE('\PAVEDB\FILES\BACKUP\ENV.DBF')
 DELETE FILE \PAVEDB\FILES\BACKUP\ENV.DBF
ENDIF
COPY FILE \PAVEDB\FILES\ENV.DBF TO \PAVEDB\FILES\BACKUP\ENV.DBF
SET DEFAULT TO &MBACKDRV
MDISKSPACE = DISKSPACE()
DO WHILE MDISKSPACE < MENV
 ? "Not enough space on diskette in drive " + MBACKDRV
 ? "Please replace with another diskette and press any key to continue"
 WAIT " "
 MDISKSPACE = DISKSPACE()
ENDDO
SET DEFAULT TO &Mdrive
COPY FILE \PAVEDB\FILES\ENV.DBF TO &MBACKDRV\ENV.DBF

? "Please wait. Backing up SKID files . . ."
IF FILE('\PAVEDB\FILES\BACKUP\SKID.DBF')
 DELETE FILE \PAVEDB\FILES\BACKUP\SKID.DBF
ENDIF
COPY FILE \PAVEDB\FILES\SKID.DBF TO \PAVEDB\FILES\BACKUP\SKID.DBF
SET DEFAULT TO &MBACKDRV
MDISKSPACE = DISKSPACE()
DO WHILE MDISKSPACE < MSKID
 ? "Not enough space on diskette in drive " + MBACKDRV
 ? "Please replace with another diskette and press any key to continue"
 WAIT " "
 MDISKSPACE = DISKSPACE()
ENDDO
SET DEFAULT TO &Mdrive
COPY FILE \PAVEDB\FILES\SKID.DBF TO \MBACKDRV\SKID.DBF
ENDIF
SET TYPE TO 20
SET SAFETY OFF
CLOSE DATABASES
CLEAR
RETURN TO MASTER
APPENDIX A
County Name Table

File Name: CNTYTLB.DBF

<table>
<thead>
<tr>
<th>Field</th>
<th>Key</th>
<th>Size/Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNTYNUM</td>
<td>*</td>
<td>3N</td>
<td>County Number</td>
</tr>
<tr>
<td>CNTYNAME</td>
<td></td>
<td>13C</td>
<td>County Name</td>
</tr>
</tbody>
</table>

The table is sorted on the key field.
Distress vs. 18 Keal File

File Layout

<table>
<thead>
<tr>
<th>Field</th>
<th>Key</th>
<th>Size/Type</th>
<th>Source</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID NO</td>
<td>*</td>
<td>4N</td>
<td></td>
<td>Section Identification Number</td>
</tr>
<tr>
<td>YEAR</td>
<td>*</td>
<td>2N</td>
<td></td>
<td>Year</td>
</tr>
<tr>
<td>A18KEAL</td>
<td></td>
<td>1N</td>
<td>T</td>
<td>Annual Cumulative 18 Keal one way</td>
</tr>
<tr>
<td>RUTT</td>
<td></td>
<td>1N</td>
<td>V</td>
<td>Rutting Area</td>
</tr>
<tr>
<td>ALLGCR</td>
<td></td>
<td>1N</td>
<td>V</td>
<td>Alligator Cracking Area</td>
</tr>
<tr>
<td>PATCH</td>
<td></td>
<td>1N</td>
<td>V</td>
<td>Patch</td>
</tr>
<tr>
<td>SIMEXAN</td>
<td></td>
<td>7.5N</td>
<td>SI</td>
<td>Serviceability Index Mean</td>
</tr>
<tr>
<td>CONYEAR</td>
<td></td>
<td>2N</td>
<td>LI</td>
<td>Year of Last Major Construction</td>
</tr>
<tr>
<td>CONMON</td>
<td></td>
<td>2N</td>
<td>LI</td>
<td>Month of Last Major Construction</td>
</tr>
<tr>
<td>PAVETYP</td>
<td></td>
<td>2N</td>
<td>G</td>
<td>Pavement Type</td>
</tr>
<tr>
<td>OVRYEAR</td>
<td></td>
<td>2N</td>
<td>LI</td>
<td>Year of Last HMAC Overlay</td>
</tr>
<tr>
<td>OVRMON</td>
<td></td>
<td>2N</td>
<td>LI</td>
<td>Month of Last HMAC Overlay</td>
</tr>
</tbody>
</table>

** File Source

T - TRAFFIC FILE
V - VISUAL FILE
LI - LAYER IDENTIFICATION FILE (LAYER)
G - GEOMETRIC & SHOULDER INFORMATION FILE (GBOSH)
SI - SERVICEABILITY INDEX FILE
District Temperature Constant Table

File Name: DISTTEMP.DBF

<table>
<thead>
<tr>
<th>Field</th>
<th>Key</th>
<th>Size/Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISTRICT</td>
<td>*</td>
<td>2N</td>
<td>District Number</td>
</tr>
<tr>
<td>TEMPCONS</td>
<td></td>
<td>2N</td>
<td>District Temperature Constant</td>
</tr>
</tbody>
</table>

The table is sorted on the key field.
Monitoring Data

Dynaflect Measurement File

File Name: DYNAFLID.DBF

<table>
<thead>
<tr>
<th>Field</th>
<th>Key</th>
<th>Size/Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID NO</td>
<td>*</td>
<td>4N</td>
<td>Section Identification Number</td>
</tr>
<tr>
<td>STRUCNUM</td>
<td>*</td>
<td>2N</td>
<td>Structure Number</td>
</tr>
<tr>
<td>LAYNUM</td>
<td>*</td>
<td>2N</td>
<td>Layer Identification Number</td>
</tr>
<tr>
<td>YEAR</td>
<td>*</td>
<td>2N</td>
<td>Year</td>
</tr>
<tr>
<td>MONTH</td>
<td>*</td>
<td>2N</td>
<td>Month</td>
</tr>
<tr>
<td>DAY</td>
<td></td>
<td>2N</td>
<td>Day</td>
</tr>
<tr>
<td>STATION</td>
<td>*</td>
<td>2N</td>
<td>Station</td>
</tr>
<tr>
<td>SENS1RD</td>
<td></td>
<td>5.3N</td>
<td>Sensor 1 Reading</td>
</tr>
<tr>
<td>SENS2RD</td>
<td></td>
<td>5.3N</td>
<td>Sensor 2 Reading</td>
</tr>
<tr>
<td>SENS3RD</td>
<td></td>
<td>5.3N</td>
<td>Sensor 3 Reading</td>
</tr>
<tr>
<td>SENS4RD</td>
<td></td>
<td>5.3N</td>
<td>Sensor 4 Reading</td>
</tr>
<tr>
<td>SENS5RD</td>
<td></td>
<td>5.3N</td>
<td>Sensor 5 Reading</td>
</tr>
</tbody>
</table>
Environmental Data

Environment Measurement File

File Name: ENV.DBF

<table>
<thead>
<tr>
<th>Field</th>
<th>Key</th>
<th>Size/Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNTYNUM</td>
<td>*</td>
<td>3N</td>
<td>County Number</td>
</tr>
<tr>
<td>THORNMIN</td>
<td></td>
<td>S10.3N</td>
<td>Thornthwaite Index - Mean</td>
</tr>
<tr>
<td>THORNSD</td>
<td></td>
<td>S10.3N</td>
<td>Thornthwaite Index - Standard Deviation</td>
</tr>
<tr>
<td>THORNYRS</td>
<td></td>
<td>2N</td>
<td>Thornthwaite Index - No. Years Averaged</td>
</tr>
</tbody>
</table>
Monitoring Data

Falling Weight SSI File

File Name: FALLWGH.T.DBF

<table>
<thead>
<tr>
<th>Field</th>
<th>Key</th>
<th>Size/Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID NO</td>
<td>*</td>
<td>4N</td>
<td>Section Identification Number</td>
</tr>
<tr>
<td>STRUCNUM</td>
<td>*</td>
<td>2N</td>
<td>Structure Number</td>
</tr>
<tr>
<td>LAYNUM</td>
<td>*</td>
<td>2N</td>
<td>Layer Number</td>
</tr>
<tr>
<td>YEAR</td>
<td>*</td>
<td>2N</td>
<td>Year</td>
</tr>
<tr>
<td>MONTH</td>
<td>*</td>
<td>2N</td>
<td>Month</td>
</tr>
<tr>
<td>DAY</td>
<td>*</td>
<td>2N</td>
<td>Day</td>
</tr>
<tr>
<td>RWSSIAVG</td>
<td>4.1N</td>
<td></td>
<td>Average SSI for the Roadway</td>
</tr>
<tr>
<td>SSITEMP</td>
<td>3N</td>
<td></td>
<td>Temperature For the Roadway</td>
</tr>
<tr>
<td>SSIGP11</td>
<td>5.2N</td>
<td></td>
<td>SSI Reading 1 Geophone no. 1</td>
</tr>
<tr>
<td>SSIGP12</td>
<td>5.2N</td>
<td></td>
<td>SSI Reading 1 Geophone no. 2</td>
</tr>
<tr>
<td>SSIGP13</td>
<td>5.2N</td>
<td></td>
<td>SSI Reading 1 Geophone no. 3</td>
</tr>
<tr>
<td>SSIGP14</td>
<td>5.2N</td>
<td></td>
<td>SSI Reading 1 Geophone no. 4</td>
</tr>
<tr>
<td>SSIGP15</td>
<td>5.2N</td>
<td></td>
<td>SSI Reading 1 Geophone no. 5</td>
</tr>
<tr>
<td>SSIGP16</td>
<td>5.2N</td>
<td></td>
<td>SSI Reading 1 Geophone no. 6</td>
</tr>
<tr>
<td>SSIGP17</td>
<td>5.2N</td>
<td></td>
<td>SSI Reading 1 Geophone no. 7</td>
</tr>
<tr>
<td>SSIGP21</td>
<td>5.2N</td>
<td></td>
<td>SSI Reading 2 Geophone no. 1</td>
</tr>
<tr>
<td>SSIGP22</td>
<td>5.2N</td>
<td></td>
<td>SSI Reading 2 Geophone no. 2</td>
</tr>
<tr>
<td>SSIGP23</td>
<td>5.2N</td>
<td></td>
<td>SSI Reading 2 Geophone no. 3</td>
</tr>
<tr>
<td>SSIGP24</td>
<td>5.2N</td>
<td></td>
<td>SSI Reading 2 Geophone no. 4</td>
</tr>
<tr>
<td>SSIGP25</td>
<td>5.2N</td>
<td></td>
<td>SSI Reading 2 Geophone no. 5</td>
</tr>
<tr>
<td>SSIGP26</td>
<td>5.2N</td>
<td></td>
<td>SSI Reading 2 Geophone no. 6</td>
</tr>
<tr>
<td>SSIGP27</td>
<td>5.2N</td>
<td></td>
<td>SSI Reading 2 Geophone no. 7</td>
</tr>
<tr>
<td>SSIGP31</td>
<td>5.2N</td>
<td></td>
<td>SSI Reading 3 Geophone no. 1</td>
</tr>
<tr>
<td>SSIGP32</td>
<td>5.2N</td>
<td></td>
<td>SSI Reading 3 Geophone no. 2</td>
</tr>
<tr>
<td>SSIGP33</td>
<td>5.2N</td>
<td></td>
<td>SSI Reading 3 Geophone no. 3</td>
</tr>
<tr>
<td>SSIGP34</td>
<td>5.2N</td>
<td></td>
<td>SSI Reading 3 Geophone no. 4</td>
</tr>
<tr>
<td>SSIGP35</td>
<td>5.2N</td>
<td></td>
<td>SSI Reading 3 Geophone no. 5</td>
</tr>
<tr>
<td>SSIGP36</td>
<td>5.2N</td>
<td></td>
<td>SSI Reading 3 Geophone no. 6</td>
</tr>
<tr>
<td>SSIGP37</td>
<td>5.2N</td>
<td></td>
<td>SSI Reading 3 Geophone no. 7</td>
</tr>
<tr>
<td>SSIGP41</td>
<td>5.2N</td>
<td></td>
<td>SSI Reading 4 Geophone no. 1</td>
</tr>
<tr>
<td>SSIGP42</td>
<td>5.2N</td>
<td></td>
<td>SSI Reading 4 Geophone no. 2</td>
</tr>
<tr>
<td>SSIGP43</td>
<td>5.2N</td>
<td></td>
<td>SSI Reading 4 Geophone no. 3</td>
</tr>
<tr>
<td>SSIGP44</td>
<td>5.2N</td>
<td></td>
<td>SSI Reading 4 Geophone no. 4</td>
</tr>
<tr>
<td>SSIGP45</td>
<td>5.2N</td>
<td></td>
<td>SSI Reading 4 Geophone no. 5</td>
</tr>
</tbody>
</table>
Monitoring Data

Falling Weight SSI File (Continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Key</th>
<th>Size/Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSIGP46</td>
<td>5.2N</td>
<td>SSI</td>
<td>Reading 4 Geophone no. 6</td>
</tr>
<tr>
<td>SSIGP47</td>
<td>5.2N</td>
<td>SSI</td>
<td>Reading 4 Geophone no. 7</td>
</tr>
<tr>
<td>SSIGP51</td>
<td>5.2N</td>
<td>SSI</td>
<td>Reading 5 Geophone no. 1</td>
</tr>
<tr>
<td>SSIGP52</td>
<td>5.2N</td>
<td>SSI</td>
<td>Reading 5 Geophone no. 2</td>
</tr>
<tr>
<td>SSIGP53</td>
<td>5.2N</td>
<td>SSI</td>
<td>Reading 5 Geophone no. 3</td>
</tr>
<tr>
<td>SSIGP54</td>
<td>5.2N</td>
<td>SSI</td>
<td>Reading 5 Geophone no. 4</td>
</tr>
<tr>
<td>SSIGP55</td>
<td>5.2N</td>
<td>SSI</td>
<td>Reading 5 Geophone no. 5</td>
</tr>
<tr>
<td>SSIGP56</td>
<td>5.2N</td>
<td>SSI</td>
<td>Reading 5 Geophone no. 6</td>
</tr>
<tr>
<td>SSIGP57</td>
<td>5.2N</td>
<td>SSI</td>
<td>Reading 5 Geophone no. 7</td>
</tr>
</tbody>
</table>
Functional Classification Table

File Name: FUNCLTBL.DBF

<table>
<thead>
<tr>
<th>Field</th>
<th>Key</th>
<th>Size/Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CODE</td>
<td>*</td>
<td>1N</td>
<td>Functional Classification Code</td>
</tr>
<tr>
<td>DEScript</td>
<td></td>
<td>40C</td>
<td>Description of Functional Classification</td>
</tr>
</tbody>
</table>

The table is sorted on the key field.
Inventory Data

Geometric and Shoulder Information File

File Name: GEOSH0.DBF

<table>
<thead>
<tr>
<th>Field</th>
<th>Key</th>
<th>Size/Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID NO</td>
<td>*</td>
<td>4N</td>
<td>Section Identification Number</td>
</tr>
<tr>
<td>STRUCNUM</td>
<td>*</td>
<td>2N</td>
<td>Structure Number</td>
</tr>
<tr>
<td>PAVETYP</td>
<td></td>
<td>2N</td>
<td>Type of Pavement</td>
</tr>
<tr>
<td>LANEMID</td>
<td></td>
<td>4.1N</td>
<td>Lane Width (Feet)</td>
</tr>
<tr>
<td>OUTSHOWD</td>
<td></td>
<td>4.1N</td>
<td>Outside Shoulder Width (Feet)</td>
</tr>
<tr>
<td>SHOSFTYP</td>
<td></td>
<td>1N</td>
<td>Shoulder Surface Type</td>
</tr>
<tr>
<td>SHOBSTYP</td>
<td></td>
<td>2N</td>
<td>Shoulder Base Type</td>
</tr>
<tr>
<td>SHOSFTHK</td>
<td></td>
<td>5.2N</td>
<td>Shoulder Surface Thickness (Inch)</td>
</tr>
<tr>
<td>SHOBSTHK</td>
<td></td>
<td>5.2N</td>
<td>Shoulder Base Thickness (Inches)</td>
</tr>
<tr>
<td>WIDENFLG</td>
<td></td>
<td>1N</td>
<td>Flag for Type Of Widening</td>
</tr>
</tbody>
</table>
Inventory Data
Layer Identification File

File Name: LAYER.DBF

<table>
<thead>
<tr>
<th>Field</th>
<th>Key</th>
<th>Size/Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID_NO</td>
<td>*</td>
<td>4N</td>
<td>Section Identification Number</td>
</tr>
<tr>
<td>STRUCNUM</td>
<td>*</td>
<td>2N</td>
<td>Structure Number</td>
</tr>
<tr>
<td>LAYNUM</td>
<td>*</td>
<td>2N</td>
<td>Layer Number</td>
</tr>
<tr>
<td>LAYDESC</td>
<td></td>
<td>2N</td>
<td>Layer Description</td>
</tr>
<tr>
<td>CENTTHK</td>
<td></td>
<td>5.2N</td>
<td>Layer Center Thickness</td>
</tr>
<tr>
<td>LAYMATCL</td>
<td></td>
<td>2N</td>
<td>Material Type Classification</td>
</tr>
<tr>
<td>JOBCMPYR</td>
<td></td>
<td>2N</td>
<td>Year Job Completed</td>
</tr>
<tr>
<td>JOBCMPMO</td>
<td></td>
<td>2N</td>
<td>Month Job Completed</td>
</tr>
<tr>
<td>WIDENLYR</td>
<td></td>
<td>2N</td>
<td>Year Layer Widened</td>
</tr>
<tr>
<td>WIDENIMO</td>
<td></td>
<td>2N</td>
<td>Month Layer Widened</td>
</tr>
</tbody>
</table>
Layer Description Table

File Name: LAYERTBL.DBF

<table>
<thead>
<tr>
<th>Field</th>
<th>Key</th>
<th>Size/Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CODE</td>
<td>*</td>
<td>2N</td>
<td>Layer Description Code</td>
</tr>
<tr>
<td>CODE_DESC</td>
<td></td>
<td>4C</td>
<td>Layer Description Abbreviation</td>
</tr>
<tr>
<td>CODE_LAYR</td>
<td></td>
<td>25C</td>
<td>Layer Description Explanation</td>
</tr>
</tbody>
</table>

The table is sorted on the key field.
Inventory Data

Layer Thickness Across the Road File

File Name: LAYTHICK.DBF

<table>
<thead>
<tr>
<th>Field</th>
<th>Key</th>
<th>Size/Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID NO</td>
<td>*</td>
<td>4N</td>
<td>Section Identification Number</td>
</tr>
<tr>
<td>STRUCNUM</td>
<td>*</td>
<td>2N</td>
<td>Structure Number</td>
</tr>
<tr>
<td>LAYNUM</td>
<td>*</td>
<td>2N</td>
<td>Layer Number</td>
</tr>
<tr>
<td>FC3THK</td>
<td></td>
<td>5.2N</td>
<td>Thickness - 3rd Pos. from Center</td>
</tr>
<tr>
<td>FC2THK</td>
<td></td>
<td>5.2N</td>
<td>Thickness - 2nd Pos. from Center</td>
</tr>
<tr>
<td>FC1THK</td>
<td></td>
<td>5.2N</td>
<td>Thickness - 1st Pos. from Center</td>
</tr>
<tr>
<td>CENTTHK</td>
<td></td>
<td>5.2N</td>
<td>Thickness - Center</td>
</tr>
<tr>
<td>FC3DIS</td>
<td></td>
<td>4.1N</td>
<td>Distance from the Center/3rd Pos.</td>
</tr>
<tr>
<td>FC2DIS</td>
<td></td>
<td>4.1N</td>
<td>Distance from the Center/2nd Pos.</td>
</tr>
<tr>
<td>FC1DIS</td>
<td></td>
<td>4.1N</td>
<td>Distance from the Center/1st Pos.</td>
</tr>
</tbody>
</table>
Inventory Data

Location File

File Name: LOCATION.DBF

<table>
<thead>
<tr>
<th>Field</th>
<th>Key</th>
<th>Size/Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID NO</td>
<td></td>
<td>4N</td>
<td>Section Identification Number</td>
</tr>
<tr>
<td>ACTVFLAG</td>
<td>*</td>
<td>1L</td>
<td>Active/Inactive Flag</td>
</tr>
<tr>
<td>HWYDIST</td>
<td></td>
<td>2N</td>
<td>SDWPT Highway District</td>
</tr>
<tr>
<td>CNTYNUM</td>
<td></td>
<td>3N</td>
<td>County Number</td>
</tr>
<tr>
<td>HPMSAM</td>
<td></td>
<td>12C</td>
<td>HPMS Sample Number</td>
</tr>
<tr>
<td>HPMSSEC</td>
<td></td>
<td>1N</td>
<td>HPMS Section Subdivision</td>
</tr>
<tr>
<td>FUNCAS</td>
<td></td>
<td>2N</td>
<td>Functional Classification</td>
</tr>
<tr>
<td>HWYPREFX</td>
<td></td>
<td>2C</td>
<td>Highway Number Prefix</td>
</tr>
<tr>
<td>HWYNUM</td>
<td></td>
<td>4N</td>
<td>Highway Number</td>
</tr>
<tr>
<td>HWYSUFFX</td>
<td></td>
<td>1C</td>
<td>Highway Number Suffix</td>
</tr>
<tr>
<td>BEGMPST</td>
<td></td>
<td>3N</td>
<td>Beginning Milepost</td>
</tr>
<tr>
<td>BDISSIGN</td>
<td></td>
<td>1C</td>
<td>Beginning Displacement Sign</td>
</tr>
<tr>
<td>EMPSTDIS</td>
<td></td>
<td>2N</td>
<td>Beginning Milepost Displacement</td>
</tr>
<tr>
<td>ENDMPST</td>
<td></td>
<td>3N</td>
<td>Ending Milepost</td>
</tr>
<tr>
<td>EDISSIGN</td>
<td></td>
<td>1C</td>
<td>Ending Displacement Sign</td>
</tr>
<tr>
<td>EMPSTDIS</td>
<td></td>
<td>2N</td>
<td>Ending Milepost Displacement</td>
</tr>
<tr>
<td>LANEID</td>
<td></td>
<td>1C</td>
<td>Lane Identification (R,L)</td>
</tr>
<tr>
<td>CONTROL</td>
<td></td>
<td>4N</td>
<td>Control</td>
</tr>
<tr>
<td>SECTION</td>
<td></td>
<td>2N</td>
<td>Section</td>
</tr>
<tr>
<td>BEGMPT</td>
<td></td>
<td>6.3N</td>
<td>Beginning Milepoint</td>
</tr>
<tr>
<td>ENDMPT</td>
<td></td>
<td>6.3N</td>
<td>Ending Milepoint</td>
</tr>
<tr>
<td>MXIMO</td>
<td></td>
<td>2N</td>
<td>Milepoint Month</td>
</tr>
<tr>
<td>MXIYR</td>
<td></td>
<td>2N</td>
<td>Milepoint Year</td>
</tr>
<tr>
<td>NUMLANES</td>
<td></td>
<td>2N</td>
<td>Number of Lanes</td>
</tr>
<tr>
<td>PREVSID</td>
<td></td>
<td>4N</td>
<td>Pointer to the Previous SID Number for this Location</td>
</tr>
<tr>
<td>NEXISID</td>
<td></td>
<td>4N</td>
<td>Pointer to the Next SID Number for this Location</td>
</tr>
<tr>
<td>INACTYR</td>
<td></td>
<td>2N</td>
<td>Inactive Year</td>
</tr>
<tr>
<td>INACTIMO</td>
<td></td>
<td>2N</td>
<td>Inactive Month</td>
</tr>
<tr>
<td>COMMENT</td>
<td></td>
<td>40C</td>
<td>Comments on SID Number</td>
</tr>
</tbody>
</table>
Material Type Table

File Name: MATLITBL.DBF

<table>
<thead>
<tr>
<th>Field</th>
<th>Key</th>
<th>Size/Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATCODE</td>
<td>*</td>
<td>2N</td>
<td>Code for Material Classification Type</td>
</tr>
<tr>
<td>MATDESC</td>
<td></td>
<td>20C</td>
<td>Description of Material Type</td>
</tr>
<tr>
<td>MATSHRT</td>
<td></td>
<td>4C</td>
<td>Short Form for Material Classification Type</td>
</tr>
<tr>
<td>LAYRDES</td>
<td></td>
<td>2C</td>
<td>Type of Layer (surface, subbase, base, subgrade)</td>
</tr>
</tbody>
</table>

The table is sorted on the key field.
Model File

File Layout

File Name: MODEL.DBF

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Key</th>
<th>Size/Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID NO</td>
<td>*</td>
<td>4N</td>
<td>Section Identification Number</td>
</tr>
<tr>
<td>HWYTYPE</td>
<td>2C</td>
<td></td>
<td>Highway Type</td>
</tr>
<tr>
<td>HWYDIST</td>
<td>2N</td>
<td></td>
<td>District</td>
</tr>
<tr>
<td>CNTYNUM</td>
<td>3N</td>
<td></td>
<td>County Number</td>
</tr>
<tr>
<td>PAVEYTP</td>
<td>2N</td>
<td></td>
<td>Pavement Type</td>
</tr>
<tr>
<td>ALLG RHO</td>
<td>7.4N</td>
<td></td>
<td>Alligator Rho Value</td>
</tr>
<tr>
<td>ALLG BETA</td>
<td>7.4N</td>
<td></td>
<td>Alligator Beta Value</td>
</tr>
<tr>
<td>RUTT RHO</td>
<td>7.4N</td>
<td></td>
<td>Rutting Rho Value</td>
</tr>
<tr>
<td>RUTT BETA</td>
<td>7.4N</td>
<td></td>
<td>Rutting Beta Value</td>
</tr>
<tr>
<td>PSI_RHO</td>
<td>7.4N</td>
<td></td>
<td>PSI Rho Value</td>
</tr>
<tr>
<td>PSI_BETA</td>
<td>7.4N</td>
<td></td>
<td>PSI Beta Value</td>
</tr>
<tr>
<td>BASEYTP</td>
<td>2N</td>
<td></td>
<td>Base Type</td>
</tr>
<tr>
<td>BASETHCK</td>
<td>7.2N</td>
<td></td>
<td>Base Thickness</td>
</tr>
<tr>
<td>TFCMNN</td>
<td>10.3N</td>
<td></td>
<td>Total Freeze Thaw Cycle Mean</td>
</tr>
<tr>
<td>PRECMN</td>
<td>10.3N</td>
<td></td>
<td>Inches of Precipitation</td>
</tr>
<tr>
<td>THORNMNN</td>
<td>10.3N</td>
<td></td>
<td>Thornthwaite Index Mean</td>
</tr>
<tr>
<td>CURADT</td>
<td>6N</td>
<td></td>
<td>Current Average Daily Traffic</td>
</tr>
<tr>
<td>SUBGRDIVY</td>
<td>2N</td>
<td></td>
<td>Subgrade Type</td>
</tr>
<tr>
<td>PRSV200</td>
<td>4.1N</td>
<td></td>
<td>Percent Passing #200 Sieve</td>
</tr>
<tr>
<td>LIQLIM</td>
<td>4.1N</td>
<td></td>
<td>Liquid Limit</td>
</tr>
<tr>
<td>SHOSFTYP</td>
<td>1N</td>
<td></td>
<td>Shoulder Surf Type</td>
</tr>
<tr>
<td>SURFTHCK</td>
<td>7.2N</td>
<td></td>
<td>Surface Thickness</td>
</tr>
<tr>
<td>ASAPPLRT</td>
<td>4.2N</td>
<td></td>
<td>Aggregate Application Rate</td>
</tr>
<tr>
<td>TEMPCONS</td>
<td>2N</td>
<td></td>
<td>District Temperature Constant</td>
</tr>
<tr>
<td>DYNACL1</td>
<td>5.3N</td>
<td></td>
<td>Average Dynaflect Measurement - Sensor 1</td>
</tr>
<tr>
<td>DYNACL2</td>
<td>5.3N</td>
<td></td>
<td>Average Dynaflect Measurement - Sensor 2</td>
</tr>
<tr>
<td>DYNACL3</td>
<td>5.3N</td>
<td></td>
<td>Average Dynaflect Measurement - Sensor 3</td>
</tr>
<tr>
<td>DYNACL4</td>
<td>5.3N</td>
<td></td>
<td>Average Dynaflect Measurement - Sensor 4</td>
</tr>
<tr>
<td>DYNACL5</td>
<td>5.3N</td>
<td></td>
<td>Average Dynaflect Measurement - Sensor 5</td>
</tr>
<tr>
<td>SSIGP1</td>
<td>5.2N</td>
<td></td>
<td>Average SSI for Geophone 1</td>
</tr>
<tr>
<td>SSIGP2</td>
<td>5.3N</td>
<td></td>
<td>Average SSI for Geophone 2</td>
</tr>
<tr>
<td>SSIGP3</td>
<td>5.3N</td>
<td></td>
<td>Average SSI for Geophone 3</td>
</tr>
<tr>
<td>SSIGP4</td>
<td>5.3N</td>
<td></td>
<td>Average SSI for Geophone 4</td>
</tr>
<tr>
<td>SSIGP5</td>
<td>5.3N</td>
<td></td>
<td>Average SSI for Geophone 5</td>
</tr>
</tbody>
</table>

637
Pavement Type Table

File Name: PAVETYPE.DBF

<table>
<thead>
<tr>
<th>Field</th>
<th>Key</th>
<th>Size/Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAVECODE</td>
<td>*</td>
<td>2N</td>
<td>Type of Pavement Code</td>
</tr>
<tr>
<td>BASETYPE</td>
<td></td>
<td>25C</td>
<td>Type of Base</td>
</tr>
<tr>
<td>BASETHK</td>
<td></td>
<td>17C</td>
<td>Surface Thickness</td>
</tr>
<tr>
<td>BASESEAL</td>
<td></td>
<td>12C</td>
<td>Surface Seal</td>
</tr>
</tbody>
</table>

The table is sorted on the key field.
Monitoring Data

Serviceability Index File

File Name: SI.DBF

<table>
<thead>
<tr>
<th>Field</th>
<th>Key</th>
<th>Size/Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID NO</td>
<td>*</td>
<td>4N</td>
<td>Section Identification Number</td>
</tr>
<tr>
<td>STRUCNUM</td>
<td>*</td>
<td>2N</td>
<td>Structure Number</td>
</tr>
<tr>
<td>LAYNUM</td>
<td>*</td>
<td>2N</td>
<td>Layer Identification Number</td>
</tr>
<tr>
<td>YEAR</td>
<td>*</td>
<td>2N</td>
<td>Identifying Year</td>
</tr>
<tr>
<td>ACTMONTH</td>
<td>2N</td>
<td></td>
<td>Actual Month of Measurement</td>
</tr>
<tr>
<td>ACTDAY</td>
<td>2N</td>
<td></td>
<td>Actual Day of Measurement</td>
</tr>
<tr>
<td>ACTYEAR</td>
<td>2N</td>
<td></td>
<td>Actual Year of Measurement</td>
</tr>
<tr>
<td>SICOUNT</td>
<td>3N</td>
<td></td>
<td>Serviceability Index - Count of Observation</td>
</tr>
<tr>
<td>SIMEAN</td>
<td>7.5N</td>
<td></td>
<td>Serviceability Index - Mean</td>
</tr>
<tr>
<td>SISD</td>
<td>7.5N</td>
<td></td>
<td>Serviceability Index - Standard Deviation</td>
</tr>
<tr>
<td>SILOWVAL</td>
<td>3.1N</td>
<td></td>
<td>Serviceability Index - Low Value</td>
</tr>
<tr>
<td>SIHIIVAL</td>
<td>3.1N</td>
<td></td>
<td>Serviceability Index - High Value</td>
</tr>
</tbody>
</table>
Monitoring Data

Skid Measuring File

File Name: SKID.DBF

<table>
<thead>
<tr>
<th>Field</th>
<th>Key</th>
<th>Size/Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID_NO</td>
<td>*</td>
<td>4N</td>
<td>Section Identification Number</td>
</tr>
<tr>
<td>STRUCNUM</td>
<td>*</td>
<td>2N</td>
<td>Structure number</td>
</tr>
<tr>
<td>LAYNUM</td>
<td>*</td>
<td>2N</td>
<td>Layer number</td>
</tr>
<tr>
<td>YEAR</td>
<td>*</td>
<td>2N</td>
<td>Year of Measurement</td>
</tr>
<tr>
<td>MONTH</td>
<td>*</td>
<td>2N</td>
<td>Month of Measurement</td>
</tr>
<tr>
<td>SKIDNUMM</td>
<td></td>
<td>2N</td>
<td>Skid Number - Mean</td>
</tr>
<tr>
<td>SKIDNUMH</td>
<td></td>
<td>2N</td>
<td>Skid Number - High</td>
</tr>
<tr>
<td>SKIDNUMUL</td>
<td></td>
<td>2N</td>
<td>Skid Number - Low</td>
</tr>
</tbody>
</table>
Inventory Data

Subgrade File

File Name: SUBGRADE.DBF

<table>
<thead>
<tr>
<th>Field</th>
<th>Key</th>
<th>Size/Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID NO</td>
<td>*</td>
<td>4N</td>
<td>Section Identification Number</td>
</tr>
<tr>
<td>STRUCNUM</td>
<td>*</td>
<td>2N</td>
<td>Structure Number</td>
</tr>
<tr>
<td>LAYNUM</td>
<td>*</td>
<td>2N</td>
<td>Layer Number</td>
</tr>
<tr>
<td>PPSV200</td>
<td></td>
<td>4.1N</td>
<td>Percent Passing NO. 200 Sieve</td>
</tr>
<tr>
<td>PLASTIX</td>
<td></td>
<td>4.1N</td>
<td>Plasticity Index</td>
</tr>
<tr>
<td>LIQLIM</td>
<td></td>
<td>4.1N</td>
<td>Liquid Limit</td>
</tr>
<tr>
<td>TXTRIAXL</td>
<td></td>
<td>3.1N</td>
<td>Texas Triaxial Class</td>
</tr>
<tr>
<td>PERMIX</td>
<td></td>
<td>5.2N</td>
<td>Permeability Index</td>
</tr>
</tbody>
</table>
Inventory Data

Surface File

File Name: SURFACE.DBF

<table>
<thead>
<tr>
<th>Field</th>
<th>Key</th>
<th>Size/Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID_NO</td>
<td>*</td>
<td>4N</td>
<td>Section Identification Number</td>
</tr>
<tr>
<td>STRUCNUM</td>
<td>*</td>
<td>2N</td>
<td>Structure Number</td>
</tr>
<tr>
<td>LAYNUM</td>
<td>*</td>
<td>2N</td>
<td>Layer Number</td>
</tr>
<tr>
<td>AGAPPIRT</td>
<td></td>
<td>3N</td>
<td>Aggregate Application Rate</td>
</tr>
<tr>
<td>ADMXYP</td>
<td></td>
<td>12C</td>
<td>Type Admixture</td>
</tr>
<tr>
<td>ADMXPER</td>
<td></td>
<td>5.2N</td>
<td>Percent Admixture</td>
</tr>
<tr>
<td>ASAPPIRT</td>
<td></td>
<td>4.2N</td>
<td>Asphalt Application Rate</td>
</tr>
</tbody>
</table>
Monitoring Data
Traffic Measurement File

File Name: TRAFFIC.DBF

<table>
<thead>
<tr>
<th>Field</th>
<th>Key</th>
<th>Size/Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID_NO</td>
<td>*</td>
<td>4N</td>
<td>Section Identification Number</td>
</tr>
<tr>
<td>YEAR</td>
<td>*</td>
<td>2N</td>
<td>Year of Measurement</td>
</tr>
<tr>
<td>AADT1WAY</td>
<td></td>
<td>6N</td>
<td>Annual Average Daily Traffic</td>
</tr>
<tr>
<td>A18KEAL</td>
<td></td>
<td>9N</td>
<td>Annual Cumulative 18KEAL one way</td>
</tr>
<tr>
<td>PCTRK</td>
<td></td>
<td>4.1N</td>
<td>Percent Trucks</td>
</tr>
</tbody>
</table>

NOTE: 18KEAL is 18000 lbs. equivalent axle load. This figure is calculated using the AASHTO Equivalency factors which convert any weighted truck axle to a number of equivalent of 18000 lbs. single axles. The basics for the equivalency is the observed pavement damage done by different axle loads at the AASHTO Road Test (1959-1960).
Monitoring Data

Visual File

File Name: VISUAL.DBF

<table>
<thead>
<tr>
<th>Field</th>
<th>Key</th>
<th>Size/Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID NO</td>
<td>*</td>
<td>4N</td>
<td>Section Identification Number</td>
</tr>
<tr>
<td>STRUCNUM</td>
<td>*</td>
<td>2N</td>
<td>Structure Number</td>
</tr>
<tr>
<td>LAYNUM</td>
<td>*</td>
<td>2N</td>
<td>Layer Number</td>
</tr>
<tr>
<td>YEAR</td>
<td>*</td>
<td>2N</td>
<td>Identifying Year</td>
</tr>
<tr>
<td>ACTYEAR</td>
<td>2N</td>
<td></td>
<td>Actual Year of Survey</td>
</tr>
<tr>
<td>ACIMONTH</td>
<td>2N</td>
<td></td>
<td>Actual Month of Survey</td>
</tr>
<tr>
<td>RUTITSL</td>
<td>1N</td>
<td></td>
<td>Rutting - Slight - Area Rating</td>
</tr>
<tr>
<td>RUTITMD</td>
<td>1N</td>
<td></td>
<td>Rutting / Moderate - Area Rating</td>
</tr>
<tr>
<td>RUTITSV</td>
<td>1N</td>
<td></td>
<td>Rutting / Severe - Area Rating</td>
</tr>
<tr>
<td>BLKCRKSL</td>
<td>1N</td>
<td></td>
<td>Block Crack / Slight - Area Rating</td>
</tr>
<tr>
<td>BLKCRKMD</td>
<td>1N</td>
<td></td>
<td>Block Crack / Moderate - Area Rating</td>
</tr>
<tr>
<td>BLKCRKSV</td>
<td>1N</td>
<td></td>
<td>Block Crack / Severe - Area Rating</td>
</tr>
<tr>
<td>ALLGCRSL</td>
<td>1N</td>
<td></td>
<td>Alligator Crack/Slight - Area Rating</td>
</tr>
<tr>
<td>ALLGCRMD</td>
<td>1N</td>
<td></td>
<td>Alligator Crack/Mod - Area Rating</td>
</tr>
<tr>
<td>ALLGCRSV</td>
<td>1N</td>
<td></td>
<td>Alligator Crack/Severe - Area Rating</td>
</tr>
<tr>
<td>LONGCRSL</td>
<td>1N</td>
<td></td>
<td>Longitudinal Crack/Slight-Area Rating</td>
</tr>
<tr>
<td>LONGCRMD</td>
<td>1N</td>
<td></td>
<td>Longitudinal Crack/Mod - Area Rating</td>
</tr>
<tr>
<td>LONGCRSV</td>
<td>1N</td>
<td></td>
<td>Longitudinal Crack/Severe-Area Rating</td>
</tr>
<tr>
<td>TRANCRSL</td>
<td>1N</td>
<td></td>
<td>Transverse Crack/Slight - Area Rating</td>
</tr>
<tr>
<td>TRANCRMD</td>
<td>1N</td>
<td></td>
<td>Transverse Crack/Mod - Area Rating</td>
</tr>
<tr>
<td>TRANCRSV</td>
<td>1N</td>
<td></td>
<td>Transverse Crack/Severe - Area Rating</td>
</tr>
<tr>
<td>SEALCRCD</td>
<td>1N</td>
<td></td>
<td>Cracks - Sealing Code</td>
</tr>
<tr>
<td>PATCHGD</td>
<td>1N</td>
<td></td>
<td>Patching / Good - Area Rating</td>
</tr>
<tr>
<td>PATCHFR</td>
<td>1N</td>
<td></td>
<td>Patching / Fair - Area Rating</td>
</tr>
<tr>
<td>PATCHPR</td>
<td>1N</td>
<td></td>
<td>Patching / Poor - Area Rating</td>
</tr>
<tr>
<td>FAILIMILE</td>
<td>1N</td>
<td></td>
<td>Failures per Mile Occur. Rating</td>
</tr>
<tr>
<td>PRS</td>
<td>3N</td>
<td></td>
<td>Pavement Rating Score</td>
</tr>
<tr>
<td>PESPVIRS</td>
<td>4.2N</td>
<td></td>
<td>PES Rating Score</td>
</tr>
<tr>
<td>UVURS</td>
<td>4.2N</td>
<td></td>
<td>Unweighted Visual Utility Rating Score</td>
</tr>
</tbody>
</table>

644
Environmental Data

Weather Measurement File

File Name: WEATHER.DBF

<table>
<thead>
<tr>
<th>Field</th>
<th>Key</th>
<th>Size/Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNTYNUM</td>
<td>*</td>
<td>3N</td>
<td>County Number</td>
</tr>
<tr>
<td>MONTH</td>
<td>*</td>
<td>2N</td>
<td>Month number</td>
</tr>
<tr>
<td>PRECYRS</td>
<td></td>
<td>2N</td>
<td>Precipitation</td>
</tr>
<tr>
<td>PRECMN</td>
<td></td>
<td>8.3N</td>
<td>- No. Years Averaged</td>
</tr>
<tr>
<td>PRECSD</td>
<td></td>
<td>8.3N</td>
<td>Precipitation - Mean</td>
</tr>
<tr>
<td>TFTCYRS</td>
<td></td>
<td>2N</td>
<td>Total Freeze Thaw Cycle</td>
</tr>
<tr>
<td>TFTCMN</td>
<td></td>
<td>8.3N</td>
<td>- No. Years Averaged</td>
</tr>
<tr>
<td>TFTCSD</td>
<td></td>
<td>8.3N</td>
<td>Total Freeze Thaw Cycle - Mean</td>
</tr>
<tr>
<td>WFTCYRS</td>
<td></td>
<td>2N</td>
<td>Wet Freeze Thaw Cycle</td>
</tr>
<tr>
<td>WFTCMN</td>
<td></td>
<td>8.3N</td>
<td>- No. Years Averaged</td>
</tr>
<tr>
<td>WFTCSD</td>
<td></td>
<td>8.3N</td>
<td>Wet Freeze Thaw Cycle - Mean</td>
</tr>
<tr>
<td>MIMPYRS</td>
<td></td>
<td>2N</td>
<td>Maximum Temperature</td>
</tr>
<tr>
<td>MIMPNN</td>
<td></td>
<td>8.3N</td>
<td>- No. Years Averaged</td>
</tr>
<tr>
<td>MIMPSD</td>
<td></td>
<td>8.3N</td>
<td>Maximum Temperature - Mean</td>
</tr>
<tr>
<td>AIPYRS</td>
<td></td>
<td>2N</td>
<td>Averaged Temperature</td>
</tr>
<tr>
<td>AIMPNN</td>
<td></td>
<td>8.3N</td>
<td>- No. Years Averaged</td>
</tr>
<tr>
<td>AIMPNSD</td>
<td></td>
<td>8.3N</td>
<td>Averaged Temperature - Mean</td>
</tr>
</tbody>
</table>
Widening Flag Table

File Name: WIDENFILG.DBF

<table>
<thead>
<tr>
<th>Field</th>
<th>Key</th>
<th>Size/Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIDCODE</td>
<td></td>
<td>1N</td>
<td>Code for Widening Flag</td>
</tr>
<tr>
<td>WIDDESC</td>
<td></td>
<td>26C</td>
<td>Description for the Widening Flag Code</td>
</tr>
</tbody>
</table>

The table is sorted on the key field.
APPENDIX B
<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Source File</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A18KEAL</td>
<td>T</td>
<td>Traffic Measurement File</td>
</tr>
<tr>
<td>AADL1WAY</td>
<td>T</td>
<td>Traffic Measurement File</td>
</tr>
<tr>
<td>ACTDAY</td>
<td>S</td>
<td>Actual Day of Measurement</td>
</tr>
<tr>
<td>ACTMONTH</td>
<td>S</td>
<td>Actual Month of Measurement</td>
</tr>
<tr>
<td>ACTYEAR</td>
<td>S</td>
<td>Actual Year of Measurement</td>
</tr>
<tr>
<td>AMXPER</td>
<td>R</td>
<td>Percent Admixture</td>
</tr>
<tr>
<td>AMXYTP</td>
<td>R</td>
<td>Type Admixture</td>
</tr>
<tr>
<td>AGAPP1R1</td>
<td>R</td>
<td>Aggregate Application Rate</td>
</tr>
<tr>
<td>ASAPP1R1</td>
<td>R</td>
<td>Asphalt Application Rate</td>
</tr>
<tr>
<td>BDISSIGN</td>
<td>L</td>
<td>Beginning Displacement Sign</td>
</tr>
<tr>
<td>BEGMPNT</td>
<td>L</td>
<td>Beginning Milepoint</td>
</tr>
<tr>
<td>BEGMPST</td>
<td>L</td>
<td>Beginning Milepost</td>
</tr>
<tr>
<td>EMPSTDIS</td>
<td>L</td>
<td>Beginning Milepost Displacement</td>
</tr>
<tr>
<td>CENTTHK</td>
<td>Hi</td>
<td>Thickness - Center</td>
</tr>
<tr>
<td>CNTYNUM</td>
<td>LWE</td>
<td>County Number</td>
</tr>
<tr>
<td>CONTROL</td>
<td>L</td>
<td>Control</td>
</tr>
<tr>
<td>DAY</td>
<td>FD</td>
<td>Day</td>
</tr>
<tr>
<td>ENDSSIGN</td>
<td>L</td>
<td>Ending Displacement Sign</td>
</tr>
<tr>
<td>ENMPSTDIS</td>
<td>L</td>
<td>Ending Milepost Displacement</td>
</tr>
<tr>
<td>ENMPNT</td>
<td>L</td>
<td>Ending Milepoint</td>
</tr>
<tr>
<td>FC1DIS</td>
<td>H</td>
<td>Distance from the Center/1st Pos.</td>
</tr>
<tr>
<td>FC1THK</td>
<td>H</td>
<td>Thickness - 1st Pos. from Center</td>
</tr>
<tr>
<td>FC2DIS</td>
<td>H</td>
<td>Distance from the Center/2nd Pos.</td>
</tr>
<tr>
<td>FC2THK</td>
<td>H</td>
<td>Thickness - 2nd Pos. from Center</td>
</tr>
<tr>
<td>FC3DIS</td>
<td>H</td>
<td>Distance from the Center/3rd Pos.</td>
</tr>
<tr>
<td>FC3THK</td>
<td>H</td>
<td>Thickness - 3rd Pos. from Center</td>
</tr>
<tr>
<td>FCSPANS</td>
<td>L</td>
<td>Functional Classification</td>
</tr>
<tr>
<td>HPMSAM</td>
<td>L</td>
<td>HPMS Sample Number</td>
</tr>
<tr>
<td>HPMSSSEC</td>
<td>L</td>
<td>HPMS Section Subdivision</td>
</tr>
<tr>
<td>HWYDIST</td>
<td>L</td>
<td>SDHPT Highway District</td>
</tr>
<tr>
<td>HWYNUM</td>
<td>L</td>
<td>Highway Number</td>
</tr>
<tr>
<td>HWYPREFIX</td>
<td>L</td>
<td>Highway Number Prefix</td>
</tr>
<tr>
<td>HWYSUFFIX</td>
<td>L</td>
<td>Highway Number Suffix</td>
</tr>
<tr>
<td>INACIMO</td>
<td>L</td>
<td>Inactive Month</td>
</tr>
<tr>
<td>INACTYR</td>
<td>L</td>
<td>Inactive Year</td>
</tr>
<tr>
<td>JOBCOMPO</td>
<td>I</td>
<td>Month Job Completed</td>
</tr>
<tr>
<td>JOBCOMPYR</td>
<td>I</td>
<td>Year Job Completed</td>
</tr>
<tr>
<td>LANEID</td>
<td>L</td>
<td>Lane Identification (R,L)</td>
</tr>
<tr>
<td>LANEWID</td>
<td>G</td>
<td>Lane Width (Feet)</td>
</tr>
<tr>
<td>LAVDESC</td>
<td>I</td>
<td>Layer Description</td>
</tr>
<tr>
<td>LAYMATCL</td>
<td>I</td>
<td>Material Type Classification</td>
</tr>
<tr>
<td>LAYNUM</td>
<td>FDHIRBSVK</td>
<td>Layer Number</td>
</tr>
<tr>
<td>LIQLIM</td>
<td>B</td>
<td>Liquid Limit</td>
</tr>
</tbody>
</table>

649
<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Source File</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>MONTH</td>
<td>FDWK</td>
<td>Month</td>
</tr>
<tr>
<td>MPTIMO</td>
<td>L</td>
<td>Milepoint Month</td>
</tr>
<tr>
<td>MPTYR</td>
<td>L</td>
<td>Milepoint Year</td>
</tr>
<tr>
<td>NEXTSID</td>
<td>L</td>
<td>Pointer to the Next SID Number for this location</td>
</tr>
<tr>
<td>NO LANCES</td>
<td>G</td>
<td>Number Of Lanes - One Way</td>
</tr>
<tr>
<td>NUMLANES</td>
<td>L</td>
<td>Number Of Lanes</td>
</tr>
<tr>
<td>OUTSHOWNDS</td>
<td>G</td>
<td>Outside Shoulder Width (Feet)</td>
</tr>
<tr>
<td>PAVETYP</td>
<td>G</td>
<td>Type of Pavement</td>
</tr>
<tr>
<td>PCTPRK</td>
<td>T</td>
<td>Traffic Measurement File</td>
</tr>
<tr>
<td>PERMIX</td>
<td>B</td>
<td>Permeability Index</td>
</tr>
<tr>
<td>PLASTIX</td>
<td>B</td>
<td>Plasticity Index</td>
</tr>
<tr>
<td>PPSV200</td>
<td>B</td>
<td>Percent Passing NO. 200 Sieve</td>
</tr>
<tr>
<td>PREVSID</td>
<td>L</td>
<td>Pointer to the Previous SID Number for this location</td>
</tr>
<tr>
<td>RWWSTAVG</td>
<td>F</td>
<td>Average SSI for the Roadway</td>
</tr>
<tr>
<td>SECTION</td>
<td>L</td>
<td>Section</td>
</tr>
<tr>
<td>SENS1RD</td>
<td>D</td>
<td>Sensor 1 Reading</td>
</tr>
<tr>
<td>SENS2RD</td>
<td>D</td>
<td>Sensor 2 Reading</td>
</tr>
<tr>
<td>SENS3RD</td>
<td>D</td>
<td>Sensor 3 Reading</td>
</tr>
<tr>
<td>SENS4RD</td>
<td>D</td>
<td>Sensor 4 Reading</td>
</tr>
<tr>
<td>SENS5RD</td>
<td>D</td>
<td>Sensor 5 Reading</td>
</tr>
<tr>
<td>SHOBSTHK</td>
<td>G</td>
<td>Shoulder Base Thickness (Inches)</td>
</tr>
<tr>
<td>SHOBSTYP</td>
<td>G</td>
<td>Shoulder Base Type</td>
</tr>
<tr>
<td>SHOSPTHK</td>
<td>G</td>
<td>Shoulder Surface Thickness (Inch)</td>
</tr>
<tr>
<td>SHOSPFTYP</td>
<td>G</td>
<td>Shoulder Surface Type</td>
</tr>
<tr>
<td>SICOUNT</td>
<td>S</td>
<td>Serviceability Index - Count of Observation</td>
</tr>
<tr>
<td>SID NO</td>
<td>FDHIICGRBLST</td>
<td>Section Identification Number</td>
</tr>
<tr>
<td>SIHIIVAL</td>
<td>S</td>
<td>Serviceability Index - High Value</td>
</tr>
<tr>
<td>SILOWVAL</td>
<td>S</td>
<td>Serviceability Index - Low Value</td>
</tr>
<tr>
<td>SIMEAN</td>
<td>S</td>
<td>Serviceability Index - Mean</td>
</tr>
<tr>
<td>SISD</td>
<td>S</td>
<td>Serviceability Index - Standard Deviation</td>
</tr>
<tr>
<td>SKIDNUMH</td>
<td>K</td>
<td>Skid Measurement File</td>
</tr>
<tr>
<td>SKIDNUMUL</td>
<td>K</td>
<td>Skid Measurement File</td>
</tr>
<tr>
<td>SKIDNUMUK</td>
<td>K</td>
<td>Skid Measurement File</td>
</tr>
<tr>
<td>SSIGP11</td>
<td>F</td>
<td>SSI Reading 1 Geophone no. 1</td>
</tr>
<tr>
<td>SSIGP12</td>
<td>F</td>
<td>SSI Reading 1 Geophone no. 2</td>
</tr>
<tr>
<td>SSIGP13</td>
<td>F</td>
<td>SSI Reading 1 Geophone no. 3</td>
</tr>
<tr>
<td>SSIGP14</td>
<td>F</td>
<td>SSI Reading 1 Geophone no. 4</td>
</tr>
<tr>
<td>SSIGP15</td>
<td>F</td>
<td>SSI Reading 1 Geophone no. 5</td>
</tr>
<tr>
<td>SSIGP16</td>
<td>F</td>
<td>SSI Reading 1 Geophone no. 6</td>
</tr>
<tr>
<td>SSIGP17</td>
<td>F</td>
<td>SSI Reading 1 Geophone no. 7</td>
</tr>
<tr>
<td>SSIGP21</td>
<td>F</td>
<td>SSI Reading 2 Geophone no. 1</td>
</tr>
<tr>
<td>SSIGP22</td>
<td>F</td>
<td>SSI Reading 2 Geophone no. 2</td>
</tr>
<tr>
<td>SSIGP23</td>
<td>F</td>
<td>SSI Reading 2 Geophone no. 3</td>
</tr>
<tr>
<td>SSIGP24</td>
<td>F</td>
<td>SSI Reading 2 Geophone no. 4</td>
</tr>
<tr>
<td>SSIGP25</td>
<td>F</td>
<td>SSI Reading 2 Geophone no. 5</td>
</tr>
<tr>
<td>SSIGP26</td>
<td>F</td>
<td>SSI Reading 2 Geophone no. 6</td>
</tr>
<tr>
<td>SSIGP27</td>
<td>F</td>
<td>SSI Reading 2 Geophone no. 7</td>
</tr>
<tr>
<td>Variable Name</td>
<td>Source File</td>
<td>Explanation</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>SSI GP31</td>
<td>F</td>
<td>SSI Reading 3 Geophone no. 1</td>
</tr>
<tr>
<td>SSI GP32</td>
<td>F</td>
<td>SSI Reading 3 Geophone no. 2</td>
</tr>
<tr>
<td>SSI GP33</td>
<td>F</td>
<td>SSI Reading 3 Geophone no. 3</td>
</tr>
<tr>
<td>SSI GP34</td>
<td>F</td>
<td>SSI Reading 3 Geophone no. 4</td>
</tr>
<tr>
<td>SSI GP35</td>
<td>F</td>
<td>SSI Reading 3 Geophone no. 5</td>
</tr>
<tr>
<td>SSI GP36</td>
<td>F</td>
<td>SSI Reading 3 Geophone no. 6</td>
</tr>
<tr>
<td>SSI GP37</td>
<td>F</td>
<td>SSI Reading 3 Geophone no. 7</td>
</tr>
<tr>
<td>SSI GP41</td>
<td>F</td>
<td>SSI Reading 4 Geophone no. 1</td>
</tr>
<tr>
<td>SSI GP42</td>
<td>F</td>
<td>SSI Reading 4 Geophone no. 2</td>
</tr>
<tr>
<td>SSI GP43</td>
<td>F</td>
<td>SSI Reading 4 Geophone no. 3</td>
</tr>
<tr>
<td>SSI GP44</td>
<td>F</td>
<td>SSI Reading 4 Geophone no. 4</td>
</tr>
<tr>
<td>SSI GP45</td>
<td>F</td>
<td>SSI Reading 4 Geophone no. 5</td>
</tr>
<tr>
<td>SSI GP46</td>
<td>F</td>
<td>SSI Reading 4 Geophone no. 6</td>
</tr>
<tr>
<td>SSI GP47</td>
<td>F</td>
<td>SSI Reading 4 Geophone no. 7</td>
</tr>
<tr>
<td>SSI GP51</td>
<td>F</td>
<td>SSI Reading 5 Geophone no. 1</td>
</tr>
<tr>
<td>SSI GP52</td>
<td>F</td>
<td>SSI Reading 5 Geophone no. 2</td>
</tr>
<tr>
<td>SSI GP53</td>
<td>F</td>
<td>SSI Reading 5 Geophone no. 3</td>
</tr>
<tr>
<td>SSI GP54</td>
<td>F</td>
<td>SSI Reading 5 Geophone no. 4</td>
</tr>
<tr>
<td>SSI GP55</td>
<td>F</td>
<td>SSI Reading 5 Geophone no. 5</td>
</tr>
<tr>
<td>SSI GP56</td>
<td>F</td>
<td>SSI Reading 5 Geophone no. 6</td>
</tr>
<tr>
<td>SSI GP57</td>
<td>F</td>
<td>SSI Reading 5 Geophone no. 7</td>
</tr>
<tr>
<td>SSI TEMP</td>
<td>F</td>
<td>Temperature for the Roadway</td>
</tr>
<tr>
<td>STATION D</td>
<td></td>
<td>Station</td>
</tr>
<tr>
<td>STATIONNUM</td>
<td>FDHIGRSVK</td>
<td>Structure Number</td>
</tr>
<tr>
<td>TXTRIAXL B</td>
<td></td>
<td>Texas Triaxial Class</td>
</tr>
<tr>
<td>WIDENFLG G</td>
<td></td>
<td>Type Of Widening Flag</td>
</tr>
<tr>
<td>WIDENLNO I</td>
<td></td>
<td>Month Layer Widened</td>
</tr>
<tr>
<td>WIDENLYR I</td>
<td></td>
<td>Year Layer Widened</td>
</tr>
<tr>
<td>YEAR</td>
<td>FDIK</td>
<td>Year</td>
</tr>
<tr>
<td>YEAR</td>
<td>SV</td>
<td>Identifying Year</td>
</tr>
</tbody>
</table>

** Source File Key

- **F** - Falling Weight SSI
- **D** - Dynaflect Measurement
- **H** - Layer Thickness Across the Road
- **I** - Layer Identification
- **G** - Geometric & Shoulder
- **R** - Surface
- **B** - Subgrade
- **L** - Location
- **W** - Weather
- **E** - Environment
- **S** - Serviceability Index
- **V** - Visual
- **T** - Traffic
- **K** - Skid
SYSTEM CONFIGURATION

The following are the requirements of the Texas Flexible Pavement System:

Hardware requirements:

- IBM Personal Computer XT or Compatible
- 640K bytes of RAM
- 360K Floppy Disk Drive
- 20 Megabyte Hard Disk
- Printer (able to condensed print - 133 columns)
- Monochrome or Color Monitor

Software requirements:

- DOS 3.3 or later
- dBASE III Plus (By Aston Tate)
- TURBO Pascal 3.0 (For source code modification)

Space requirements:

- 20 Megabytes of storage space.
INSTALLATION

The installation is accomplished by the program INSTALL.BAT. It creates the appropriate subdirectories for the Flexible Pavement System and then calls program SETUP.BAT. Program SETUP.BAT unarchives the files from 8 floppy diskettes onto the hard disk. The unarchive program PKXARC.COM by PKWARE INC. is used to unarchive programs. The program is activated from the hard disk prompt by typing "A:INSTALL".

The 8 floppy diskettes contain the following files:

DISK 1 - BACKUP.ARC
 INQUIRY.ARC
 REPORTS.ARC
 PAVEDB.ARC
 PKXARC.COM
 FLEXPAVE.BAT
 INSTALL.BAT
 SETUP.BAT

DISK 2 - EDITUPDT.ARC
 E_DIST.ARC

DISK 3 - E_TRAFFI.ARC

DISK 4 - E_PES.ARC

DISK 5 - APPLICAT.ARC
 A_DIST.ARC
 A_MODEL.ARC
 A_GRAPH.ARC

DISK 6 - FILES1.ARC

DISK 7 - FILES2.ARC

DISK 8 - INDEXES.ARC
ECHO OFF
REM SUBSYSTEM: PAVEDB
REM PROGRAM NAME: INSTALL.BAT 10/27/88
REM PROJECT 2456 - TEXAS FLEXIBLE PAVEMENT DATABASE CONVERSION
REM TAMU/TTI
REM AUTHOR: TREVOR X. PEREIRA
REM PURPOSE: TO INSTALL THE FLEXIBLE PAVEMENT DATABASE SYSTEM ON THE HARD DISK
CLS
ECHO '
ECHO '
ECHO '
REM
REM asks user if he wants to install flexible pavement system
REM
ECHO You are about to install the Flexible Pavement system on
ECHO your hard disk under PAVEDB.
ECHO If you already have the system installed on your computer,
ECHO stop this operation by pressing ctrl+break simultaneously.
ECHO '
ECHO '
ECHO If you do not want to continue, press ctrl+break simultaneously.
ECHO If you wish to continue, press any key.
PAUSE
CLS
ECHO '
ECHO Please wait. Creating subdirectories.
CD \
MD \PAVEDB
MD \PAVEDB\APPLICAT
MD \PAVEDB\APPLICAT\DISTRESS
MD \PAVEDB\APPLICAT\GRAPH18K
MD \PAVEDB\APPLICAT\MODEL
MD \PAVEDB\BACKUP
MD \PAVEDB\EDITUPDT
MD \PAVEDB\EDITUPDT\BACKUP
MD \PAVEDB\EDITUPDT\DISTRESS
MD \PAVEDB\EDITUPDT\PES
MD \PAVEDB\EDITUPDT\TRAFFIC
MD \PAVEDB\FILES
MD \PAVEDB\FILES\BACKUP
MD \PAVEDB\INDEXES

660
MD \PAVEDB\INQUIRY
MD \PAVEDB\REPORTS
CD \\

CLS
copy a:setup.bat
setup.bat
REM
REM SUBSYSTEM: PAVEDB
REM PROGRAM NAME: SETUP.BAT 010/04/88
REM CALLED FROM: INSTALL.BAT
REM PROJECT 2456 - TEXAS FLEXIBLE PAVEMENT DATABASE CONVERSION
REM TAMU/TTI
REM AUTHOR: TREVOR X. PEREIRA
REM PURPOSE: TO SET UP THE FLEXIBLE PAVEMENT SYSTEM ON THE
REM
REM
echo off
ECHO ' Please wait

CD \COPY A:PKXARC.COM
CD \PAVEDB PKXARC A:PAVEDB
CD \PAVEDB\INQUIRY PKXARC A:INQUIRY
CD \PAVEDB\REPORTS PKXARC A:REPORTS
CD \PAVEDB\BACKUP PKXARC A:BACKUP

CLS
ECHO ' Please insert FLEXPAVE DISK 2
PAUSE
CD \PAVEDB\EDITUPDT PKXARC A:EDITUPDT
CD \PAVEDB\EDITUPDT\DISTRESS PKXARC A:E_DIST

662
CLS
ECHO 'ECHO Please insert FLEXPAVE DISK 3
PAUSE
CD \PAVEDB\EDITUPDT\TRAFFIC
PKXARC A:E_TRAFFIC

CLS
ECHO 'ECHO Please insert FLEXPAVE DISK 4
PAUSE
CD \PAVEDB\EDITUPDT\PES
PKXARC A:E_PES

CLS
ECHO 'ECHO Please insert FLEXPAVE DISK 5
PAUSE
CD \PAVEDB\APPLICAT
PKXARC A:APPLICAT
CD \PAVEDB\APPLICAT\DISTRESS
PKXARC A:A_DIST
CD \PAVEDB\APPLICAT\GRAPH18K
PKXARC A:A_GRAPH
CD \PAVEDB\APPLICAT\MODEL
PKXARC A:A_MODEL

CLS
ECHO '
ECHO ' ECHO ' ECHO ' ECHO ' ECHO ' ECHO ' ECHO ' ECHO ' ECHO ' ECHO ' ECHO Please insert FLEXPAVE DISK 6 PAUSE CD \PAVEDB\FILES PKXARC A:FILES1

CLS ECHO ' ECHO Please insert FLEXPAVE DISK 7 PAUSE PKXARC A:FILES2

CLS ECHO ' ECHO Please insert FLEXPAVE DISK 8 PAUSE CD \PAVEDB\INDEXES PKXARC A:INDEXES

CD \ DEL PKXARC.COM DEL \PAVEDB\INSTALL.MEM

CLS ECHO ' ECHO '
ECHO '
ECHO '
ECHO INSTALLATION COMPLETE !!!
ECHO TYPE "FLEXPAVE" TO START SYSTEM AND SET DEFAULTS
cd \pavedb
ECHO ON