FHWA/TX-84/+3-391-1F

2. Government Accession No.

3. Recipient's Catalog No.

4. Title and Subtitle
Use of Road Life Data in Texas

5. Report Date
August, 1984

6. Performing Organization Code
Research Report 391-1F

7. Author(s)
Marlin R. Crouse, Barbara A. Hilger

9. Performing Organization Name and Address
Texas Transportation Institute
The Texas A&M University System
College Station, Texas 77843

10. Work Unit No.

11. Contract or Grant No.
2-18-84-391

12. Sponsoring Agency Name and Address
Texas State Department of Highways and
Public Transportation
Transportation Planning Division
P.O. Box 5051 Austin, Texas 78763

13. Type of Report and Period Covered
Final - September 1983
August 1984

15. Supplementary Notes
This study was conducted in cooperation with the U. S. Department of Transportation, Federal Highway Administration, Study Title:
"Incorporation of Road Life Data into the Pavement Evaluation System"

16. Abstract
This report describes the existing system for obtaining historical roadway data in Texas, the problems with attempting to use the automated road life data, and the need for access to these data for the pavement management activities of the Department. The report addresses the manual processing and flow of road life data from the initial request for a construction job to the automated historical data files and makes recommendations for improving the flow of data to provide a more complete and current profile of the roadway for pavement management.

17. Key Words
Systems Analysis
Transportation Network
Roadway Data

18. Distribution Statement
No restrictions. This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161

19. Security Classif. (of this report)
Unclassified

20. Security Classif. (of this page)
Unclassified

21. No. of Pages
28

22. Price

Form DOT F 1700.7 (8-69)
USE OF ROAD LIFE DATA IN TEXAS

RESEARCH REPORT NUMBER 391-1F

Incorporation of Road Life Data into the Pavement Evaluation System

Research Project 2-18-84-391

Conducted in Cooperation with
U.S. Department of Transportation
Federal Highway Administration

by the

Transportation Planning Division
Texas State Department of Highways and Public Transportation

Texas Transportation Institute
The Texas A&M University System

August 1984
METRIC CONVERSION FACTORS

Approximate Conversions to Metric Measures

<table>
<thead>
<tr>
<th>Symbol</th>
<th>When You Know</th>
<th>Multiply by</th>
<th>To Find</th>
</tr>
</thead>
<tbody>
<tr>
<td>in</td>
<td>inches</td>
<td>2.5</td>
<td>centimeters</td>
</tr>
<tr>
<td>ft</td>
<td>feet</td>
<td>30</td>
<td>centimeters</td>
</tr>
<tr>
<td>yd</td>
<td>yards</td>
<td>0.9</td>
<td>meters</td>
</tr>
<tr>
<td>mi</td>
<td>miles</td>
<td>1.6</td>
<td>kilometers</td>
</tr>
</tbody>
</table>

AREA

<table>
<thead>
<tr>
<th>Symbol</th>
<th>When You Know</th>
<th>Multiply by</th>
<th>To Find</th>
</tr>
</thead>
<tbody>
<tr>
<td>in²</td>
<td>square inches</td>
<td>6.5</td>
<td>square centimeters</td>
</tr>
<tr>
<td>ft²</td>
<td>square feet</td>
<td>0.09</td>
<td>square meters</td>
</tr>
<tr>
<td>yd²</td>
<td>square yards</td>
<td>0.8</td>
<td>square meters</td>
</tr>
<tr>
<td>mi²</td>
<td>square miles</td>
<td>2.6</td>
<td>square kilometers</td>
</tr>
<tr>
<td>acres</td>
<td></td>
<td>0.4</td>
<td>hectares</td>
</tr>
</tbody>
</table>

MASS (weight)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>When You Know</th>
<th>Multiply by</th>
<th>To Find</th>
</tr>
</thead>
<tbody>
<tr>
<td>oz</td>
<td>ounces</td>
<td>28</td>
<td>grams</td>
</tr>
<tr>
<td>lb</td>
<td>pounds</td>
<td>0.45</td>
<td>kilograms</td>
</tr>
<tr>
<td></td>
<td>short tons</td>
<td>0.9</td>
<td>tonnes (2000 lb)</td>
</tr>
</tbody>
</table>

VOLUME

<table>
<thead>
<tr>
<th>Symbol</th>
<th>When You Know</th>
<th>Multiply by</th>
<th>To Find</th>
</tr>
</thead>
<tbody>
<tr>
<td>tsp</td>
<td>teaspoons</td>
<td>5</td>
<td>milliliters</td>
</tr>
<tr>
<td>Tbsp</td>
<td>tablespoons</td>
<td>15</td>
<td>milliliters</td>
</tr>
<tr>
<td>fl oz</td>
<td>fluid ounces</td>
<td>30</td>
<td>milliliters</td>
</tr>
<tr>
<td>c</td>
<td>cups</td>
<td>0.24</td>
<td>liters</td>
</tr>
<tr>
<td>pt</td>
<td>pints</td>
<td>0.47</td>
<td>liters</td>
</tr>
<tr>
<td>qt</td>
<td>quarts</td>
<td>0.95</td>
<td>liters</td>
</tr>
<tr>
<td>gal</td>
<td>gallons</td>
<td>3.8</td>
<td>liters</td>
</tr>
<tr>
<td>ft³</td>
<td>cubic feet</td>
<td>0.03</td>
<td>cubic meters</td>
</tr>
<tr>
<td>yd³</td>
<td>cubic yards</td>
<td>0.76</td>
<td>cubic meters</td>
</tr>
</tbody>
</table>

TEMPERATURE (exact)

<table>
<thead>
<tr>
<th>Unit</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>°F</td>
<td>5/9 (after subtracting 32)</td>
</tr>
<tr>
<td>°C</td>
<td>9/5 (then add 32)</td>
</tr>
</tbody>
</table>

Approximate Conversions from Metric Measures

<table>
<thead>
<tr>
<th>Symbol</th>
<th>When You Know</th>
<th>Multiply by</th>
<th>To Find</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>millimeters</td>
<td>0.04</td>
<td>inches</td>
</tr>
<tr>
<td>cm</td>
<td>centimeters</td>
<td>0.4</td>
<td>inches</td>
</tr>
<tr>
<td>m</td>
<td>meters</td>
<td>3.3</td>
<td>feet</td>
</tr>
<tr>
<td>km</td>
<td>kilometers</td>
<td>1.1</td>
<td>yards</td>
</tr>
</tbody>
</table>

AREA

<table>
<thead>
<tr>
<th>Symbol</th>
<th>When You Know</th>
<th>Multiply by</th>
<th>To Find</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm²</td>
<td>square centimeters</td>
<td>0.16</td>
<td>square inches</td>
</tr>
<tr>
<td>m²</td>
<td>square meters</td>
<td>1.2</td>
<td>square yards</td>
</tr>
<tr>
<td>km²</td>
<td>square kilometers</td>
<td>0.4</td>
<td>square miles</td>
</tr>
<tr>
<td>ha</td>
<td>hectares (10,000 m²)</td>
<td>2.5</td>
<td>acres</td>
</tr>
</tbody>
</table>

MASS (weight)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>When You Know</th>
<th>Multiply by</th>
<th>To Find</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>grams</td>
<td>0.035</td>
<td>ounces</td>
</tr>
<tr>
<td>kg</td>
<td>kilograms</td>
<td>2.2</td>
<td>pounds</td>
</tr>
<tr>
<td>t</td>
<td>tonnes (1000 kg)</td>
<td>1.1</td>
<td>short tons</td>
</tr>
</tbody>
</table>

VOLUME

<table>
<thead>
<tr>
<th>Symbol</th>
<th>When You Know</th>
<th>Multiply by</th>
<th>To Find</th>
</tr>
</thead>
<tbody>
<tr>
<td>ml</td>
<td>milliliters</td>
<td>0.03</td>
<td>fluid ounces</td>
</tr>
<tr>
<td>l</td>
<td>liters</td>
<td>2.1</td>
<td>pints</td>
</tr>
<tr>
<td>qt</td>
<td>quarts</td>
<td>1.06</td>
<td>quarts</td>
</tr>
<tr>
<td>gal</td>
<td>gallons</td>
<td>0.26</td>
<td>gallons</td>
</tr>
<tr>
<td>ft³</td>
<td>cubic feet</td>
<td>35</td>
<td>cubic feet</td>
</tr>
<tr>
<td>yd³</td>
<td>cubic yards</td>
<td>1.3</td>
<td>cubic yards</td>
</tr>
</tbody>
</table>

Temperature (exact)

- **°C**: Celsius temperature
- **°F**: Fahrenheit temperature

For other exact conversions and more detailed tables, see NBS Misc. Publ. 285, Units of Weights and Measures, Price $2.25, SD Catalog No. C13.10.286.
SUMMARY

This report describes the existing system for obtaining historical roadway data in Texas, the problems with attempting to use the automated road life data, and the need for access to these data for the pavement management activities of the Department. The report addresses the manual processing and flow of road life data from the initial request for a construction job to the automated historical data files and makes recommendations for improving the flow of data to provide a more complete and current profile of the roadway for pavement management.
IMPLEMENTATION STATEMENT

This study outlines the problems that occur with the existing method for automating historical roadway data in Texas. Recommendations are made for additional research in the following areas:

- Design new manual and automated procedures for processing construction and maintenance data in a more comprehensive and timely manner.
- Design a file structure for incorporating historical roadway profile and cost data into the current design efforts for a transportation network database.
DISCLAIMER

The contents of this report reflect the views of the authors who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.
ACKNOWLEDGEMENTS

The authors wish to express their appreciation to the Texas State Department of Highways and Public Transportation personnel from Divisions 3, 4, 6, 8, 10, 18, and 19 for their time and efforts expended in defining the flow of road life data through their respective Divisions. Special thanks are due personnel in Districts 11, 19, and 21 who gave generously of their time to describe how they use road life data and how they obtain the required information.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY</td>
<td>i</td>
</tr>
<tr>
<td>IMPLEMENTATION STATEMENT</td>
<td>ii</td>
</tr>
<tr>
<td>DISCLAIMER</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vii</td>
</tr>
<tr>
<td>CHAPTER 1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>Background</td>
<td>1</td>
</tr>
<tr>
<td>Objective</td>
<td>2</td>
</tr>
<tr>
<td>CHAPTER 2. SOURCES OF ROAD LIFE DATA</td>
<td>4</td>
</tr>
<tr>
<td>CHAPTER 3. AUTOMATION OF ROAD LIFE DATA</td>
<td>10</td>
</tr>
<tr>
<td>CHAPTER 4. USE OF ROAD LIFE DATA</td>
<td>16</td>
</tr>
<tr>
<td>CHAPTER 5. CONCLUSIONS</td>
<td>18</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>23</td>
</tr>
<tr>
<td>APPENDIX A: USER DOCUMENTATION ROADLIFE FILE</td>
<td>25</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Construction Data Flow</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Log Record of Project Construction and Retirements</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>Construction Record For Road Life Study</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>Structure Record Card</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>District Update of Road Life Data</td>
<td>19</td>
</tr>
<tr>
<td>6</td>
<td>Example Roadway File</td>
<td>20</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>Guidelines For Categorizing Maintenance Projects</td>
<td>6</td>
</tr>
</tbody>
</table>
CHAPTER 1. INTRODUCTION

As part of continuing efforts to develop a comprehensive pavement management system for the State of Texas, a pavement condition survey was completed under Research Study 2-18-79-239 for use in prioritizing pavement rehabilitation projects and funding requirements on the network level (1). Following an evaluation of pavement condition on the network level is the need to select specific rehabilitation strategies. The Flexible Pavement System (FPS) developed under Research Study 1-8-69-123 is one method used by the Department for project-level design decisions (2).

Much of the information required by FPS can be produced by the network-level Pavement Evaluation System (PES) (3). However, additional data are needed that could be obtained from other automated sources. The automated Road Life File, described in the Roadway Information System documentation (4) contains, for example, pavement thickness, pavement type, and construction/maintenance costs.

BACKGROUND

Pavement management occurs basically at two levels:

- Network - the management decisions required to determine the feasibility and timing of a project.
- Project - the requirement to achieve the maximum economy within the project.

Network-level decision-making tools have been developed under Research Study 2-8-75-207 "Flexible Pavement Evaluation and Re-
habilitation" (5) and in Research Study 2-18-79-239, "Pavement Rehabilitation Fund Allocation", among other studies. The Department's Pavement Evaluation System has incorporated these tools, known as the Rehabilitation and Maintenance System (RAMS). An integral part of RAMS is the state and district cost-estimating and fund allocation programs; however, all cost data used by these programs must be input manually instead of obtained from automated sources.

On the project-level, Research Study 1-8-69-123, "A Systems Analysis of Pavement Design and Research Implementation" resulted in the development of the Flexible Pavement System. The FPS program requires, among other categories of variables, cost data and material properties. Again, these data entered into FPS must be obtained and input manually instead of from previously automated sources. In fact, Report 123-12 published in 1972 recognized the manual Road Life File as "probably the most relevant, comprehensive, and consolidated source of information that the THD pavement engineer can find anywhere in the Department" (6). At the time of that study, it was also felt that the automated version of the Road Life File adequately reflected the manual data files.

OBJECTIVE

The primary purpose of this study was to determine whether or not existing automated information is available for input into automated programs such as the Flexible Pavement System and the Pavement Evaluation System. An additional objective was to trace and document the existing manual flow of road life data through
the Department and recommend techniques for most effectively obtaining these required data for pavement management activities.
CHAPTER 2. SOURCES OF ROAD LIFE DATA

The initial generation of data that will become historical road life data begins with recommendations by the district offices for funds for construction or maintenance projects (Figure 1). Recommendations for new construction are forwarded to the Design Division (D-8); recommendations for maintenance projects are forwarded to the Safety and Maintenance Division (D-18). D-8 and D-18 review and prioritize the project recommendations from all districts based on available funding. New construction projects that have a sufficiently high priority and available funding are then forwarded to the Highway Commission for approval.

Guidelines for categorizing maintenance projects as major or routine maintenance work, as shown in Table 1, are outlined in the Procedural portion of the Safety and Maintenance Manual for D-18 (7). D-18 offers technical support to the district offices for any maintenance project; however, only major maintenance work is considered for future addition to the road life files. Administratrive policy does not require in all circumstances that major maintenance projects be tracked through the road life procedures.

Major maintenance projects that will require the use of outside contractors and new construction projects that have been approved by the Commission are assigned a project designator (PD) number by the Finance Division (D-3) and a control/section and job number by D-8. All district and preliminary engineering costs, as well as all construction and/or maintenance costs, are accrued under both the PD number and the control/section job.
Figure 1. Construction Data Flow
Table 1
GUIDELINES FOR CATEGORIZING MAINTENANCE PROJECTS

<table>
<thead>
<tr>
<th>MAJOR MAINTENANCE</th>
<th>ROUTINE MAINTENANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travel Way</td>
<td>Scarifying, reshaping, restoring, patching, mudjacking, joint filling, concrete pavement repairs, etc. Replacement and/or restoration of traveled ways in kind for less than 500 continuous feet. Resurfacing to include surface treatments, bit. overlays with a nominal thickness of less than 3/4", and bit. level-ups all of which extend for less than 500 continuous feet.</td>
</tr>
<tr>
<td>Shoulders & Side Approaches</td>
<td>All work incidental to above. Restoring material losses. Replacement of shoulder in kind. Re-seeding and sodding. Installation and maintenance of access drives.</td>
</tr>
<tr>
<td>Roadside</td>
<td>Restoration of erosion controls. Removing slides, reshaping drainage channels and side slopes, mowing and tree trimming. Replacing topsoil, sod, shrubs, etc.</td>
</tr>
<tr>
<td>Drainage</td>
<td>Replacement (approximately same design) of curb, gutter, riprap, underdrain. Cleaning and repairing culverts.</td>
</tr>
<tr>
<td>Structures</td>
<td>Cleaning, painting, repairing and minor replacements of components in kind. Repair and operation of drawbridges and ferries.</td>
</tr>
<tr>
<td></td>
<td>Re-conditioning, resurfacing in kind, surface treatments and rebuilding all of which extend for continuous length of 500' or more. All shoulder work on side road approaches incidental to above work.</td>
</tr>
<tr>
<td></td>
<td>Slope flattening or landscape treatment. Also removal or treatment of roadside hazards.</td>
</tr>
<tr>
<td></td>
<td>Complete replacement of culverts in kind. Installation of small culverts.</td>
</tr>
<tr>
<td>Traffic Control & Service Facilities</td>
<td>MAIN MAINTENANCE</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>First installation of signs, stripping, pavement markers, direction and route</td>
</tr>
<tr>
<td></td>
<td>markers and delineators. Replacement of all major signs w/ superior set.</td>
</tr>
<tr>
<td></td>
<td>Extension or new installation of guardrail. Nominal channelization. Installation</td>
</tr>
<tr>
<td></td>
<td>or complete replacement of facilities for roadside rest areas.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
number. Since the PD number is not required by current departmental policy, it will not be used after September 1984. At that time, the accrued costs will be maintained solely by control/section and job number for consistency throughout the Department.

Once projects have been approved by the Highway Commission and accounting files have been set up in D-3, the district office prepares preliminary plans for the project and sends these plans to D-8 for approval. Once approved, D-8 will enter pre-construction information into the Design and Construction Information System (DCIS). Data entered into DCIS include project length, station numbers, and type of work to be performed (8). While D-8 retains no cost figures, the division does review all estimates to determine if they are reasonable for the work to be performed. Preliminary plans are returned to the district, with copies kept at D-8, copies forwarded to the Equipment and Procurement Division (D-4) for the master files, and copies forwarded to the Construction Division (D-6). D-6 initiates and monitors the project process and is responsible for pre-qualification of bidders, letting of the contract, and generation of the award minutes. The DCIS is used extensively to track the progress of the project, including the milestone schedule. While D-8 must approve any field changes, D-6 is responsible during the construction phase for the project administration through the district construction engineer.

During the construction phase of a project, D-6 provides other divisions with a monthly construction status report showing all current projects. When a project has been completed, D-6 receives the final plans from the district and approves the final
cost estimates for payment to the contractor. When all settle-
ments and exceptions with the contractor are settled, D-6 re-
leases the final plans to D-4 for archiving and indicates on the
monthly status report that the project is complete.
CHAPTER 3. AUTOMATION OF ROAD LIFE DATA

Throughout a construction project, the Transportation Planning and Research Division (D-10) monitors the progress of the project from the monthly construction status report provided by D-6. In addition, D-10 obtains from DCIS the preliminary information that will eventually be moved to the automated Road Life File when a project is completed. Once notification is received from the D-6 status report that a project is completed, copies of the final plans and cost vouchers for major maintenance and new construction are obtained from the master files in D-4 for processing into Road Life records.

The road life strip map and code sheet, known as RL-1, is manually coded and drawn by drafters hired and trained specifically for that purpose by D-10. Figure 2 illustrates a completed strip map. Training of the drafting personnel for the RL-1s is done on-the-job, and the training is estimated to take approximately three to six months. Coding of road life data from the final plans can take from one hour to three days, depending on the type of work performed and the expertise of the coder/drafter. Figure 3 illustrates a Road Life code chart.

Four or five drafters work full time to update the road life data; this is half the number who were formerly used. Approximately 3,000 new projects are completed each year. Assuming an average of one day to code each project for each of five coders, less than half of the new projects can be coded each year. However, even with the shortage of coder/drafters and the constant backlog of new projects, the road life strip maps and code sheets
Figure 2. Log Record of Project Construction and Retirements
Figure 2. (continued)
are generally available within a year of the project completion date.

The completed RL-1 strip maps were at one time automatically forwarded to the appropriate district; however, due to the perceived low usage of the RL-1, the strip maps are now available only on request from the districts.

Once the RL-1 strip maps are complete, these data are added to the automated Road Life File, known as RL-2, by keypunching the coded data and updating the RL-2 once a month. Appendix A, taken from the Roadway Information System documentation lists the data items that are automated. The most recent annual road life file, at the time of this study, is 1979. Plans currently exist to convert the keypunch entry of data to a direct data entry system.

Major structures, bridges over twenty feet, are not included in the automated Road Life File; these records are added to the Bridge Log File, also described in the Roadway Information System documentation. The bridge log records are coded in essentially the same format as the road life records and, in fact, the two files were at one time together. A structure record card is shown in Figure 4. The Automation Division (D-19) has a program for merging the two files together, as needed, but this program is rarely used.
CONSTRUCTION RECORD FOR ROAD LIFE STUDY

EXISTING WORK:

NEW WORK:

DISTRICT

COUNTY

CONTROL

SECTION

JOB NO.

HIGHWAY NO. - STATE

U.S.

PROJECT NUMBER

COMPILED BY

DATE

STATIONS - FROM

TO

STRUCTURE RECORD CARD

CHAPTER 4. USE OF ROAD LIFE DATA

All district personnel involved in this study use historical road life data on a routine basis. Since the automated road life file is five years out-of-date, however, there is no consistency among districts in the way these road life data are obtained.

One district office has not received a RL-1 strip map update since 1973 and is unaware of procedures for requesting these updates. This district relies on what information can be obtained from the current road inventory and traffic log data, both manual and automated, as well as personal knowledge of previous work performed on the roadway.

The second district office uses the maintenance management system (MMS), developed under study 2-18-71-151 (9), to which data are manually input as needed. MMS contains skid data, dynaflect data, and pavement evaluation scores, in addition to data that are available from the Road Life File.

The third district requests control/section and job numbers for all projects over one-half mile or $5,000 to ensure that the information is added to the Road Life File. This district routinely requests updates of the RL-1 strip maps and automates this information as part of a skid file, which the district maintains for their own use.

The three districts are compensating as best they can for lack of consistent and timely data provided through D-10. All three districts indicate that access to RL-1 strip maps is essential for the work they do; and, all three districts indicate that direct access through remote terminals to the automated Road Life
File would be even more beneficial. Direct access to the automated Road Life File is needed for ad hoc reports, verification of pavement data for a particular section, and correction of errors detected in the data entered by D-10 coders.

Several suggestions were made for additional data not currently available as part of the Road Life File. These data include annual average daily traffic trends, lane differentiation, serviceability indices, dynaflect data, and skid data. In addition, the districts suggested an interface between the road life data and the Pavement Evaluation System, as well as accident data, railroad-crossing data, and other automated information currently available through the Roadway Information System.
CHAPTER 5. CONCLUSIONS

The Road Life File in its manual and automated form has information vital to the successful functioning of the districts. However, the delay time of encoding the information into the automated file, and of creating and updating the RL-1 strip maps, has resulted in the districts essentially ignoring the centralized Road Life File. Some districts feel administrative directives would better aid them in defining how to use the Road Life File. While the districts need the information, the lack of accuracy and availability greatly inhibit its usefulness. The districts feel the Road Life File can be updated and maintained at the district level, as shown in Figure 5, in a more timely and accurate manner using automated methods. This decentralization of information processing would lend itself well to current developments of the Department related to its installation of regional computing centers and implementation of a transportation network database (10). Since the information on the automated file could produce the RL-1 strip maps (instead of the reverse), consideration should be given to producing the RL-1 strip maps locally on graphics equipment.

The Roadway Information and Traffic Log File (RI-FILE) is used quite often by the districts in conjunction with the Road Life File. It was suggested that a general roadway file containing current and historical data be developed by combining the RI-FILE and the Road Life File, shown in Figure 6, and including supplemental data such as skid information. The maintenance management program being used from Study 2-18-71-151 can be a
Figure 5. District Update of Road Life Data
model for determining supplemental data needed on the Road Life File. Even though the districts are using the RI-1 and RI-2 in place of RL-1 and RL-2 data, the road inventory file also has problems; e.g., format changes and lack of roadway curvature data.

As of September 1, 1984, the PD number is no longer in use since the control/section and job number designation is used by the remainder of the Department for project identification. This allows departmental consistency; however, there seem to be no consistent procedures which the district follow to have a control/section and job number assigned to a maintenance project. For example, a job number is not required for even "major maintenance" as defined in the D-18 Manual. Additional administrative direction is required in this area to ensure accurate pavement history is retained across the spectrum of maintenance projects.

Some concern was shown that structures were not included in the Road Life File; however, structures (bridges of less than 20 feet in length) are, in fact, included. Major structures (bridges 20 feet or greater in length) are maintained by D-10 in a separate automated file called the Bridge Log File. Even though the Automation Division maintains a program to merge the two files together, the program has not been used in some time because no one knows it can be requested.

Cost figures available on the Road Life File are only the costs involving the actual construction. All district and preliminary engineering costs before construction are kept by D-3, but are never entered as part of the Road Life File. This causes
difficulty in attempting to verify manual cost records to the automated records and to determine the full cost of projects.

In conclusion, the automated Road Life File is being maintained; however, its use is almost nonexistent by the districts. Districts are turning to other manual and automated files for information that can be available on the Road Life File and are developing internal methods of logging pavement history. A more effective use of the Department's resources can be achieved if data needed by the district offices from the Road Life File are incorporated into the proposed design for a transportation network database recommended under Research Study 2-18-82-329.
REFERENCES

APPENDIX A
USER DOCUMENTATION
ROADLIFE FILE

Description and Data Characteristics

First 24 characters of record
THD district number
THD county number
THD control number on the highway
THD section number on the highway
THD job number on the highway
THD number to describe a project
Card control
THD beginning milepoint to 1/1000 mile
THD ending milepoint to 1/1000 mile
Travel class of roadway
Highway system
Administrative system
Federal aid system
Month and year let
Year let
Month let
Year and month job complete
Year job complete
Month job completed
Year taken on system
Project Class

*NOTE: Milepoints are coded only on records with a completion date of 1976 or later.
Description and Data Characteristics

Surface Type
Kind of work (Column 1)
Kind of work (Column 2 and 3)
Kind of work (Column 4)
Kind of work (Column 5 and 6)
Surface width (If surface type is 51, 52, 53, 54, 55, or 62)
Surface cross section
Depth of surface (If surface type is 51, 52, 53, 54, 55, and 62)
Cross section of base
Width of base (If surface type is 20, 30, 51, 52, 53, 54, 55, or 62)
Width of surface (If surface type is 61, 71, or 81)
Depth of base (inches and tenths) (If surface type is 20, 30, 51, 52, 53, 54, 55, or 62)
Depth of surface (If surface type is 61 and edge and center thickness are different)
Depth of surface (If surface type is 71, 81, and surface type 61 where edge and center thickness are the same)
Type of shoulders
Type of shoulders
Shoulder width
Surface
Type of treatment
Roadbed Width
Base Material
Type of stabilization (of base)
Description and Data Characteristics

Continuous or jointed concrete
Right of Way Width
Mileage Class
Mileage built coded to 1/1000 mile
Subgrade Material
Subgrade
Method of subgrade stabilization
Width of subgrade to nearest foot
Depth of subgrade to nearest inch
Miles remaining to nearest 1/1000 mile
Highway number (majority highway number for control-section)
Blank
City Number
Number of items
Item Number
Dollars (Amount of dollars of total cost)
Item Number 04 (traffic services)
Amount of dollars on traffic services
Item Number 05 (roadside improvement)
Amount of dollars on roadside improvement
Item Number 06 (Improved shoulders & approaches)
Amount of dollars on improved shoulders & approaches
Item Number 10 (grading & small structures)
Amount of dollars on grading & small structures
Description and Data Characteristics

Item Number 20 (surface)
Amount of dollars on surface
Item Number 30 (base)
Amount of dollars on base
Item Number 88 (maintenance)
Amount of dollars on maintenance
Item Number 89 (Right of Way)
Amount of dollars on right of way

Source: Roadway Information System User Manual
Texas State Department of Highways and Public Transportation
Transportation Planning Division and Automation Division
Revised September 1981