A Study of the Soil-Structure Interaction Behavior of Highway Guardrail Posts

Research performed in cooperation with DOT,FHWA.
Research Study Title: Improved Design of Lightpoles, Guardrails, and Other Appurtenances.

The Texas State Department of Highways and Public Transportation (SDHPT) currently uses two types of guardrail posts: (1) a circular wood post and (2) a steel W6x8.5 post. The current specifications require the steel post to be placed in a concrete footing. However, the concrete footing is not required for the wood post. Because of this requirement, the steel post guardrail systems are considered not as economical as the wood post guardrail systems. This research study was conducted to determine whether the concrete footings are required for the steel guardrail posts to perform satisfactorily as a traffic barrier system.

An analytical model was developed to model the guardrail post as a laterally loaded drilled shaft. The model captures the nonlinearity of the soil response and includes all components of soil resistance, lateral normal stresses, and all shear stresses acting on the shaft. The lateral earth pressures developed against the shaft are related to the fundamental earth pressure theory of Coulomb to avoid unnecessary assumptions or empiricism. This model represents the realistic behavior of drilled shafts under lateral loading conditions adequately, while being simple enough for use in day-to-day design of these shafts.

A series of static load tests and dynamic impact tests were conducted to determine whether the steel guardrail post performs satisfactorily. The results of these tests indicate that the steel guardrail post, embedded without the concrete footing, performs similar to the timber post. The results of these field tests were also used to verify the analytical model, and the agreement with the (on back)

17. Key Words
Steel Guardrail Post, Traffic Barrier System, Lateral Loading, Analytical Model.

18. Distribution Statement
No restrictions. This document is available to the public through the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161.

19. Security Classif. (of this report)
Unclassified

20. Security Classif. (of this page)
Unclassified

21. No. of Pages
261

22. Price

Form DOT F 1700.7 (8-69)
theoretical predictions was found to be good. It should be emphasized however, that the above results and statements are based on limited number of tests performed in the field on the steel and timber posts. Due to the limited time and the resources available to the authors, repeatability of the test results was never verified. Therefore, it is recommended that another series of tests be performed in the future to check the repeatability of the above results.
A STUDY OF THE SOIL-STRUCTURE INTERACTION BEHAVIOR OF HIGHWAY GUARDRAIL POSTS

by

James F. Dewey, Jr.
Research Assistant

Jey K. Jeyapalan
Assistant Research Engineer

T. J. Hirsch
Research Engineer

and

Hayes E. Ross, Jr.
Research Engineer

Research Report No. 343-1

Improved Design of Lightpoles, Guardrails, and Other Appurtenances
Research Study Number 2-18-83-343

Sponsored by
State Department of Highways and Public Transportation
in Cooperation with the
U. S. Department of Transportation
Federal Highway Administration

July 1983

TEXAS TRANSPORTATION INSTITUTE
Texas A&M University
College Station, Texas
ABSTRACT

The Texas State Department of Highways and Public Transportation (SDHPT) currently uses two types of guardrail posts: (1) a circular wood post and (2) a steel w6x8.5 post. The current specifications require the steel post to be placed in a concrete footing. However, the concrete footing is not required for the wood post. Because of this requirement, the steel post guardrail systems are considered not as economical as the wood post guardrail systems. This research study was conducted to determine whether the concrete footings are required for the steel guardrail posts to perform satisfactorily as a traffic barrier system.

An analytical model was developed to model the guardrail post as a laterally loaded drilled shaft. The model captures the nonlinearity of the soil response and includes all components of soil resistance, lateral normal stresses, and all shear stresses acting on the shaft. The lateral earth pressures developed against the shaft are related to the fundamental earth pressure theory of Coulomb to avoid unnecessary assumptions or empiricism. This model represents the realistic behavior of drilled shafts under lateral loading conditions adequately, while being simple enough for use in day-to-day design of these shafts.
A series of static load tests and dynamic impact tests were conducted to determine whether the steel guardrail post performs satisfactorily. The results of these tests indicate that the steel guardrail post, embedded without the concrete footing, performs similar to the timber post. The results of these field tests were also used to verify the analytical model, and the agreement with the theoretical predictions was found to be good.

It should be emphasized however, that the above results and statements are based on limited number of tests performed in the field on the steel and timber posts. Due to the limited time and the resources available to the authors, repeatability of the test results was never verified. Therefore, it is recommended that another series of tests be performed in the future to check the repeatability of the above results.
ACKNOWLEDGEMENTS

Funding for this research study was made possible through the sponsorship of the Texas State Department of Highways and Public Transportation. The support provided by this agency is gratefully acknowledged.

Sincere appreciation is expressed to all persons who participated in or contributed to this research. Special thanks are due to Harold Cooner and Ralph Banks, the contact representatives for the State Department of Highways and Public Transportation. Gratitude is also expressed to Don Cangelose and the personnel of the TTI research support group who constructed the loading facility and prepared the test sites. Don Rokohl, Mark Lamborn, Mark Gardner, and Dale Brown rendered invaluable assistance in conducting the field tests. Finally, special thanks are given to Pam Vernon for typing this report.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>Uses and Applications of Highway Guardrails</td>
<td>1</td>
</tr>
<tr>
<td>Types of Guardrail Posts</td>
<td>2</td>
</tr>
<tr>
<td>Scope of the Study</td>
<td>3</td>
</tr>
<tr>
<td>Organization of the Report</td>
<td>4</td>
</tr>
<tr>
<td>SUMMARY OF PREVIOUS WORK</td>
<td>6</td>
</tr>
<tr>
<td>Field Tests on Guardrail Posts</td>
<td>6</td>
</tr>
<tr>
<td>Theoretical Analysis of Laterally Loaded Shafts or Piles</td>
<td>7</td>
</tr>
<tr>
<td>Ultimate Lateral Capacity Models</td>
<td>8</td>
</tr>
<tr>
<td>Comparative Study of Ultimate Lateral Capacity Models</td>
<td>20</td>
</tr>
<tr>
<td>Linear Load-Deflection Models</td>
<td>23</td>
</tr>
<tr>
<td>Subgrade Modulus Models</td>
<td>23</td>
</tr>
<tr>
<td>Continuum Models</td>
<td>36</td>
</tr>
<tr>
<td>Comparative Study of Linear Load-Deflection Models</td>
<td>36</td>
</tr>
<tr>
<td>Nonlinear Load-Deflection Models</td>
<td>38</td>
</tr>
<tr>
<td>Conclusions</td>
<td>43</td>
</tr>
<tr>
<td>ANALYTICAL MODEL DEVELOPMENT</td>
<td>45</td>
</tr>
<tr>
<td>General</td>
<td>45</td>
</tr>
<tr>
<td>Definition of the Problem</td>
<td>46</td>
</tr>
<tr>
<td>Lateral Force</td>
<td>51</td>
</tr>
<tr>
<td>Lateral Earth Pressure</td>
<td>52</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Horizontal Shear Stress</td>
<td>67</td>
</tr>
<tr>
<td>Drag Force</td>
<td>70</td>
</tr>
<tr>
<td>Total Lateral Force</td>
<td>70</td>
</tr>
<tr>
<td>Vertical Force</td>
<td>72</td>
</tr>
<tr>
<td>Base Compressive Force</td>
<td>74</td>
</tr>
<tr>
<td>Base Shear Force</td>
<td>75</td>
</tr>
<tr>
<td>Calculation of the Moment of Inertia</td>
<td>77</td>
</tr>
<tr>
<td>Iterative Solution</td>
<td>77</td>
</tr>
<tr>
<td>Comparison of Computer Predictions with Published Field Observations</td>
<td>82</td>
</tr>
<tr>
<td>Texas A&M University Tests</td>
<td>82</td>
</tr>
<tr>
<td>Southern California Edison Tests</td>
<td>83</td>
</tr>
<tr>
<td>Electric Power Research Institute Tests</td>
<td>95</td>
</tr>
<tr>
<td>STATIC LOAD TESTS</td>
<td>110</td>
</tr>
<tr>
<td>Introduction</td>
<td>110</td>
</tr>
<tr>
<td>Testing Program</td>
<td>110</td>
</tr>
<tr>
<td>Placement of Posts</td>
<td>112</td>
</tr>
<tr>
<td>Soil Conditions</td>
<td>112</td>
</tr>
<tr>
<td>Equipment and Instrumentation</td>
<td>121</td>
</tr>
<tr>
<td>Loading System</td>
<td>121</td>
</tr>
<tr>
<td>Load Measurement</td>
<td>121</td>
</tr>
<tr>
<td>Displacement Measurement</td>
<td>125</td>
</tr>
<tr>
<td>Test Procedure</td>
<td>125</td>
</tr>
<tr>
<td>Test Results</td>
<td>128</td>
</tr>
<tr>
<td>Comparison of Test Results with Theoretical Predictions</td>
<td>140</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>DYNAMIC LOAD TESTS</td>
<td>154</td>
</tr>
<tr>
<td>Introduction</td>
<td>154</td>
</tr>
<tr>
<td>Testing Program</td>
<td>154</td>
</tr>
<tr>
<td>Equipment and Instrumentation</td>
<td>156</td>
</tr>
<tr>
<td>Loading System</td>
<td>156</td>
</tr>
<tr>
<td>Dynamic Load Measurement</td>
<td>160</td>
</tr>
<tr>
<td>Post Displacement Measurement</td>
<td>160</td>
</tr>
<tr>
<td>Placement of the Posts</td>
<td>162</td>
</tr>
<tr>
<td>Soil Conditions</td>
<td>162</td>
</tr>
<tr>
<td>Test Results</td>
<td>165</td>
</tr>
<tr>
<td>Comparison of Test Results with Theoretical Predictions</td>
<td>183</td>
</tr>
<tr>
<td>CONCLUSIONS AND RECOMMENDATIONS</td>
<td>194</td>
</tr>
<tr>
<td>Introduction</td>
<td>194</td>
</tr>
<tr>
<td>Conclusions</td>
<td>194</td>
</tr>
<tr>
<td>Recommendations for Further Research</td>
<td>195</td>
</tr>
<tr>
<td>APPENDIX I. REFERENCES</td>
<td>197</td>
</tr>
<tr>
<td>APPENDIX II. NOTATION</td>
<td>206</td>
</tr>
<tr>
<td>APPENDIX III. COMPUTER PROGRAM LATPIL</td>
<td>212</td>
</tr>
<tr>
<td>APPENDIX IV. SEQUENTIAL PHOTOGRAPHS OF IMPACT TESTS</td>
<td>238</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Comparison Study Existing Ultimate Capacity Methods</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>Beam on Elastic Foundation Solutions</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>Values of Subgrade Modulus (k_{s1}) for One Foot Square Plates Resting on</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Precompressed Clay</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Previously Proposed Values of the Constant of Horizontal Subgrade Reaction, m_h</td>
<td>29</td>
</tr>
<tr>
<td>5</td>
<td>Numerical Values of the Influence Factor m</td>
<td>31</td>
</tr>
<tr>
<td>6</td>
<td>Radius of Effective Soil Boundary</td>
<td>33</td>
</tr>
<tr>
<td>7</td>
<td>Rheological Coefficient α</td>
<td>35</td>
</tr>
<tr>
<td>8</td>
<td>Comparative Study for Rigid Piers Existing Linear Load-Deflection Methods</td>
<td>39</td>
</tr>
<tr>
<td>9</td>
<td>Typical Values for Y_{50}</td>
<td>42</td>
</tr>
<tr>
<td>10</td>
<td>Friction Angles δ Between Various Foundation Materials and Soil or Rock</td>
<td>59</td>
</tr>
<tr>
<td>11</td>
<td>Typical Minimum Tilt Necessary for Active and Passive States</td>
<td>61</td>
</tr>
<tr>
<td>12</td>
<td>Pier Details</td>
<td>84</td>
</tr>
<tr>
<td>13</td>
<td>Soil Properties for Coyle's Test Shaft No. 1</td>
<td>85</td>
</tr>
<tr>
<td>14</td>
<td>Soil Properties for Coyle's Test Shaft No. 2 and No. 3</td>
<td>86</td>
</tr>
<tr>
<td>15</td>
<td>Pier Details</td>
<td>90</td>
</tr>
<tr>
<td>16</td>
<td>Soil Properties for SCE Tests</td>
<td>91</td>
</tr>
<tr>
<td>17</td>
<td>Pier Detail for EPRI Tests</td>
<td>96</td>
</tr>
<tr>
<td>Table</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Soil Properties for EPRI Test No. 1</td>
<td>97</td>
</tr>
<tr>
<td>19</td>
<td>Soil Properties for EPRI Test No. 3</td>
<td>98</td>
</tr>
<tr>
<td>20</td>
<td>Soil Properties for EPRI Test No. 5</td>
<td>99</td>
</tr>
<tr>
<td>21</td>
<td>Soil Properties for EPRI Test No. 8</td>
<td>100</td>
</tr>
<tr>
<td>22</td>
<td>Soil Properties for EPRI Test No. 10</td>
<td>101</td>
</tr>
<tr>
<td>23</td>
<td>Soil Properties for EPRI Test No. 11</td>
<td>102</td>
</tr>
<tr>
<td>24</td>
<td>Summary of Tests</td>
<td>111</td>
</tr>
<tr>
<td>25</td>
<td>Properties of Cohesive Soil</td>
<td>119</td>
</tr>
<tr>
<td>26</td>
<td>Properties of Cohesionless Soil</td>
<td>122</td>
</tr>
<tr>
<td>27</td>
<td>Summary of Results: Static Tests</td>
<td>139</td>
</tr>
<tr>
<td>28</td>
<td>Input Data for Post 1</td>
<td>141</td>
</tr>
<tr>
<td>29</td>
<td>Input Data for Post 2</td>
<td>142</td>
</tr>
<tr>
<td>30</td>
<td>Input Data for Post 3</td>
<td>143</td>
</tr>
<tr>
<td>31</td>
<td>Input Data for Post 4</td>
<td>144</td>
</tr>
<tr>
<td>32</td>
<td>Input Data for Post 5</td>
<td>145</td>
</tr>
<tr>
<td>33</td>
<td>Input Data for Post 6</td>
<td>146</td>
</tr>
<tr>
<td>34</td>
<td>Summary of Dynamic Tests</td>
<td>155</td>
</tr>
<tr>
<td>35</td>
<td>Soil Properties for Test C3</td>
<td>163</td>
</tr>
<tr>
<td>36</td>
<td>Soil Properties for Test C4</td>
<td>164</td>
</tr>
<tr>
<td>37</td>
<td>Summary of Results: Dynamic Tests</td>
<td>166</td>
</tr>
<tr>
<td>38</td>
<td>Input Data for Post C2</td>
<td>184</td>
</tr>
<tr>
<td>39</td>
<td>Input Data for Post C3</td>
<td>185</td>
</tr>
<tr>
<td>40</td>
<td>Input Data for Post C4</td>
<td>186</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Laterally Loaded Drilled Shaft</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>Soil Pressure Distribution Proposed by Seiler</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>Brom's Ultimate Lateral Soil Resistance for Cohesive Soils</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>Brom's Ultimate Lateral Soil Resistance for Cohesionless Soils</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>Hansen's Ultimate Lateral Soil Resistance for Cohesive Soils</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>Hansen's Ultimate Lateral Soil Resistance for Cohesionless Soils</td>
<td>17</td>
</tr>
<tr>
<td>7</td>
<td>Details of the Model: Shaft Displacements</td>
<td>48</td>
</tr>
<tr>
<td>8</td>
<td>Details of the Model: Forces on the Shaft</td>
<td>49</td>
</tr>
<tr>
<td>9</td>
<td>Effect of Wall Movement or Tilt on Magnitude of Resultant of Earth Pressure</td>
<td>53</td>
</tr>
<tr>
<td>10</td>
<td>Variation of Lateral Earth Pressures with Shaft Movement</td>
<td>55</td>
</tr>
<tr>
<td>11</td>
<td>Tilt Necessary for Active and Passive States</td>
<td>60</td>
</tr>
<tr>
<td>12</td>
<td>Distribution of Lateral Pressures Around a Circular Shaft</td>
<td>62</td>
</tr>
<tr>
<td>13</td>
<td>Distribution of Lateral Pressures Around a Rectangular Shaft</td>
<td>66</td>
</tr>
<tr>
<td>14</td>
<td>Drag Coefficients for Square Plates and Circular Shaft</td>
<td>71</td>
</tr>
<tr>
<td>15</td>
<td>Failure Zone for Laterally Loaded Circular Shaft</td>
<td>78</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>16</td>
<td>Failure Zone for Laterally Loaded Rectangular Shaft</td>
<td>79</td>
</tr>
<tr>
<td>17</td>
<td>Lateral Load vs. Pier Rotation for Coyle's Test Shaft No. 1</td>
<td>87</td>
</tr>
<tr>
<td>18</td>
<td>Lateral Load vs. Pier Rotation for Coyle's Test Shaft No. 2</td>
<td>88</td>
</tr>
<tr>
<td>19</td>
<td>Lateral Load vs. Pier Rotation for Coyle's Test Shaft No. 3</td>
<td>89</td>
</tr>
<tr>
<td>20</td>
<td>Lateral Load vs. Ground-line Deflection for Bushan Shaft No. 2</td>
<td>92</td>
</tr>
<tr>
<td>21</td>
<td>Lateral Load vs. Ground-line Deflection for Bushan Shaft No. 4</td>
<td>93</td>
</tr>
<tr>
<td>22</td>
<td>Lateral Load vs. Ground-line Deflection for Bushan Shaft No. 7</td>
<td>94</td>
</tr>
<tr>
<td>23</td>
<td>Ground-line Moment vs. Pier Rotation for EPRI Test Pier No. 1</td>
<td>103</td>
</tr>
<tr>
<td>24</td>
<td>Ground-line Moment vs. Pier Rotation for EPRI Test Pier No. 3</td>
<td>104</td>
</tr>
<tr>
<td>25</td>
<td>Ground-line Moment vs. Pier Rotation for EPRI Test Pier No. 5</td>
<td>105</td>
</tr>
<tr>
<td>26</td>
<td>Ground-line Moment vs. Pier Rotation for EPRI Test Pier No. 8</td>
<td>106</td>
</tr>
<tr>
<td>27</td>
<td>Ground-line Moment vs. Pier Rotation for EPRI Test Pier No. 10</td>
<td>107</td>
</tr>
<tr>
<td>28</td>
<td>Ground-line Moment vs. Pier Rotation for EPRI Test Pier No. 11</td>
<td>108</td>
</tr>
<tr>
<td>29</td>
<td>Location of Posts</td>
<td>113</td>
</tr>
<tr>
<td>30</td>
<td>Placement of Posts</td>
<td>114</td>
</tr>
<tr>
<td>31</td>
<td>Test Site for Static Tests</td>
<td>115</td>
</tr>
<tr>
<td>32</td>
<td>McGuin Water Pycnometer to Obtain In-situ Unit Weight</td>
<td>118</td>
</tr>
<tr>
<td>33</td>
<td>Gradation Curve for the Cohesionless Soil</td>
<td>119</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>34</td>
<td>Shear Strength of Rockfill Materials from Large Triaxial Tests</td>
<td>120</td>
</tr>
<tr>
<td>35</td>
<td>Lateral Loading System</td>
<td>123</td>
</tr>
<tr>
<td>36</td>
<td>Static Testing System</td>
<td>124</td>
</tr>
<tr>
<td>37</td>
<td>Measurement of Post Displacements</td>
<td>126</td>
</tr>
<tr>
<td>38a</td>
<td>Loading Bracket for the Circular Timber Post</td>
<td>127</td>
</tr>
<tr>
<td>38b</td>
<td>Loading Bracket for the Steel Post</td>
<td>127</td>
</tr>
<tr>
<td>39</td>
<td>Lateral Load vs. Deflection for Post 1</td>
<td>129</td>
</tr>
<tr>
<td>40</td>
<td>Lateral Load vs. Deflection for Post 2</td>
<td>130</td>
</tr>
<tr>
<td>41</td>
<td>Lateral Load vs. Deflection for Post 3</td>
<td>131</td>
</tr>
<tr>
<td>42</td>
<td>Static Test Results in the Cohesive Soil</td>
<td>132</td>
</tr>
<tr>
<td>43</td>
<td>Static Test Results in the Cohesive Soil</td>
<td>133</td>
</tr>
<tr>
<td>44</td>
<td>Lateral Load vs. Deflection for Post 4</td>
<td>134</td>
</tr>
<tr>
<td>45</td>
<td>Lateral Load vs. Deflection for Post 5</td>
<td>135</td>
</tr>
<tr>
<td>46</td>
<td>Lateral Load vs. Deflection for Post 6</td>
<td>136</td>
</tr>
<tr>
<td>47</td>
<td>Static Test Results in the Cohesionless Soils</td>
<td>137</td>
</tr>
<tr>
<td>48</td>
<td>Static Test Results in the Cohesionless Soils</td>
<td>138</td>
</tr>
<tr>
<td>49</td>
<td>Comparison of Analysis and Field Load Test for Post 1</td>
<td>147</td>
</tr>
<tr>
<td>50</td>
<td>Comparison of Analysis and Field Load Test for Post 2</td>
<td>148</td>
</tr>
<tr>
<td>51</td>
<td>Comparison of Analysis and Field Load Test for Post 3</td>
<td>149</td>
</tr>
<tr>
<td>52</td>
<td>Comparison of Analysis and Field Load Test for Post 4</td>
<td>150</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>53</td>
<td>Comparison of Analysis and Field Load Test for Post 5</td>
<td>151</td>
</tr>
<tr>
<td>54</td>
<td>Comparison of Analysis and Field Load Test for Post 6</td>
<td>152</td>
</tr>
<tr>
<td>55</td>
<td>Automobile Simulation Cart</td>
<td>157</td>
</tr>
<tr>
<td>56</td>
<td>Schematic of Test Layout</td>
<td>158</td>
</tr>
<tr>
<td>57</td>
<td>Concrete Guide Barriers</td>
<td>159</td>
</tr>
<tr>
<td>58</td>
<td>Cart with Electronic Equipment</td>
<td>161</td>
</tr>
<tr>
<td>59</td>
<td>Cart Deceleration vs. Time for Test C1</td>
<td>167</td>
</tr>
<tr>
<td>60</td>
<td>Cart Velocity vs. Time for Test C1</td>
<td>168</td>
</tr>
<tr>
<td>61</td>
<td>Cart Displacement vs. Time for Test C1</td>
<td>169</td>
</tr>
<tr>
<td>62</td>
<td>Lateral Load vs. Post Displacement for Test C1</td>
<td>170</td>
</tr>
<tr>
<td>63</td>
<td>Cart Deceleration vs. Time for Test C2</td>
<td>171</td>
</tr>
<tr>
<td>64</td>
<td>Cart Velocity vs. Time for Test C2</td>
<td>172</td>
</tr>
<tr>
<td>65</td>
<td>Cart Displacement vs. Time for Test C2</td>
<td>173</td>
</tr>
<tr>
<td>66</td>
<td>Lateral Load vs. Post Displacement for Test C2</td>
<td>174</td>
</tr>
<tr>
<td>67</td>
<td>Cart Deceleration vs. Time for Test C3</td>
<td>175</td>
</tr>
<tr>
<td>68</td>
<td>Cart Velocity vs. Time for Test C3</td>
<td>176</td>
</tr>
<tr>
<td>69</td>
<td>Cart Displacement vs. Time for Test C3</td>
<td>177</td>
</tr>
<tr>
<td>70</td>
<td>Lateral Load vs. Post Displacement for Test C3</td>
<td>178</td>
</tr>
<tr>
<td>71</td>
<td>Cart Deceleration vs. Time for Test C4</td>
<td>179</td>
</tr>
<tr>
<td>72</td>
<td>Cart Velocity vs. Time for Test C4</td>
<td>180</td>
</tr>
<tr>
<td>73</td>
<td>Cart Displacement vs. Time for Test C4</td>
<td>181</td>
</tr>
<tr>
<td>74</td>
<td>Lateral Load vs. Post Displacement for Test C4</td>
<td>182</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>75</td>
<td>Comparison of Analysis and Field Load Test Results for Test C2</td>
<td>187</td>
</tr>
<tr>
<td>76</td>
<td>Comparison of Analysis and Field Load Test Results for Test C3</td>
<td>188</td>
</tr>
<tr>
<td>77</td>
<td>Comparison of Analysis and Field Load Test Results for Test C4</td>
<td>189</td>
</tr>
<tr>
<td>78</td>
<td>Effect of Effective Angle of Friction on Analytical Predictions for Test C3</td>
<td>192</td>
</tr>
<tr>
<td>79</td>
<td>Effect of Effective Angle of Friction on Analytical Predictions for Test C4</td>
<td>193</td>
</tr>
<tr>
<td>80</td>
<td>Sequential Photographs for Test C1</td>
<td>239</td>
</tr>
<tr>
<td>81</td>
<td>Sequential Photographs for Test C2</td>
<td>240</td>
</tr>
<tr>
<td>82</td>
<td>Sequential Photographs for Test C3</td>
<td>242</td>
</tr>
<tr>
<td>83</td>
<td>Sequential Photographs for Test C4</td>
<td>244</td>
</tr>
</tbody>
</table>
INTRODUCTION

Uses and Applications of Highway Guardrails

As traffic barrier systems located along highways, the primary function of guardrails and median barriers is to safely redirect errant vehicles. Guardrail installations on shoulders prevent vehicle access to steep embankments or fixed objects, whereas median barriers are used between the roadways of divided highways to prevent "across-the-median" collisions with opposing traffic. Properly designed installations accomplish the redirection of errant vehicles in such a manner as to minimize the vulnerability of vehicle occupants as well as the involvement of following and adjacent traffic. Other desirable guardrail and barrier system characteristics include minimal damage to vehicles and barrier systems; economy in construction, installation and maintenance; enhancement of highway aesthetics; and performance as headlight glare screens or highway delineators.

When a vehicle in motion collides with a guardrail, a substantial portion of the energy of the vehicle is absorbed by the guardrail. The lateral forces carried by the guardrail are transmitted to the ground through the guardrail posts. Because the resistance and the subsequent energy loss are provided by the soil
surrounding the guardrail posts, the soil properties at the site will determine the behavior of the guardrail posts. Although extensive research has been done on the efficiency of various types of guardrail systems as highway barriers, very little work has been done on the influence of soil properties on the performance of guardrail posts.

Types of Guardrail Posts

The State Department of Highways and Public Transportation currently uses two types of guardrail posts: (1) a circular wood post and (2) a steel W6 x 8.5 post. The current specifications require the wood post to have a minimum diameter of 7 inches, a minimum overall length of 69 inches, and a minimum embedment depth of 38 inches with the top of the wood post domed. A minimum overall length of 66 inches is required if the top of the wood post is beveled. The specifications do not require the wood post to be placed in a concrete footing.

The current specifications for the steel W6 x 8.5 guardrail post are the same as that for the beveled wood post with one exception, that the steel post must be placed in a concrete footing. Because of this requirement for a concrete footing, the steel post guardrail systems are not as economical as the wood post guardrail systems. To date, no experimental work has
been performed to determine whether the concrete footing is required in order for the steel post guardrail systems to perform satisfactorily as a traffic barrier.

Scope of the Study

The State Department of Highways and Public Transportation considers the wood post guardrail systems to perform adequately as a traffic barrier. These systems properly redirect errant vehicles while minimizing the vulnerability of the vehicle occupants and other adjacent vehicles. Any guardrail system which performed similarly to the system using wood posts would be considered as performing satisfactorily. With this in mind, this study was conducted to determine whether concrete footings are required for the steel guardrail posts to perform satisfactorily. The procedure used in conducting this study was:

1. A computer model for laterally loaded guardrail posts was developed in which the guardrail post was modeled as a laterally loaded drilled shaft or pile.

2. Static field load tests were performed on steel and timber guardrail posts in two different soils.

3. The results from these static tests were used to compare the static behavior of the two types of
posts. The results were also compared with the results generated from the computer model.

4. Dynamic field tests were performed on steel and timber guardrail posts in the soils used for the static tests.

5. The results from these dynamic tests were used to compare the dynamic response of the two types of posts. These results were also compared to the results predicted by the computer model.

Organization of the Report

The prime objective of this research study was to determine if concrete footings are required for the steel guardrail posts to perform satisfactorily. The studies undertaken to achieve this objective are described in subsequent chapters.

Chapter 2 contains a review of the available literature and previous work on the analysis of laterally loaded drilled shafts or piles.

Chapter 3 contains a discussion on the development of a new theoretical model to analyze the behavior of drilled shafts or guardrail posts subjected to lateral loads.

Chapter 4 describes a series of static laterally loaded guardrail post tests that were performed to determine whether the steel guardrail posts perform
satisfactorily under static loading.

Chapter 5 describes a series of dynamic laterally loaded guardrail post tests that were conducted to determine whether the steel guardrail posts perform satisfactorily under dynamic loading.

Chapter 6 contains conclusions of this study and recommendations for further research.
SUMMARY OF PREVIOUS WORK

Field Tests on Guardrail Posts

Many crash tests have been performed on guardrail systems to determine the efficiency of these systems as highway barriers. Typically, these tests have concentrated on the damage to the rail and the vehicle, the redirection response of the vehicle, and the energy dissipation capability of the guardrail system. The vehicle redirection response and the energy dissipation characteristics of the system are significantly influenced by the soil conditions. However, the post-soil interaction behavior has been rarely mentioned or studied in these tests.

In 1970, Southwest Research Institute (28) conducted a study of the post-soil interaction behavior of highway guardrail posts. In order to evaluate the effects of soil conditions and embedment geometry, a total of 72 tests were performed in two types of soils, with four embedment depths and three post widths. The results of these showed the following:

1. The dynamic resistance force (peak and average) and the kinetic energy absorbed by noncohesive soils are significantly related to the shear strength of the soil.

2. The dynamic resistance force (peak and average)
and the kinetic energy absorbed by the soil are directly related to the post width.

3. The dynamic resistance force (peak and average) and the kinetic energy absorbed by the soil are significantly affected by and directly related to the post embedment depth. The embedment depth has a more pronounced influence on post-soil system properties for soils with higher shear strengths.

4. The dynamic resistance force (peak and average) and the kinetic energy absorbed by the soil are greater than the static resistance force (peak and average) and the energy absorbed by the soil.

This study clearly shows that the performance of a highway guardrail system is significantly influenced by the post-soil interaction characteristics of the system.

Theoretical Analysis of Laterally Loaded Shafts or Piles

The soil-structure interaction behavior of guardrail posts can be analyzed by considering the guardrail post to behave as a laterally loaded pile. Various methods of analysis are currently used for laterally loaded pile design. Some methods permit the pile foundation to reach some percentage of its ultimate capacity at the maximum foundation load. Other methods assume elastic foundation
behavior up to the ultimate load. Other methods limit soil pressures as determined from elastic analysis to allowable values, while still other methods design to certain deflection and/or rotation criteria at various load levels. Regardless of the design method used, the pile must be safe against both structural collapse and soil failure (excessive pile deflection and/or rotation).

These approaches used in pile design can be classified into three categories:

1. Ultimate lateral capacity models
2. Linear load-deflection models
3. Nonlinear load-deflection models

Ultimate Lateral Capacity Models

The ultimate lateral capacity models assume that the soil surrounding the pile is in a state of plastic equilibrium and that the pile is sufficiently strong such that flexural displacements or plastic hinges do not develop. Because the soil is considered to be fully plastic, little or no additional load is required to produce additional deflection. Thus, only the ultimate capacity of the loaded pile is calculated.

Most of the ultimate capacity models are based on the assumption that the interaction between the pile and the soil can be represented by net lateral soil pressures acting on the pile. All other forces associated with the
stresses on the base and the vertical shearing stresses on the perimeter of the pile are neglected. Thus, once a distribution of ultimate lateral earth pressures has been determined, the ultimate lateral capacity may be calculated using horizontal force and moment equilibrium for a rigid body. As shown in Fig. 1, the ultimate lateral capacity is associated with rigid body rotation about some point below the ground surface. The depth to this point of rotation can be determined from the two equilibrium equations.

Several previous researchers have proposed lateral pressure distributions to be used in this type of analysis. In 1932, Seiler (41) presented the soil pressure distribution shown in Fig. 2 which was developed empirically from field test data. Seiler used the distribution to develop design charts for the embedment depth of standard timber poles.

Ivey and Hawkins (22) proposed a procedure to analyze drilled shafts to support highway sign structures. They used Rankine's passive earth pressure theory (5) with the soil distribution presented by Seiler. The Rankine theory is based on an infinitely long frictionless wall moving horizontally into the soil. In reality, the rotation of a cylindrical pile is resisted by friction or shear stresses on the sides of the pile as well as shear stresses on the base. The
FIG. 1.-Laterally Loaded Drilled Shaft
Parabolic distribution

FIG. 2.-Soil Pressure Distribution Proposed by Seiler
presence of shear stresses along the face of the pile and the nonfulfillment of the plastic equilibrium state results in a very conservative solution.

Ivey (21) later developed an analysis procedure for computing the ultimate lateral capacity of circular rigid drilled shafts which takes into account all the shear stresses acting on a drilled shaft. These stresses include the shear stress in the horizontal direction along the sides of the shaft, the shear stresses in the vertical direction along the face of the shaft, and the shear stresses in the horizontal direction developed on the base of the shaft. Consequently, the solution is a three-dimensional analysis of the laterally loaded drilled shaft problem.

Ivey originally used the Rankine earth pressure theory in this analysis. As a result of the model tests Ivey (23) conducted, a modifying factor for the Rankine earth pressure coefficients was introduced. For purely cohesive soils, the factor was less than one. For typical sands, however, the factor ranged from 3.5 to 4.5. This new semi-empirical method proposed by Ivey proved to be slightly unconservative by overpredicting the ultimate loads.

Broms (6,7) presented a design procedure for short, rigid piles based on two soil pressure distributions he developed. For cohesive soils, Broms uses the
distribution shown in Fig. 3 in which the ultimate soil pressure is a function of the undrained shear strength, c and the pile diameter, B. For cohesionless soils, Broms utilizes the ultimate pressure distribution shown in Fig. 4 where Y is the effective unit weight of the soil, D is the embedment depth of the pile, B is the pile diameter, and K_p is the Rankine passive earth pressure coefficient (5). For short, rigid piles, the base of the pier moves toward the applied lateral load, and high lateral earth pressures are developed near the base of the pile. This high lateral soil reaction is represented by a lateral concentrated load acting at the base of the pile. The concentrated force can be calculated using moment equilibrium, and then the lateral capacity can be determined using horizontal force-equilibrium. These lateral pressure distributions developed by Broms are widely used in practice to predict ultimate lateral capacity of piles.

Brinch Hansen (18) proposed the lateral earth pressure distributions shown in Figs. 5 and 6, which accounts for the change in earth pressures with depth. The ultimate lateral pressure, P_{ult}, at a given depth is given by the equation:

$$P_{ult} = q'K_q + cK_c$$

where q' is the effective overburden pressure at the depth
Fig. 3. - Brom's Ultimate Lateral Soil Resistance for Cohesive Soils
FIG. 4.-Brom's Ultimate Lateral Soil Resistance for Cohesionless Soils
FIG. 5.-Hansen's Ultimate Lateral Soil Resistance for Cohesive Soils
FIG. 6.-Hansen's Ultimate Lateral Soil Resistance for Cohesionless Soils
in question, c is cohesion, K_q is an earth pressure coefficient for overburden pressure, and K_c is an earth pressure coefficient for cohesion. The earth pressure coefficients, K_q and K_c, are functions of the internal angle of friction of the soil and the depth to pier diameter ratio at the point in question. Brinch Hansen presented some charts for these earth pressure coefficients. Unlike Broms' distributions, Brinch Hansen's pressure distributions are directly applicable to multi-layered soil profiles.

Reese (35) proposed equations for the ultimate lateral pressure for a purely cohesive soil. The ultimate lateral pressure is given by the equation:

$$P_{ult} = cK_c$$

(2)

The value of K_c Reese calculated varies from 2 at the ground surface to 12 at depths in excess of approximately three pile diameters. Thompson (45) utilized the method used by Reese for computing ultimate lateral pressures with the additional assumption that the soil and pile separate on the side of the pile away from the direction of movement. Based on this, Thompson calculated a value of 8 for K_c for depths in excess of 1.5 pile diameters. This compares favorably with the value of 8.14 determined by Brinch Hansen (18) for great depth.

For soft cohesive soils, Matlock (26) presented the
following equation for the ultimate lateral pressure, P_{ult} (force/length):

$$P_{ult} = 3cB + q'B + 0.5zc \leq 9cB \quad \ldots (3)$$

where z is the depth in question. The limiting lateral soil pressure, $9cB$, proposed by Matlock is identical to the ultimate lateral pressure proposed by Broms for cohesive soils.

Parker and Reese (32) developed the following equations for the ultimate lateral soil pressure, P_{ult} (force/length), for clean sands:

$$P_{ult} = \gamma'z[B(K_p - K_a) + zK_p(tan \phi \tan \beta)$$
$$+ zK_o \tan \beta(tan \phi - tan \alpha)] \quad \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots (4)$$

$$P_{ult} = \gamma'z B \left[K_p^3 + 2K_p^2K_o \tan \phi - K_a + 2K_o \tan \phi \right] \quad \ldots (5)$$

where

- $\gamma' = \text{average effective unit weight of soil above point in question}$
- $B = \text{pile diameter}$
- $K_p = \text{Rankine passive earth pressure coefficient}$
- $K_a = \text{Rankine active earth pressure coefficient}$
- $K_o = \text{at rest earth pressure coefficient}$
\[\phi = \text{internal angle of shearing resistance for the sand} \]
\[\alpha, \beta = \text{angles which define the geometry of the failure mechanism} \]

The smaller of the two pressures determined from Eqs. 4 and 5 is used as the ultimate lateral pressure.

Menard and his coworkers [see Gambin (16)] developed a procedure for estimating the ultimate lateral soil pressure from the pressuremeter limit pressure \(p_1 \). The ultimate lateral pressure, \(p_{ult} \), was used for depths greater than the critical depth, \(h_c \). At depths less than the critical depth, the ultimate lateral pressure is computed as follows:

\[p_{ult} = 0.5 \ p_1 \left(1 + \frac{z}{h_c} \right) \] (6)

where \(z \) is the depth in question. The value for the critical depth, \(h_c \), is a function of the soil classification and the pile diameter.

Roscoe and Schofield (40) developed an ultimate capacity analysis for stubby rectangular piles embedded in sand and constrained to rotate about the ground line. This procedure includes base shear stresses, as well as classical active and passive pressures for rough walls.

Comparitive Study of Ultimate Lateral Capacity Models

A study was conducted by Electric Power Research
Institute (EPRI) (11) to compare the most commonly used ultimate capacity analysis procedures. In this study EPRI used the methods proposed by Brinch Hansen, Broms, and Reese, where Reese's method includes the ultimate pressure formulations by Matlock (26) for soft clay, Parker and Reese (32) for sands, and Reese (35) for purely cohesive soils. Ultimate lateral capacity values were calculated for rigid shafts with diameters of 1, 3, and 6 feet, and depth-to-diameter ratios (D/B) of 3, 6, and 10 embedded in the following soil profiles:

1. Uniform soft clay (c_u = 500 psf)
2. Uniform stiff clay (c_u = 2000 psf)
3. Loose sand (φ = 30)
4. Dense sand (φ = 40)

The results of this study are presented in Table 1. From these results, EPRI concluded that the three theories gave similar results, with the following exceptions:

1. In cohesive soils with D/B less than 4, Broms' method significantly underpredicts the ultimate capacity value as obtained by either Brinch Hansen or Reese because the top 1.5 pier diameters of depth is neglected.
2. In cohesionless soils with D/B less than 3, Reese's method underpredicts the ultimate capacity value when compared to that
Table 1. Comparison Study of Existing Ultimate Capacity Methods
(From EPRI (11))

<table>
<thead>
<tr>
<th>B (ft)</th>
<th>D/B</th>
<th>Soft Clay</th>
<th>Stiff Clay</th>
<th>Loose Sand</th>
<th>Dense Sand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>(B^{+} (0.47))</td>
<td>(B (0.47))</td>
<td>((0.68))</td>
<td>((1.00))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(R (0.84))</td>
<td>(R (0.80))</td>
<td>BH (1.00)</td>
<td>BH (1.00)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BH (1.00)</td>
<td>BH (1.00)</td>
<td>B (2.30)</td>
<td>B (1.58)</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>(R (0.91))</td>
<td>(R (0.84))</td>
<td>((0.86))</td>
<td>((0.98))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(B (0.94))</td>
<td>(B (0.94))</td>
<td>BH (1.00)</td>
<td>BH (1.00)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BH (1.00)</td>
<td>BH (1.00)</td>
<td>B (2.01)</td>
<td>B (1.31)</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>BH (1.00)</td>
<td>(R (0.94))</td>
<td>((1.05))</td>
<td>BH (1.00)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(R (1.03))</td>
<td>BH (1.00)</td>
<td>BH (1.00)</td>
<td>B (1.11)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(B (1.13))</td>
<td>(B (1.13))</td>
<td>B (1.79)</td>
<td>R (1.23)</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>(B (0.49))</td>
<td>(B (0.49))</td>
<td>((0.73))</td>
<td>((0.77))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(R (0.98))</td>
<td>(R (0.85))</td>
<td>BH (1.00)</td>
<td>BH (1.00)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BH (1.00)</td>
<td>BH (1.00)</td>
<td>B (2.45)</td>
<td>B (1.65)</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>BH (1.00)</td>
<td>(R (0.93))</td>
<td>((0.92))</td>
<td>BH (1.00)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(B (1.00))</td>
<td>BH (1.00)</td>
<td>BH (1.00)</td>
<td>R (1.05)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(R (1.15))</td>
<td>(B (1.00))</td>
<td>B (2.19)</td>
<td>B (1.43)</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>BH (1.00)</td>
<td>BH (1.00)</td>
<td>BH (1.00)</td>
<td>BH (1.00)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(B (1.25))</td>
<td>(R (1.09))</td>
<td>R (1.15)</td>
<td>B (1.27)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(R (1.25))</td>
<td>(B (1.25))</td>
<td>B (2.04)</td>
<td>R (1.34)</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>(B (0.52))</td>
<td>(B (0.52))</td>
<td>((0.78))</td>
<td>((0.81))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BH (1.00)</td>
<td>(R (0.93))</td>
<td>BH (1.00)</td>
<td>BH (1.00)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(R (1.19))</td>
<td>BH (1.00)</td>
<td>B (2.61)</td>
<td>B (1.76)</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>BH (1.00)</td>
<td>BH (1.00)</td>
<td>BH (1.00)</td>
<td>BH (1.00)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(B (1.10))</td>
<td>(R (1.09))</td>
<td>R (1.02)</td>
<td>R (1.16)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(R (1.39))</td>
<td>(B (1.10))</td>
<td>B (2.45)</td>
<td>B (1.60)</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>BH (1.00)</td>
<td>BH (1.00)</td>
<td>BH (1.00)</td>
<td>BH (1.00)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(B (1.44))</td>
<td>(R (1.32))</td>
<td>R (1.37)</td>
<td>B (1.50)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(R (1.56))</td>
<td>(B (1.44))</td>
<td>B (2.41)</td>
<td>R (1.60)</td>
</tr>
</tbody>
</table>

*() = Ultimate Capacity by Method in Question
Ultimate Capacity by Brinch Hansen's Method

B = Brors's Method, R = Reese's Method, BH = Brinch Hansen's Method
obtained by Brinch Hansen's or Broms' methods.

3. In cohesionless soils, Broms' method significantly overpredicts the ultimate capacity values in comparison to that by Brinch Hansen's or Reese's methods. This overprediction is more significant in loose sands than in dense sands.

Linear Load-Deflection Models

The linear load-deflection method approximates the behavior of drilled shafts under lateral loading conditions. This method of analysis predicts deflections of laterally loaded drilled shafts, and thus an entire load-deflection relationship may be determined. The linear load-deflection approach assumes that the deflections at low load levels are influenced by the stress-strain characteristics of the shaft and the stress-strain characteristics of the soil. The soil is modeled using a linear relationship between lateral deflection and lateral pressure (subgrade modulus approach), or by assuming a linear relationship between stress and strain (elastic continuum approach).

Subgrade Modulus Models. In the subgrade modulus approach, the soil is represented by a series of independent springs in a manner similar to the beam on elastic foundation problems addressed by Hetenyi (19). In this approach the lateral pressure at any given depth
can be related to the lateral pier deflection at that depth through the subgrade modulus as follows:

\[p = k_h \delta \]

where

\[\delta = \text{shaft deflection (length)} \]
\[p = \text{lateral soil pressure (force/length}^2\text{)} \]
\[k_h = \text{subgrade modulus (force/length}^3\text{)} \]

The relationship given in Eq. 7 is an approximation, since the lateral pressure is a function of not only the deflection at the point in question but also dependent on the deflection and the rotation at every point along the length of the shaft. In this regard, it is noted that the subgrade modulus is not solely a property of the soil, since it is also a function of the shaft geometry and the relative flexibility of the shaft-soil system.

The beam on the elastic foundation or subgrade modulus approach has received considerable attention in the engineering literature. Numerous solutions have been presented for flexible shafts supported by elastic foundations whose subgrade modulus variation with depth can be described by mathematical equations. Some of the most commonly used subgrade modulus variations are given in Table 2, which was adapted from Woodward, Gardner, and Greer (48). Matlock and Reese (27) have presented
<table>
<thead>
<tr>
<th>Modulus Variation with Depth</th>
<th>Solution Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>Grandholm (17), Hetenyi (18)</td>
</tr>
<tr>
<td>Linear increase</td>
<td>Reese and Matlock (38), Hetenyi (18)</td>
</tr>
<tr>
<td>Power function increase</td>
<td>Palmer and Thomson (31), Matlock and Reese (27), Davisson and Prakash (13)</td>
</tr>
<tr>
<td>Polynomial function of increase</td>
<td>Matlock and Reese (27)</td>
</tr>
<tr>
<td>Two-layer system with the subgrade modulus constant in each layer</td>
<td>Davisson and Gill (12)</td>
</tr>
</tbody>
</table>
generalized solutions in a graphical form for both rigid and flexible shafts.

The accuracy of the subgrade modulus approach is completely dependent on the value of the subgrade modulus used in the analysis. Many methods have been proposed for computing the subgrade modulus. Terzaghi (44) proposed numerical values of the subgrade modulus for laterally loaded piles embedded in clays or sands. For piles embedded in stiff clay, the lateral subgrade modulus can be calculated from plate load tests (one foot square) on the surface of the clay as follows:

\[k_h = \frac{k_{sl}}{1.5B} \]

where

- \(k_h \) = lateral subgrade modulus
- \(k_{sl} \) = subgrade modulus for a one-foot square plate
- \(B \) = shaft width

For stiff to hard clays where plate load tests are not available, Terzaghi (44) recommended approximate values for \(k_{sl} \) as shown in Table 3.

For piles embedded in sand, Terzaghi (44) presented the following empirical equation for the subgrade modulus:

\[k_h = \frac{Ay'z}{1.35B} = \frac{n_hz}{B} \]
Table 3. Values of the Subgrade Modulus (k_{s1}) for One Foot Square Plates Resting on Precompressed Clay (44)

<table>
<thead>
<tr>
<th>Consistency of Clay</th>
<th>Stiff</th>
<th>Very Stiff</th>
<th>Hard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unconfined Compressive Strength q_u (tsf)</td>
<td>1-2</td>
<td>2-4</td>
<td>4</td>
</tr>
<tr>
<td>Range for k_{s1} (tcf)</td>
<td>50-100</td>
<td>100-200</td>
<td>200</td>
</tr>
<tr>
<td>Proposed Values for k_{s1} (tcf)</td>
<td>75</td>
<td>150</td>
<td>300</td>
</tr>
</tbody>
</table>

Note: 1 tsf = 95.76 kPa
1 tcf = 3.20×10^4 kg/m3
1 ft = 0.3048 m
where

\[k_h = \text{lateral subgrade modulus} \]
\[z = \text{depth below ground surface} \]
\[B = \text{width of the pile} \]
\[\gamma' = \text{effective unit weight of the sand} \]
\[n_h = \text{constant of horizontal subgrade reaction} \]
\[A = \text{empirical coefficient which is a function of the relative density of the sand} \]

Values of \(n_h \) and \(A \) proposed by Terzaghi are shown in Table 4.

Terzaghi also proposed a relationship between the lateral subgrade modulus and the modulus of elasticity of the soil. This relationship is based on an elastic solution for the settlement of a uniformly loaded plate resting on an elastic half-space. This relationship is given by the following equation:

\[k_h = \frac{E_s}{1.35 B} \] \hspace{1cm} (10)

where

\[E_s = \text{modulus of elasticity of the soil} \]

Broms (6) presented the following equation for the subgrade modulus for piers embedded in cohesive soils:

\[\frac{k_h B}{E_s} = \frac{1}{m (1 - v^2)} \left(\frac{B}{D} \right)^{\frac{1}{2}} \] \hspace{1cm} (11)
Table 4.- Previously Proposed Values of the Constant of Horizontal Subgrade Reaction, n_h (44)

<table>
<thead>
<tr>
<th>Relative Density of Sand</th>
<th>Loose</th>
<th>Medium</th>
<th>Dense</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range of values of A</td>
<td>100-300</td>
<td>300-1000</td>
<td>100-2000</td>
</tr>
<tr>
<td>Proposed value of A</td>
<td>200</td>
<td>600</td>
<td>1500</td>
</tr>
<tr>
<td>Dry or moist sand, value of n_h (tcf)</td>
<td>7</td>
<td>21</td>
<td>56</td>
</tr>
<tr>
<td>Submerged sand, value of n_h (tcf)</td>
<td>4</td>
<td>14</td>
<td>34</td>
</tr>
</tbody>
</table>

Note: 1 tcf = 3.2×10^4 kg/m³
where

\[m = \text{influence factor which is a function of } \frac{D}{B} \text{ (see Table 5)} \]

\[\nu = \text{Poisson's ratio of the soil} \]

Grandholm (17) developed the following equation for the lateral subgrade modulus based on Boussinesq's formula for the mean deflection of a beam resting on the surface of an elastic half-space:

\[\frac{k_h B}{E_s} = \frac{2 \pi}{(1 - \nu)(1 + 2 \ln \frac{2\pi D}{B})} \text{ (12)} \]

Vesic (46) developed an equation for the subgrade modulus which gives a best-fit approximation to a continuum solution for an infinitely long beam resting on an elastic half-space and subjected to either a concentrated load or moment. This solution is the limiting value of the subgrade modulus as \(\frac{D}{B} \) approaches infinity. This equation indicates that the subgrade modulus is relatively insensitive to pier flexibility for long piers, and is given by

\[\frac{k_h B}{E_s} = \frac{0.65}{(1 - \nu^2)} \sqrt[12]{\frac{E_s B^4}{E I_p}} \text{ (13)} \]

where

\[E I_p = \text{effective flexural stiffness on the beam} \]
Table 5. Numerical Values of the Influence Factor m (6)

<table>
<thead>
<tr>
<th>D/B</th>
<th>1.0</th>
<th>1.5</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>10</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>0.95</td>
<td>0.94</td>
<td>0.92</td>
<td>0.88</td>
<td>0.82</td>
<td>0.71</td>
<td>0.37</td>
</tr>
</tbody>
</table>
Baguilin, Frank, and Said (2) developed equations for subgrade modulus by combining two-dimensional continuum solutions for a rigid circular disk translating in a finite elastic medium with three-dimensional solutions for a slender flexible vertical rod. The equations are as follows:

\[
\frac{k_h B}{E_s} = \frac{1}{0.573 + 0.239 \ln \left(\frac{R}{15B} \right)} \quad \text{(for } \nu = 0.5) \quad \ldots \ldots \ldots \quad (14)
\]

\[
\frac{k_h B}{E_s} = \frac{1}{0.808 + 0.265 \ln \left(\frac{R}{15B} \right)} \quad \text{(for } \nu = 0.33) \quad \ldots \ldots \ldots \quad (15)
\]

where

\[R = \text{radius of effective soil boundary (see Table 6)} \]

Davidson and Donovan (10) developed a semi-empirical subgrade modulus equation for drilled piers. The form of this equation was based on the analytical work of Douglas and Davis (15). However, the coefficient of the equation was adjusted to match the results from two field load tests. The resulting equation is as follows:

\[
\frac{k_h B}{E_p} = 6 \left(\frac{B}{B_0} \right)^{\frac{1}{4}} \left(\frac{D}{B} \right)^{-\frac{1}{2}} \quad \ldots \ldots \ldots \ldots \ldots \ldots \quad (16)
\]
Table 6. Radius of Effective Soil Boundary

<table>
<thead>
<tr>
<th>Loading Condition</th>
<th>D/ℓ₀*</th>
<th>R = Radius of Effective Soil Boundary</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ν = 0.5</td>
</tr>
<tr>
<td>Lateral shear, no moment</td>
<td>>2.4</td>
<td>R = 7ℓ₀*</td>
</tr>
<tr>
<td></td>
<td><2.4</td>
<td>R = 3D₀</td>
</tr>
<tr>
<td>(rigid)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moment, no lateral shear</td>
<td>>2.4</td>
<td>R = 3ℓ₀</td>
</tr>
<tr>
<td></td>
<td><2.4</td>
<td>R = 1.5D</td>
</tr>
<tr>
<td></td>
<td>(rigid)</td>
<td></td>
</tr>
</tbody>
</table>

ℓ₀ = \(\sqrt{\frac{4EI_p}{k_nB}} \)
where

\[E_p = \text{modulus of elasticity of the soil as obtained from the pressuremeter test} \]
\[B_0 = \text{reference diameter of one foot} \]

Another semi-empirical formulation for the subgrade modulus based on the modulus of elasticity determined from a pressuremeter tests was developed by Menard (3). The value of the subgrade modulus developed by Menard as follows:

\[
\frac{k_h B}{E_p} = \frac{3}{\frac{2}{3} \left[\frac{B_0}{B} \right] \left[\frac{B}{B_0} (2.65)^{\alpha} + \frac{\alpha}{2} \right]} \quad \text{(for } B > 0.6 \text{ meters)} \quad \ldots \quad (17)
\]
\[
\frac{k_h B}{E_p} = \frac{18}{4 (2.65)^{\alpha} + 3\alpha} \quad \text{(for } B < 0.6 \text{ meters)} \quad \ldots \quad (18)
\]

where

\[B_0 = \text{reference diameter of 0.6 meters} \]
\[\alpha = \text{rheological coefficient as given in Table 7.} \]

A critical depth, \(Z_c \), has been defined below in which Eqs. 17 and 18 are valid. At shallower depths, the recommended subgrade modulus becomes \(\lambda_z k_h \), where \(\lambda_z \) is a reduction coefficient defined by:

\[
\lambda_z = \frac{1 + z/z_c}{2} \quad \ldots \quad \ldots \quad \ldots \quad \ldots \quad \ldots \quad (19)
\]

where \(z_c \) is on the order of 2B for cohesive soils and 4B for granular soils.
Table 7. Rheological Coefficient α (16)

<table>
<thead>
<tr>
<th>Type of Material</th>
<th>Peat E_p/p_l</th>
<th>Clay E_p/p_l</th>
<th>Silt E_p/p_l</th>
<th>Sand E_p/p_l</th>
<th>Sand and Gravel E_p/p_l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over consolidated</td>
<td>-</td>
<td>16 1</td>
<td>14 $2/3$</td>
<td>12 $1/2$</td>
<td>10 $1/3$</td>
</tr>
<tr>
<td>Normally consolidated</td>
<td>1</td>
<td>9/16 $2/3$</td>
<td>8-14 $1/2$</td>
<td>7-12 $1/3$</td>
<td>6-10 $1/4$</td>
</tr>
<tr>
<td>Weathered or altered soil</td>
<td>-</td>
<td>7-9 $1/2$</td>
<td>- $1/2$</td>
<td>- $1/2$</td>
<td>- $1/4$</td>
</tr>
</tbody>
</table>

$a = 1/2$ for extensively fractured rock
$a = 1/2$ for normal rock
$a = 2/3$ for rock only slightly fractured or decomposed rock
p_l = limit pressure from pressuremeter testing
Continuum Models. The continuum solutions for laterally loaded drilled shafts or piles are based on Mindlin's (29) elastic solution for a horizontal point load in a homogeneous elastic half-space. Poulos (33) presented solutions for the displacement and the rotation of a flexible vertical strip embedded in a uniform elastic half-space and subjected to a horizontal load or moment applied to its upper edge. This solution assumes that no slip or separation occurs between the strip and the surrounding soil.

A similar procedure for determining the displacement and the rotation of a thin, rigid vertical plate embedded in a homogeneous elastic half-space and subjected to a horizontal load or a moment applied to its upper edge was proposed by Douglas and Davis (14). Similar to the solution by Poulos (32), this solution assures no separation or slip between the plate and the soil.

Comparitive Study of Linear Load Deflection Models

The Electric Power Research Institute (EPRI) (11) conducted a comparative study of the linear load-deflection models. This study was conducted to investigate the relative magnitude of the deflection predictions of the most commonly used linear load-deflection models. This study addressed rigid piers with a diameter of 5 feet and with depth-to-diameter ratios of
3, 6, and 10. The following soil profiles were used in the study:

1. Uniform soft clay ($E_s = 0.3$ ksi)
2. Uniform stiff clay ($E_s = 1.5$ ksi)
3. Loose granular soil with linearly increasing modulus of elasticity ($E_s = 0.714$ ksi at a depth of 1 foot)
4. Dense granular soil with linearly increasing modulus of elasticity ($E_s = 1.428$ ksi at a depth of 1 foot)

Ground-line deflections for an applied moment (no applied shear) were predicted using the following methods:

1. Terzaghi 1 (Eq. 8 for stiff clay and Eq. 9 for sands)
2. Terzaghi 2 (Eq. 10)
3. Broms (Eq. 11) (Cohesive soils only)
4. Davidson and Donovan (GAI) (Eq. 16)
5. Menard (Eq. 17 and 18)
6. Baguelin (Eq. 15)
7. Douglas and Davis (14) (Cohesive soils only)
8. Poulos (32) (cohesive soils only)

These methods were ranked from softest prediction (greatest deflection) to stiffest prediction (least deflection). In addition, the ratio of the deflection obtained by Terzaghi's subgrade modulus equation (Eq. 10)
versus the deflection obtained by the theory in question was presented in order to determine the differences between the various theories. Table 8 presents the ranking of various solutions for the cases studied.

From Table 8, EPRI made the following observations:
1. The methods by Baguelin, Douglas, and Davis, and Poulos predict nearly identical deflections.
2. The least deflection is typically given by GAI's method or Menard's method.
3. Deflections predicted by the linear models can differ by a factor of 7.
4. Excluding Menard's model, the differences between the various theories decrease with increasing depth-to-diameter ratio.

Nonlinear Load-Deflection Models

A more sophisticated approach is the nonlinear load-deflection method based on the concept of p-y curves. Stress-strain behavior of soil is nonlinear, thus the lateral resistance of the soil, p, is nonlinearly related to the lateral deflection of the pier, y. This approach yields predictions that better approximate the behavior of piers under lateral loads. In this procedure, the resisting forces of the soil at the base of the shaft and the shear stresses at the perimeter of the shaft are neglected even though these components of soil resistance
Table 8. Comparative Study for Rigid Piers Using Existing Linear Load-Deflection Methods† (From EPRI (11))

<table>
<thead>
<tr>
<th>D/B</th>
<th>Soft Clay $(E_s = 0.3 \text{ ksi})$</th>
<th>Stiff Clay $(E_s = 1.5 \text{ ksi})$</th>
<th>Loose Sand $(E_s = 0.714z \text{ ksi})$*</th>
<th>Dense Sand $(E_s = 1.428z \text{ ksi})$*</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>GAI (0.14)**</td>
<td>GAI (0.14)</td>
<td>Menard (0.16)</td>
<td>GAI (0.14)</td>
</tr>
<tr>
<td></td>
<td>Baguelin (0.23)</td>
<td>Baguelin (0.23)</td>
<td>Baguelin (0.23)</td>
<td>Menard (0.22)</td>
</tr>
<tr>
<td></td>
<td>D&D (0.25)</td>
<td>D&D (0.25)</td>
<td>Menard (0.23)</td>
<td>Baguelin (0.23)</td>
</tr>
<tr>
<td></td>
<td>Menard (0.31)</td>
<td>Menard (0.56)</td>
<td>Terzaghi 2 (1.0)</td>
<td>Terzaghi 2 (1.0)</td>
</tr>
<tr>
<td></td>
<td>Terzaghi 2 (1.0)</td>
<td>Terzaghi 2 (1.0)</td>
<td>Terzaghi 1 (5.0)</td>
<td>Terzaghi 1 (1.4)</td>
</tr>
<tr>
<td></td>
<td>Broms (1.0)</td>
<td>Broms (1.0)</td>
<td>Terzaghi 1 (1.7)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>GAI (0.20)</td>
<td>GAI (0.20)</td>
<td>Menard (0.16)</td>
<td>GAI (0.20)</td>
</tr>
<tr>
<td></td>
<td>Menard (0.31)</td>
<td>Baguelin (0.36)</td>
<td>Baguelin (0.36)</td>
<td>Menard (0.23)</td>
</tr>
<tr>
<td></td>
<td>Baguelin (0.37)</td>
<td>D&D (0.37)</td>
<td>Menard (0.56)</td>
<td>Baguelin (0.36)</td>
</tr>
<tr>
<td></td>
<td>D&D (0.37)</td>
<td>Menard (0.56)</td>
<td>Terzaghi 2 (1.0)</td>
<td>Terzaghi 2 (1.0)</td>
</tr>
<tr>
<td></td>
<td>Terzaghi 2 (1.0)</td>
<td>Terzaghi 2 (1.0)</td>
<td>Terzaghi 1 (5.0)</td>
<td>Terzaghi 1 (1.4)</td>
</tr>
<tr>
<td></td>
<td>Broms (1.2)</td>
<td>Broms (1.2)</td>
<td>Terzaghi 1 (1.7)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Menard (0.31)</td>
<td>GAI (0.33)</td>
<td>Menard (0.16)</td>
<td>Menard (0.22)</td>
</tr>
<tr>
<td></td>
<td>GAI (0.33)</td>
<td>Menard (0.56)</td>
<td>GAI (0.33)</td>
<td>Menard (0.22)</td>
</tr>
<tr>
<td></td>
<td>D&D (0.45)</td>
<td>D&D (0.45)</td>
<td>Baguelin (0.45)</td>
<td>Baguelin (0.45)</td>
</tr>
<tr>
<td></td>
<td>Baguelin (0.45)</td>
<td>Baguelin (0.45)</td>
<td>Terzaghi 2 (1.0)</td>
<td>Terzaghi 2 (1.0)</td>
</tr>
<tr>
<td></td>
<td>Poulos (0.48)</td>
<td>Poulos (0.48)</td>
<td>Terzaghi 1 (5.0)</td>
<td>Terzaghi 1 (5.0)</td>
</tr>
<tr>
<td></td>
<td>Terzaghi 2 (1.0)</td>
<td>Terzaghi 2 (1.0)</td>
<td>Terzaghi 1 (1.4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Broms (1.4)</td>
<td>Broms (1.4)</td>
<td>Terzaghi 1 (1.7)</td>
<td></td>
</tr>
</tbody>
</table>

† Pier diameter equals 5 feet (1.5 m)

**() = Deflection at Ground Line by Method in Question

* Deflection at Ground Line by Terzaghi's Equation (Eq. 10)

*z in feet

39
can significantly influence the response of laterally loaded drilled shafts. However, the p-y curve approach has gained popularity, and consequently many p-y curves for various soil types have been proposed.

Matlock (26) has proposed the following equation for soft clays:

$$\frac{P}{P_{ult}} = 0.5 \left(\frac{Y}{Y_{50}} \right)^{\frac{1}{3}}$$ \hspace{1cm} (20)

where

- $p = \text{soil reaction pressure (force/unit length)}$
- $P_{ult} = \text{ultime soil reaction pressure (force/unit length)}$
- $Y = \text{pier deflection}$
- $Y_{50} = \text{pier deflection at one-half of the ultimate lateral pressure}$

Reese and Welch (39) have proposed the following equation for stiff clays:

$$\frac{P}{P_{ult}} = 0.5 \left(\frac{Y}{Y_{50}} \right)^{\frac{1}{4}}$$ \hspace{1cm} (21)

Both Eqs. 20 and 21 are defined once the ultimate lateral soil pressure, P_{ult}, and the deflection required to develop one-half of this ultimate pressure, Y_{50}, are known. Matlock (26) has proposed Eq. 3 for calculating P_{ult} and has suggested that Y_{50} can be computed using the
following equation:

\[y_{50} = 2.5 \varepsilon_{50} B \] \hspace{1cm} (22)

where

\(B \) = pier diameter

\(\varepsilon_{50} \) = strain corresponding to one-half of the maximum principal stress difference determined from an unconsolidated, undrained triaxial compression test.

Typical values for \(\varepsilon_{50} \) suggested by Skempton [see Welch and Reese (47)] are given in Table 9.

Parker and Reese (32) have proposed the following equation for sands:

\[\frac{P}{P_{ult}} = \tanh \left(\frac{E_{si} y}{P_{ult}} \right) \] \hspace{1cm} (23)

where

\(P_{ult} \) = ultimate soil pressure as defined in Eqs. 4 and 5

\[E_{si} = \frac{E_m}{1.35} \] = initial slope of the p-y curve

\(E_m \) = initial slope of the soil stress-strain curve

The stress-strain curve of the soil could be obtained, for example, from a consolidated, drained triaxial compression test. If such a test is not conducted, \(E_m \) can be approximated as follows:
Table 9. Typical Values for \(y_{50} \)

<table>
<thead>
<tr>
<th>Consistency of Clay</th>
<th>(y_{50})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft</td>
<td>0.020</td>
</tr>
<tr>
<td>Medium</td>
<td>0.010</td>
</tr>
<tr>
<td>Stiff</td>
<td>0.005</td>
</tr>
</tbody>
</table>
where

\[E_m = A \gamma' z \] \hspace{1cm} (24)

\[\gamma' = \text{effective unit weight of the soil} \]
\[z = \text{depth below ground surface} \]
\[A = \text{coefficient recommended by Terzaghi (44) for computing the lateral subgrade modulus as shown in Table 4} \]

Reese and Allen (37) have proposed more refined techniques for developing p-y curves for both sands and clays to include strain softening.

Conclusions

It is clear from the preceding discussion that the laterally loaded drilled shaft problem requires further investigation. The ultimate lateral load capacity models only predict the ultimate load the drilled shaft will withstand without failure in the soil. The linear load deflection models represent the soil as a linear elastic material in spite of the fact that the soil is highly nonlinear. The nonlinear load deflection approach better approximates the nonlinear behavior of shafts under lateral loading conditions. However, the resisting forces and moments of the soil at the base of the shaft, and the shear stresses on the perimeter of the shaft, are neglected.

Development of an analysis procedure which captures
the nonlinearity of the soil response and includes all components of soil resistance, lateral normal stresses, and the shear stresses is necessary if the behavior of guardrail posts is to be accurately predicted. Furthermore, the lateral earth pressures developed against the shaft need to be related to the fundamental earth pressure theories of Coulomb (5) to avoid unnecessary assumptions or empiricism.
General

One of the principal goals of this research study was to develop an improved methodology for the analysis and design of drilled shafts or highway guardrail posts subject to lateral loads and overturning moments. This section describes the development of an analytical model for laterally loaded drilled shafts. The model is adequate to capture the realistic behavior of drilled shafts under lateral loading conditions while being simple enough for use in day-to-day design of these shafts. The analytical model development followed the steps noted below:

1. Definition of the problem.
2. Development of equations to characterize the nonlinear lateral stress-displacement response of the soil.
3. Development of an equation to calculate the horizontal shear stresses around the shaft.
4. Development of equations to calculate the vertical shear stresses acting on the perimeter of the shaft.
5. Development of equations to compute the shear stress and the compressive force acting on the shaft.
6. Development of an iterative solution to solve the lateral force and overturning moment equilibrium equations simultaneously.

The remainder of the chapter provides more details on the development of the analytical model.

Definition of the Problem

The soil-structure interaction analysis for a laterally loaded drilled shaft involves a complex distribution of normal and shear stresses at the shaft-soil interface. The analysis of these stresses is further complicated by the nonlinearity of the stress-strain behavior of the soil and the nonlinearity induced by the slip and separation at the shaft-soil interface. However, if the laterally loaded drilled shaft problem is to be properly analyzed, these complexities cannot be neglected.

In the development of this analytical model, the shaft is considered to be divided into a finite number of segments. The displacements of the segment are computed and based on this, the stresses on the segment can be calculated. Once the stresses are calculated for every segment, these stresses can be resolved into forces and added vectorially to satisfy equilibrium conditions.

The displacements of the shaft segments and thebase of the shaft.
forces acting on the shaft are shown in Figs. 7 and 8, respectively. Both the applied and the resisting forces are shown in Fig. 8. The applied forces acting on the shaft are:

1. Lateral load or ground-line shear, P_L
2. Overturning moment or ground-line moment, $M = P_L H$
3. Vertical or axial load, P_A
4. Effective weight of the shaft, W

The forces acting to resist the motion of the shaft are:

1. Lateral force resultant acting on segment i, P_i. This resultant is composed of the lateral earth pressure resultant, the resultant of the horizontal shear stress, and the drag force.
2. Vertical shear force acting on segment i, V_i.

These forces acting on the drilled shaft must satisfy moment and force equilibrium. Referring to Fig. 8, the equations for the drilled shaft corresponding to moment equilibrium summed about the ground-line, lateral force equilibrium, and the vertical force equilibrium, respectively are as follows:
FIG. 7.-Details of the Model: Shaft Displacements
FIG. 8.-Details of the Model: Forces on the Shaft
\[M = \sum_{i=1}^{n} P_i z_i \text{ (for } z_i < R) - \sum_{i=1}^{m} P_i z_i \text{ (for } z_i > R) - \sum_{i=1}^{n+m} V_i x_i - V_B - F_B x_B \ldots \ldots \ldots \ldots (25) \]

\[P_L = \sum_{i=1}^{n} P_i \text{ (for } z_i < R) - \sum_{i=1}^{m} P_i \text{ (for } z_i > R) - V_B \ldots (26) \]

\[P_A = \sum_{i=1}^{n} V_i \text{ (for } z_i < R) - \sum_{i=1}^{m} V_i \text{ (for } z_i > R) + F_B - W \ldots (27) \]

where:

- \(H \) = Height above the ground-line to the point of application of the lateral load
- \(L \) = Embedment depth of the shaft
- \(R \) = Depth to the point of no lateral displacement or rotation point
- \(z_i \) = Depth to the center of shaft segment \(i \)
- \(n \) = Number of shaft segments above the point of rotation
- \(m \) = Number of shaft segments below the point of rotation
- \(P_i \) = Lateral force acting on shaft segment \(i \) including the lateral earth pressure resultant and the resultant of the horizontal shear stress
- \(V_i \) = Vertical shear force acting on shaft segment \(i \)
$V_B = \text{Shear force acting on the base of the shaft}$

$F_B = \text{Vertical compressive force acting on the base of the shaft}$

$W = \text{Effective weight of the shaft}$

$x_i = \text{entricity of the vertical shear force relative to the shaft centerline for shaft segment i}$

$x_B = \text{Eccentricity of the vertical compressive force on the base relative to the centerline of the shaft}$

$I = \text{Moment of inertia of the shaft and soil about the ground surface}$

$\alpha = \text{angular acceleration}$

The difficulty in analyzing the laterally loaded drilled shaft problem lies in the calculation of the resisting stresses acting on the shaft. These stresses are functions of the geometry of the shaft, the displacement or movement of the shaft relative to the soil, and the properties of the soil surrounding the shaft. Calculation of these stresses is presented in the following sections of this chapter.

Lateral Force

The lateral force, P_i, acting on segment i of the shaft is composed of three components: the resultant of the lateral earth pressure, the resultant of the
horizontal shear stress around the perimeter of the shaft, and the drag force exerted by the soil as the shaft segment rapidly moves through the soil. Analysis procedures for the computation of these stresses and the resultants are considered in the following sections.

Lateral Earth Pressure

The stress-strain behavior of soils is highly nonlinear. Thus, relating lateral earth pressures to the movement of the shaft is not a simple task. This relation between the movement and the lateral earth pressures is shown qualitatively in Fig. 9.

Referring to Fig. 9, the active state is the state of shear failure achieved by moving away from the soil mass until the lateral earth pressure has reached a minimum. The ratio of the lateral earth pressure at the active state to the overburden pressure is called the coefficient of active earth pressure and is given the symbol K_a. The passive state is the state of shear failure achieved by moving into the soil mass until the lateral earth pressure has reached a maximum. The ratio of the lateral earth pressure at the passive state to the overburden pressure is called the coefficient of passive earth pressure and is given the symbol K_p. The ratio of the lateral stress to the overburden stress, when no movement has occurred, is called the coefficient of at-
FIG. 9.-Effect of Wall Movement or Tilt on Magnitude of Resultant of Earth Pressure
rest earth pressure and is given the symbol K_o.

For both the active and passive states of shear failure, the lateral earth pressure can be calculated using the classical earth pressure theory by Coulomb (5). However, for states of stress in between these two states, the lateral earth pressure is not as easily calculated. Earth pressure theories to calculate the lateral earth pressure at a state of stress in between the active and passive states have not been developed. Thus, in order to calculate these lateral earth pressures the curve shown in Fig. 9 must be completely defined. The relation between the lateral pressures and the movement used in the development of this model is shown in Fig. 10.

Referring to Fig. 10, the lateral earth pressures developed when the movement of the shaft is into the surrounding soil mass are described by curve 1. The lateral earth pressures developed when the movement of the shaft is away from the soil mass are described by curve 2. These curves are defined by the equations:

Curve 1:

$$\sigma_p = \left[(K_p - K_o)\sigma'_v + 2c\sqrt{K_p} \right] \tanh \left[\frac{2x}{K_p} \right] + K_o\sigma'_v \ldots \ldots \ldots (28)$$
FIG. 10.-Variation of Lateral Earth Pressures With Shaft Movement
Curve 2:

\[\sigma_a = \left[(K_o - K_a)\sigma_v + 2c\sqrt{K_a} \right] \tanh \left[\frac{-2x}{\chi_a} \right] + K_o\sigma_v \ldots \ldots (29) \]

where

\[\sigma_p = \text{lateral passive earth pressure} \]
\[\sigma_a = \text{lateral active earth pressure} \]
\[K_p = \text{Coulomb's coefficient of passive earth pressure} \]
\[K_a = \text{Coulomb's coefficient of active earth pressure} \]
\[K_o = \text{coefficient of at-rest earth pressure} \]
\[\sigma_v = \text{effective overburden pressure} \]
\[c = \text{soil cohesion} \]
\[x = \text{movement of shaft} \]
\[X_p = \text{movement required to develop ultimate passive pressure or passive state of shear failure} \]
\[X_a = \text{movement required to develop the active state of shear failure} \]

The coefficient of passive earth pressure, \(K_p \), as given by Coulomb is calculated as follows:

\[K_p = \frac{\sin^2 (\psi - \phi)}{\sin^2 \psi \sin(\psi + \delta) \left[1 - \sqrt{\frac{\sin(\phi + \delta) \sin(\phi + \beta)}{\sin(\psi + \delta) \sin(\psi + \beta)}} \right]^2} \quad (30) \]
where

\[\phi = \text{angle of internal shearing resistance of the soil} \]
\[\delta = \text{angle of shearing resistance between the shaft and the soil} \]
\[\psi = \text{the angle of inclination of the shaft from the horizontal} \]
\[\beta = \text{ground slope} \]

The coefficient of active earth pressure, \(K_a \), as given by Coulomb is calculated similarly as follows:

\[
K_a = \frac{\sin^2 (\psi + \phi)}{\sin^2 \psi \sin(\psi - \delta) \left[1 + \sqrt{\frac{\sin(\phi + \delta) \sin(\phi - \beta)}{\sin(\psi - \delta) \sin(\psi + \beta)}} \right]^2} \tag{31}
\]

The coefficient of at-rest earth pressure, \(K_o \), for cohesionless soils, and normally consolidated clays can be calculated as follows:

\[
K_o = 1 - \sin \phi' \tag{32}
\]

where

\[\phi' = \text{effective angle of internal shearing resistance}. \]

For over-consolidated clays, the value of \(K_o \) is a function of the plasticity index and the over consolidation ratio of the soil. Correlations have been developed by Brooker and Ireland (8) to determine the value of \(K_o \) for over-consolidated soils.
The shear strength parameters ϕ and c can be measured in the laboratory by performing triaxial compression tests on soil samples. Measurement of the wall friction angle δ is much more difficult, however extensive research has been performed to correlate these values with soil types. Wall friction values for several structural materials are presented in Table 10.

The amount of movement of any point on the shaft necessary to produce either the active or passive state is proportional to the width of the shear zone adjacent to the point. As shown in Fig. 11, the minimum movement consists of rotating about some point beneath the ground surface. Typical values of the minimum tilt required to develop active and passive states have been suggested by Sowers (43) and are listed below in Table 11.

The lateral earth pressures given in Eqs. 28 and 29 are the maximum pressures developed for a given depth and the horizontal movement. These pressures would be developed if the shaft had an infinite width. Since the shaft is not infinite in width, a complex stress distribution develops around the perimeter of the shaft cross-section. This distribution will vary with the geometry of the shaft.

For circular shafts, the distribution shown in Fig. 12 is assumed to develop. As horizontal movement of the shaft segment takes place, the stresses increase on the
Table 10. Friction Angles δ Between Various Foundation Materials and Soil or Rock*

<table>
<thead>
<tr>
<th>Interface Materials</th>
<th>Friction angle, δ, degrees**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass concrete or masonry on the following:</td>
<td></td>
</tr>
<tr>
<td>Clean sound rock</td>
<td>35</td>
</tr>
<tr>
<td>Clean gravel, gravel-sand mixtures, coarse sand</td>
<td>29-31</td>
</tr>
<tr>
<td>Clean fine to medium sand, silty medium to coarse sand, silty or clayey gravel</td>
<td>24-29</td>
</tr>
<tr>
<td>Clean fine sand, silty or clayey fine to medium sand</td>
<td>19-24</td>
</tr>
<tr>
<td>Fine sandy silt, nonplastic silt</td>
<td>17-19</td>
</tr>
<tr>
<td>Very stiff and hard residual or preconsolidated clay</td>
<td>22-26</td>
</tr>
<tr>
<td>Medium stiff and stiff clay and silty clay</td>
<td>17-19</td>
</tr>
<tr>
<td>Steel sheet piles against:</td>
<td></td>
</tr>
<tr>
<td>Clean gravel, gravel-sand mixture, well-graded rock fill with spalls</td>
<td>22</td>
</tr>
<tr>
<td>Clean sand, silty sand-gravel mixture, single-size hard rock fill</td>
<td>17</td>
</tr>
<tr>
<td>Silty sand, gravel or sand mixed with silt or clay</td>
<td>14</td>
</tr>
<tr>
<td>Fine sandy silt, nonplastic silt</td>
<td>11</td>
</tr>
<tr>
<td>Formed concrete or concrete sheetpiling against:</td>
<td></td>
</tr>
<tr>
<td>Clean gravel, gravel-sand mixtures, well-graded rock fill with spalls</td>
<td>22-26</td>
</tr>
<tr>
<td>Clean sand, silty sand-gravel mixture, single-size hard rock fill</td>
<td>17-22</td>
</tr>
<tr>
<td>Silty sand, gravel or sand mixed with silt or clay</td>
<td>17</td>
</tr>
<tr>
<td>Fine sandy silt, nonplastic silt</td>
<td>14</td>
</tr>
<tr>
<td>Various structural materials:</td>
<td></td>
</tr>
<tr>
<td>Masonry on masonry, igneous and metamorphic rocks:</td>
<td></td>
</tr>
<tr>
<td>Dressed soft rock on dressed soft rock</td>
<td>35</td>
</tr>
<tr>
<td>Dressed hard rock on dressed soft rock</td>
<td>33</td>
</tr>
<tr>
<td>Dressed hard rock on dressed hard rock</td>
<td>29</td>
</tr>
<tr>
<td>Masonry on wood (cross grain)</td>
<td>26</td>
</tr>
<tr>
<td>Steel on steel at sheet-pile interlocks</td>
<td>17</td>
</tr>
<tr>
<td>Wood on soil</td>
<td>14-16***</td>
</tr>
</tbody>
</table>

*Based in part on NAFAC (1971)

**Single values $\pm 20^\circ$. Alternate for concrete on soil is $\delta = \phi$

***May be higher in dense sand or if sand penetrates wood.
FIG. 11.-Tilt Necessary for Active and Passive States
Table 11. Typical Minimum Tilt Necessary for Active and Passive States

<table>
<thead>
<tr>
<th>Soil</th>
<th>Active</th>
<th>Passive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dense Cohesionless</td>
<td>0.0005R*</td>
<td>0.005R</td>
</tr>
<tr>
<td>Loose Cohesionless</td>
<td>0.002R</td>
<td>0.01R</td>
</tr>
<tr>
<td>Stiff Cohesive</td>
<td>0.01R</td>
<td>0.02R</td>
</tr>
<tr>
<td>Soft Cohesive</td>
<td>0.02R</td>
<td>0.04R</td>
</tr>
</tbody>
</table>

*R = Depth to the point of rotation.
FIG. 12.-Distribution of Lateral Pressures Around a Circular Shaft
advancing surface and are reduced on the receding surface. The maximum value of stress, given in Eq. 28, is developed on the portion of the advancing surface at the point $\theta = 0$. This maximum pressure decreases to a value of the original at-rest pressure at $\theta = \pi/2$ and $\theta = -\pi/2$ as shown in Fig. 12. The pressure on the receding surface is rapidly reduced to a minimum value, as given in Eq. 29, on the portion of the surface at the point $\theta = \pi$. For cohesive soils, the active pressure as computed by Eq. 29 may be negative or tensile. However, the footing usually loses contact with the soil, and therefore tensile stresses do not act on the shaft.

A cosine distribution of pressure along the advancing perimeter of the shaft will be used to decrease the pressure from its maximum value. Thus the radial pressure on the advancing face of the shaft is written as:

$$\sigma_{rp} = \left(\left((K_p - K_o)\sigma'_v + 2c\sqrt{K_p} \right) \tanh \frac{2x}{X_p} \right) \cos \theta$$

$$+ K_o\sigma'_v \quad \text{(for } -\pi/2 \leq \theta \leq \pi/2) \ldots \ldots (33)$$

where:

$\sigma_{rp} = \text{radial stress on the advancing face of the shaft}$

The radial pressure on the receding face of the shaft...
shaft is similarly written as:

\[
\sigma_{ra} = \left(\left[(K_o - K_a)\sigma_V^t + 2c\sqrt{K_a} \right] \tanh \left(\frac{-2x}{X_a} \right) \right) \cos \theta
\]

\[+ K_o \sigma_V^t \quad \text{(for } \pi/2 \leq \theta \leq 3\pi/2) \quad \cdots (34)\]

where

\(\sigma_{ra}\) = radial stress on the receding face of the shaft.

This distribution of lateral pressures has been previously used in the solution of elasticity problems. Since the plastic flow concept allows the development of additional stresses in areas adjacent to the point of maximum stress, this cosine distribution may be slightly conservative.

Once the radial stresses are completely described, the resultant lateral force on a shaft segment of length, \(t\), can be calculated as follows:

\[
F_{lp} = 2 \int_0^{\pi/2} \sigma_{rp} \cos \theta \frac{B}{2} t \, d\theta - 2 \int_0^{\pi/2} \sigma_{ra} \cos \theta \frac{B}{2} t \, d\theta \quad (35)
\]

where

\(F_{lp}\) = lateral earth pressure resultant force on a shaft segment

\(B\) = shaft diameter

\(t\) = shaft segment thickness

Substitution of Eqs. 33 and 34 into Eq. 35 and
rearranging yields

\[F_{1p} = Bt \int_0^{\pi/2} \left\{ \left[(K_p - K_o) \sigma_v' + 2c\sqrt{K_p} \right] \tanh \left[\frac{2x}{X_p} \right] \right\} \cos \theta \]

\[- \left\{ \left[(K_o - K_a) \sigma_v' + 2c\sqrt{K_a} \right] \tanh \left[\frac{-2x}{X_a} \right] \cos \theta \right\} \cos \theta \, d\theta \] \tag{36}

after integration, Eq. 36 can be written as

\[F_{1p} = Bt \frac{\pi}{4} \left(\left[(K_p - K_o) \sigma_v' + 2c\sqrt{K_p} \right] \tanh \left[\frac{2x}{X_p} \right] \right) \]

\[- \left[(K_o - K_a) \sigma_v' + 2c\sqrt{K_a} \right] \tanh \left[\frac{-2x}{X_a} \right] \right\} \ldots \] \tag{37}

For noncircular shafts, the distribution of lateral earth pressures is more complex than that for the circular shafts. For rectangular cross-sections, the distributions shown in Fig. 13 are used to describe lateral stresses on the shaft. These assumed distributions were derived from contact pressure distributions beneath rigid footings. As in the case of circular shafts, once a distribution is known, the resultant lateral force acting on a shaft segment is calculated by integrating the lateral stresses over the area on which they act. The lateral force acting on the shaft segment can be written as:
FIG. 13.-Distribution of Lateral Pressures Around a Rectangular Shaft
\[F_{lp} = B t S_f \left(\left[(K_p - K_o)\sigma_v + 2c\sqrt{K_p} \right] \tanh \left[\frac{2x}{\lambda_p} \right] - \left[(K_o - K_a)\sigma_v + 2c\sqrt{K_a} \right] \tanh \left[\frac{-2x}{\lambda_a} \right] \right) \ldots (38) \]

where

\[S_f = \text{shape factor} \]
\[B = \text{shaft width} \]

The shape factor, \(S_f \), is a function of the geometry of the shaft. For circular shafts, the value of the shape factor is \(\pi/4 \) as shown in Eq. 38. For noncircular shafts, the value of \(S_f \) varies between \(2/3 \) and \(1.0 \) depending on the type of soil.

Horizontal Shear Stress

Considering the shear stresses developed by the movement of a circular shaft, it is apparent that the greatest tendency for the development of horizontal shear stresses acting around the perimeter of the shaft is at \(\theta = \pi/2 \) and \(\theta = -\pi/2 \) as shown in Fig. 12. As with the lateral earth pressures, a distribution to describe the horizontal shear stresses must be assumed in order to compute the resultant lateral force. It is seen that a sine function of \(\theta \), could be used to describe this distribution.

Since the maximum shear stress the soil can develop at the shaft-soil interface is
\[\tau_m = -\alpha_r (\sigma_r \tan \phi + c) \] (39)

where

\[\tau_m = \text{maximum shear stress} \]
\[\alpha_r = \text{strength reduction factor} \]
\[\sigma_r = \text{normal stress on the plane} \]

The distribution of the horizontal shear stress between \(\theta = 0 \) and \(\theta = \pi/2 \) is assumed as

\[\tau_{r\theta} = \alpha_r (\sigma_r \tan \phi + c) \sin \theta \] (40)

The strength reduction factor, \(\alpha_r \), is less than or equal to 1.0 and may reflect, for example, soil disturbance associated with the construction process.

Significant horizontal shear stresses at the shaft-soil interface are assumed to develop only on the advancing face of the shaft. Thus, the resultant lateral force of the horizontal shear stresses acting on a shaft segment is calculated as follows:

\[F_{1S} = 2 \int_0^{\pi/2} [\alpha_r (\sigma_r \tan \phi + c) \sin \theta] \sin \theta \frac{B}{2} t \, d\theta \] (41)

where

\[F_{1S} = \text{lateral force resultant of the horizontal shear stresses on a shaft segment} \]
\[\sigma_r = \text{radial stress on the advancing face of the shaft as given in Eq. (31)} \]

Substituting Eq. 33 into Eq. 41 and integrating gives the following:

\[F_{ls} = 8t \left(\frac{\tan \phi}{3} \left[(K_p - K_0)\sigma_v + 2c\sqrt{K_p} \right] \tanh \left[\frac{2x}{X_p} \right] \right) + \frac{\pi}{4} (K_0\sigma_v \tan \phi) + \frac{\pi}{4} c \] ...

(42)

Equation 42 is an expression for the lateral force resultant of the horizontal shear stresses acting on the advancing face of a circular shaft segment. This expression is not valid for noncircular shafts. However, for rectangular shafts, the lateral force resultant of the horizontal shear stresses can also be calculated.

Horizontal shear stresses are developed only on the sides of rectangular shafts. The normal stress distribution for rectangular shafts is shown in Fig. 13. Since the normal stress is a constant over the side of a rectangular shaft segment, the resultant lateral force is easily calculated as follows:

\[F_{ls} = 2B_w \sigma_r (K_0\sigma_v \tan \phi + c) \] ...

(43)

where
\[B_w = \text{length of the rectangular shaft segment} \]
Drag Force

As the shaft rapidly rotates through the soil, a drag force is exerted on the shaft by the soil. This drag force will be analyzed assuming that the soil is a viscous medium flowing around the shaft. Thus, the drag force on shaft segment i is calculated as follows:

\[F_{1d} = C_D A_i \rho \frac{v_i^2}{2} \] \hspace{2cm} (44)

where

- \(F_{1d} \) = drag force or shaft segment
- \(C_D \) = drag coefficient
- \(A_i \) = projected area of the body on a plane normal to the flow
- \(\rho \) = mass density of the soil
- \(v_i \) = velocity of the soil or shaft

The drag coefficient, \(C_D \), is a function of the shaft geometry and the Reynolds Number. The drag coefficient curves for both circular and square shafts are given in Fig. 14.

Total Lateral Force

The total lateral force acting on segment i of the shaft, \(P_i \), is the sum of the lateral earth pressure resultant, the resultant of the horizontal shear stress.
FIG. 14.-Drag Coefficients for Square Plates and Circular Cylinders

Reynolds Number, $R = \frac{v B p}{\mu}$
and the drag force. Thus, the total lateral resisting force on segment i is computed as follows:

\[P_i = F_{lp} + F_{ls} + F_{ld} \] \hspace{1em} (45)

where \(F_{lp} \), \(F_{ls} \), and \(F_{ld} \) were defined in Eqs. 37 or 38, 42 or 43, and 44.

Vertical Force

As a drilled shaft rotates under an applied overturning moment and ground-line shear, each point along the shaft moves horizontally and vertically. The vertical movement of a segment of the shaft causes vertical shear stresses to develop on the advancing face of the shaft. These shear stresses resist the rotation of the shaft.

Referring to Eq. 39, the ultimate shearing strength at the shaft-soil interface is:

\[\tau_m = \alpha_r (\sigma_r \tan \phi + c) \] \hspace{1em} (39)

Since the magnitude of the resultant of the horizontal shear stress \(\tau_{r\theta} \) and the vertical shear stress \(\tau_{zm} \) must be equal \(\tau_m \), the following distribution is assumed for the maximum vertical shear stress on a circular shaft:

\[\tau_{zm} = \alpha_r (\sigma_r \tan \phi + c) \cos \theta \] \hspace{1em} (46)
where
\[\tau_{zm} = \text{maximum vertical shear stress on shaft-soil interface} \]

The vertical shear stress, however, is a function of the vertical movement of the shaft segment, as well as the horizontal movement of the shaft. Thus, the vertical shear stress on the shaft-soil interface is calculated as follows:
\[\tau_{rz} = \tau_{zm} \tanh \left(\frac{2y}{Q} \right) \ldots \ldots \ldots \ldots \ldots (47) \]

where
- \(\tau_{rz} = \) vertical shear stress
- \(y = \) vertical movement of shaft segment
- \(Q = \) vertical movement of shaft segment required to develop maximum vertical shear stress, sometimes called quake

The vertical force resultant of the vertical shear stress on a circular shaft segment is calculated by integrating the vertical shear stresses over the area of the advancing face of the segment on which it acts, and this is given by:
\[V_i = 2 \int_{0}^{\pi/2} \tau_{rz} \frac{B}{2} t \, d\theta \ldots \ldots \ldots \ldots (48) \]

Substitution of Eq. 47 into Eq. 48 followed by integration yields:
\[V_i = B t \alpha_r \left\{ \frac{\pi}{4} \left(\left[(K_p - K_o)\sigma'_v + 2c K_p \right] \tanh \left[\frac{2x}{Y_p} \right] \right) \tan \phi \right. \]
\[+ \left. K_o \sigma'_v \tan \phi + c \right\} \tanh \left[\frac{2y}{Q} \right] \]

(Eq. 49)

where

- \(V_i \) = vertical resultant force acting on shaft segment \(i \)
- For noncircular shafts a different distribution of vertical shear stress must be assumed. Vertical shear stresses are assumed to develop only on the advancing face of rectangular shafts. The normal stress distributions on rectangular shafts are shown in Fig. 13.

The vertical resultant force due to the vertical shear stress on a rectangular shaft segment is calculated as follows:

\[V_i = B t \alpha_r \left\{ S_f \left[\left((K_p - K_o)\sigma'_v + 2c K_p \right) \tanh \left[\frac{2x}{Y_p} \right] \right. \right. \]
\[+ \left. \left. K_o \sigma'_v \right) \tan \phi + c \right\} \tanh \left[\frac{2y}{Q} \right] \]

(Eq. 50)

where

- \(S_f \) = shape factor
- \(B \) = pile width

Base Compressive Force

As the shaft rotates under an applied lateral load,
a vertical normal force develops on the base of the shaft. This vertical normal force can be determined directly from the vertical equilibrium equation given by:

\[F_B = P_A + W - \sum_{i=1}^{n} V_i \text{ (for } z_i < R) + \sum_{i=1}^{m} V_i \text{ (for } z_i > R) \ldots (27) \]

This base normal force is usually compressive, however, if Eq. 27 yields a negative or tensile value, the base normal force is set equal to zero. This implies that tension is not allowed to develop on the base of the shaft.

Base Shear Force

As the base of the shaft translates horizontally, a shear force is developed on the base. To determine this shear force, it is assumed that one-half of the shaft base maintains contact with the soil. It is further assumed that the normal stress on the base of the shaft increases linearly from the base centerline. Therefore, the base area in contact with the soil is:

\[A_b = \frac{\pi B^2}{8} \text{ (circular shaft)} \ldots \
where

\[A_b = \text{area of base in contact with soil} \]
\[B = \text{pile width or diameter} \]
\[B_w = \text{shaft cross-section length for rectangular shafts} \]

and the effective moment arm of the resultant base vertical compressive force from the centroidal axis of the shaft is:

\[x_b = 0.30B \]

(52)

Thus, the resisting moment acting on the base of the shaft is calculated as follows:

\[M_b = 0.3B F_B \]

(53)

where

\[M_b = \text{moment or base of shaft} \]

The base shear force is calculated as:

\[V_B = \alpha_r (cA_b + F_B \tan \phi) \]

(54)

where

\[V_B = \text{base shear force} \]
\[c = \text{cohesion of soil beneath the base} \]
\[\phi = \text{angle of internal shearing resistance of the soil beneath the base} \].
Calculation of the Moment of Inertia

In order to calculate the moment of inertia, I, of the shaft-soil system, the amount of soil within the failure zone is related to the movement of the shaft. As the movement or rotation of the shaft increases, the amount of soil within the failure zone increases. Thus, several assumptions must be made in order to evaluate the moment of inertia.

The assumed shape of the shear failure zone when the soil has completely failed is shown in Figs. 15 and 16. The failure zone for circular shafts is shown in Fig. 15, and the failure zone for rectangular shafts is shown in Fig. 16. These failure zones are developed when sufficient movement has occurred to develop the ultimate passive pressures. For movements less than that required to develop passive pressures, the size of the failure zone is assumed to be proportionately smaller.

Iterative Solution

The moment equilibrium and the lateral force equilibrium Eqs. 25 and 26 can be solved iteratively to determine the lateral force, P_L, and the ground-line moment, M, assuming that the height to the lateral load, H, is known and is constant. If the shaft is assumed to be rigid, a convenient approach to solving these equations is outlined as follows:
FIG. 15.-Failure Zone for Laterally Loaded Circular Shaft
FIG. 16.-Failure Zone for Laterally Loaded Rectangular Shaft
Step 1: Assume a depth to the center of rotation, R, and an angle of rotation.

Step 2: Compute the moment about the point of application of the lateral load.

Step 3: If the moment calculated in Step 2 is non-zero, assume a new depth to the center of rotation and repeat Step 2.

Step 4: Once the moment calculated in Step 2 is within some tolerance, calculate the lateral load using the lateral force equilibrium equation.

However, if the shaft is not rigid, the iterative scheme is significantly more involved. The displacements of each segment of the shaft are not interrelated by some angle of rotation. A relaxation approach is used to solve for the flexible shaft solution. The iterative scheme used to solve the moment and lateral force equilibrium equations for an elastic shaft is outlined as follows:

Step 1: Assume a value for the ground-line displacement of the shaft.

Step 2: Assume the shaft to be rigid and solve for the rigid iterative solution using the above procedure.

Step 3: Apply all the forces from the rigid solution as loads on the elastic shaft. Use the rigid angle of rotation for the ground-line slope of the
Step 4: Calculate the deflections of every segment of the shaft.

Step 5: From the deflections calculated in Step 4, compute the resisting forces acting on the shaft.

Step 6: Check moment equilibrium at the point of application of the lateral load. If this moment is within some specified tolerance, go to Step 9.

Step 7: Use the forces used in Step 3 as loads or the shaft. Assume a new ground-line slope.

Step 8: Repeat steps 4 thru 7 until the resisting forces calculated are in moment equilibrium.

Step 9: Check to see if the computed deflected shape matches the assumed deflected shape. If the deflected shapes agree within some specified tolerance, go to Step 12.

Step 10: If the computed deflected shape does not agree with the assumed deflected shape, average the resisting forces calculated in Step 5 with the forces used in Step 3. These averaged forces will be the loads applied on the elastic shaft in Step 3 for the next iteration.

Step 11: Repeat Steps 4 thru 10 until the solution converges to the flexible configuration of the shaft.
shaft.

Step 12: The computed deflected shape and the corresponding resisting forces are used to calculate the lateral load and ground-line moment of the flexible shaft.

The iterative scheme outlined above is easily coded into a computer program. This computer program LATPIL was written to solve for the lateral load and the overturning moment for a particular ground-line displacement using the theory and the iterative scheme as outlined in this chapter. A listing of the program and the input guide for LATPIL are given in Appendix III.

Comparison of Computer Predictions With Published Field Observations

In this section, the theoretical model previously described is used to predict the load-deflection curves for a number of published field load tests.

Texas A&M University Tests

The Texas State Department of Highways and Public Transportation conducted lateral load tests on 3 drilled piers. The results of these tests are contained in the research reports by Coyle, et al (8, 20, 24). All three piers were constructed in similar subsurface conditions consisting of slightly overconsolidated clay. The details of the piers used in these tests are presented in
Table 12. The soil properties at the site, utilized for the predictions in this report, are presented in Tables 13 and 14.

The load test results and the predictions from the analytical model for the three piers are presented in Figs. 17 to 19. For each of the load tests, four predictions were made using the program LATPIL, varying the type of earth pressures used in the analysis. For all these tests, the test results and the analytical predictions compare favorably.

Southern California Edison Tests

Southern California Edison Company (SCE) conducted lateral load tests on 12 drilled piers. The results of these tests are contained in a paper by Bhushan, Haley, and Fong (7). All piers were constructed in similar subsurface conditions consisting of hard, heavily overconsolidated clay. The details of the piers are given in Table 15, and the soil conditions for each test are presented in Table 16.

The load test results and the predictions generated using the program LATPIL are presented in Figs. 20 to 22. The predictions for pier no. 2 and pier no. 4 compare favorably with the load test results. The prediction for pier no. 7 under-predicts the load test results. Reasons
Table 12. Pier Details

<table>
<thead>
<tr>
<th>Pier No.</th>
<th>Pier Diameter (ft)</th>
<th>Embedment Length (ft)</th>
<th>Height of Load (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>20</td>
<td>2.6</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>15</td>
<td>2.6</td>
</tr>
<tr>
<td>3</td>
<td>2.5</td>
<td>15</td>
<td>2.6</td>
</tr>
</tbody>
</table>
Table 13. Soil Properties for Coyle's Test Shaft No. 1

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>φ deg.</th>
<th>δ deg.</th>
<th>c_u (ksf)</th>
<th>Unit Weight (pcf)</th>
<th>X_p/R</th>
<th>X_a/R</th>
<th>K_0</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 4</td>
<td>--</td>
<td>22</td>
<td>2.4</td>
<td>126</td>
<td>0.02</td>
<td>0.01</td>
<td>1.1</td>
<td>1.0</td>
</tr>
<tr>
<td>4 - 8</td>
<td>--</td>
<td>22</td>
<td>2.4</td>
<td>131</td>
<td>0.02</td>
<td>0.01</td>
<td>1.1</td>
<td>1.0</td>
</tr>
<tr>
<td>8 - 12</td>
<td>--</td>
<td>22</td>
<td>2.4</td>
<td>128</td>
<td>0.02</td>
<td>0.01</td>
<td>1.1</td>
<td>1.0</td>
</tr>
<tr>
<td>12 - 16</td>
<td>--</td>
<td>22</td>
<td>2.4</td>
<td>121</td>
<td>0.02</td>
<td>0.01</td>
<td>1.1</td>
<td>1.0</td>
</tr>
<tr>
<td>16 - 20</td>
<td>--</td>
<td>22</td>
<td>2.4</td>
<td>120</td>
<td>0.02</td>
<td>0.01</td>
<td>1.1</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Table 14. Soil Properties for Coyle's Test Shafts No. 2 and No. 3

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>ϕ deg.</th>
<th>δ deg.</th>
<th>c_u (ksf)</th>
<th>Unit Weight (pcf)</th>
<th>$\frac{X_p}{R}$</th>
<th>$\frac{X_a}{R}$</th>
<th>K_0</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 3</td>
<td>--</td>
<td>22</td>
<td>2.2</td>
<td>127</td>
<td>0.02</td>
<td>0.01</td>
<td>1.1</td>
<td>1.0</td>
</tr>
<tr>
<td>3 - 6</td>
<td>--</td>
<td>22</td>
<td>2.2</td>
<td>127</td>
<td>0.02</td>
<td>0.01</td>
<td>1.1</td>
<td>1.0</td>
</tr>
<tr>
<td>6 - 9</td>
<td>--</td>
<td>22</td>
<td>2.4</td>
<td>124</td>
<td>0.02</td>
<td>0.01</td>
<td>1.1</td>
<td>1.0</td>
</tr>
<tr>
<td>9 - 12</td>
<td>--</td>
<td>22</td>
<td>2.8</td>
<td>128</td>
<td>0.02</td>
<td>0.01</td>
<td>1.1</td>
<td>1.0</td>
</tr>
<tr>
<td>9 - 15</td>
<td>--</td>
<td>22</td>
<td>3.2</td>
<td>125</td>
<td>0.02</td>
<td>0.01</td>
<td>1.1</td>
<td>1.0</td>
</tr>
</tbody>
</table>
FIG. 17.-Lateral Load Vs. Pier Rotation for Coyle's Test Shaft No. 1 (1977)
FIG. 18.-Lateral Load Vs. Pier Rotation for Coyle's Test Shaft No. 2 (1978)
FIG. 19.-Lateral Load Vs. Pier Rotation for Coyle's Test Shaft No. 3 (1979)
Table 15. Pier Details

<table>
<thead>
<tr>
<th>Pier No.</th>
<th>Pier Diameter (ft)</th>
<th>Embedment Length (ft)</th>
<th>Flexural Stiffness (k-in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4.0</td>
<td>15.0</td>
<td>8.19x10</td>
</tr>
<tr>
<td>4</td>
<td>4.0</td>
<td>12.5</td>
<td>8.19x10</td>
</tr>
<tr>
<td>7</td>
<td>2.0</td>
<td>9.0</td>
<td>5.08x10</td>
</tr>
</tbody>
</table>
Table 16. Soil Properties for SCE Tests.

<table>
<thead>
<tr>
<th>Pier Test</th>
<th>Soil Type</th>
<th>Depth (ft)</th>
<th>Unit Weight (pcf)</th>
<th>C_u (psf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Sandy Clay</td>
<td>0.9</td>
<td>130</td>
<td>5,500</td>
</tr>
<tr>
<td>4</td>
<td>Sandy Clay</td>
<td>0.16</td>
<td>130</td>
<td>4,750</td>
</tr>
<tr>
<td>7</td>
<td>Sandy Clay</td>
<td>0.16</td>
<td>130</td>
<td>4,750</td>
</tr>
</tbody>
</table>
FIG. 20.-Lateral Load Vs. Ground-Line Deflection for Bushan Shaft No. 2
FIG. 21.-Lateral Load Vs. Ground-Line Deflection for Bushan Shaft No. 4
FIG. 22.-Lateral Load Vs. Ground-Line Deflection for Bushan Shaft No. 7
for this conservative prediction are most likely due to errors in the measurement of the soil properties.

Electric Power Research Institute Tests

The Electric Power Research Institute (10) conducted lateral load tests on 14 drilled piers. The piers tested were designed as foundations for large electric transmission poles. The height of the applied lateral load above the ground surface used in the tests was 81 feet. The test results and the analytical predictions are presented for the piers listed in Table 17.

The soil conditions at the test sites were thoroughly investigated, and many laboratory tests were performed on soil samples. The soil properties for each test site, obtained from the subsurface investigation and the laboratory testing, are presented in Tables 18 to 23.

The load test results and the predictions using the program LATPIL are shown in Figs. 23 to 28. The predicted load settlement curves for pier no. 1 compare favorably to the load test results. Test pier no. 1 is the only pier embedded in clay. For the other five piers, the predictions using Rankine earth pressures ($\delta = 0, \psi = 90$) significantly underpredict the results from the load tests. The predictions using Coulomb earth pressures, with values of δ selected from Table 10, overpredict the results from the load tests. Thus, the
<table>
<thead>
<tr>
<th>Test No.</th>
<th>Pier Diameter (ft)</th>
<th>Embedment Length (ft)</th>
<th>Flexural Stiffness (k-in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.5</td>
<td>14.0</td>
<td>1.5x10</td>
</tr>
<tr>
<td>3</td>
<td>5.0</td>
<td>21.0</td>
<td>2.24x10</td>
</tr>
<tr>
<td>5</td>
<td>5.0</td>
<td>15.9</td>
<td>2.29x10</td>
</tr>
<tr>
<td>8</td>
<td>5.3</td>
<td>16.2</td>
<td>2.34x10</td>
</tr>
<tr>
<td>10</td>
<td>4.82</td>
<td>16.0</td>
<td>1.72x10</td>
</tr>
<tr>
<td>11</td>
<td>5.0</td>
<td>20.3</td>
<td>2.60x10</td>
</tr>
</tbody>
</table>
Table 18. Soil Properties for EPRI Test No. 1.

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>ϕ deg.</th>
<th>δ deg.</th>
<th>c_u (ksf)</th>
<th>Unit Weight (pcf)</th>
<th>$X_p \over R$</th>
<th>$X_a \over R$</th>
<th>K_o</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 5</td>
<td>0</td>
<td>20</td>
<td>1.9</td>
<td>132</td>
<td>0.02</td>
<td>0.01</td>
<td>0.6</td>
<td>1.0</td>
</tr>
<tr>
<td>5 - 6.5</td>
<td>0</td>
<td>20</td>
<td>0.7</td>
<td>132</td>
<td>0.02</td>
<td>0.01</td>
<td>0.6</td>
<td>1.0</td>
</tr>
<tr>
<td>6.5 - 8.5</td>
<td>35</td>
<td>25</td>
<td>0</td>
<td>126</td>
<td>0.005</td>
<td>0.0005</td>
<td>0.426</td>
<td>1.0</td>
</tr>
<tr>
<td>8.5 - 11.5</td>
<td>35</td>
<td>25</td>
<td>0</td>
<td>123</td>
<td>0.005</td>
<td>0.0005</td>
<td>0.426</td>
<td>1.0</td>
</tr>
<tr>
<td>11.5 - 14</td>
<td>35</td>
<td>25</td>
<td>0</td>
<td>123</td>
<td>0.005</td>
<td>0.0005</td>
<td>0.426</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Table 19. Soil Properties for EPRI Test No. 3.

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>ϕ deg.</th>
<th>δ deg.</th>
<th>c_u (ksf)</th>
<th>Unit Weight (pcf)</th>
<th>X_p/R</th>
<th>X_a/R</th>
<th>K_0</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 2</td>
<td>28</td>
<td>25</td>
<td>0</td>
<td>110</td>
<td>0.01</td>
<td>0.002</td>
<td>0.531</td>
<td>1.0</td>
</tr>
<tr>
<td>2 - 9.5</td>
<td>29</td>
<td>25</td>
<td>0</td>
<td>110</td>
<td>0.01</td>
<td>0.002</td>
<td>0.515</td>
<td>1.0</td>
</tr>
<tr>
<td>9.5 - 11</td>
<td>30</td>
<td>25</td>
<td>0</td>
<td>110</td>
<td>0.005</td>
<td>0.0005</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>11 - 18</td>
<td>30</td>
<td>25</td>
<td>0</td>
<td>125</td>
<td>0.005</td>
<td>0.0005</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>18 - 21</td>
<td>28</td>
<td>25</td>
<td>0</td>
<td>125</td>
<td>0.01</td>
<td>0.002</td>
<td>0.531</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Table 20. Soil Properties for EPRI Test No. 5.

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>φ deg.</th>
<th>δ deg.</th>
<th>c_u (ksf)</th>
<th>Unit Weight (pcf)</th>
<th>$\frac{X_p}{R}$</th>
<th>$\frac{X_a}{R}$</th>
<th>K_o</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 1.5</td>
<td>45</td>
<td>30</td>
<td>0</td>
<td>140</td>
<td>0.005</td>
<td>0.0005</td>
<td>0.293</td>
<td>1.0</td>
</tr>
<tr>
<td>1.5 - 5</td>
<td>0</td>
<td>18</td>
<td>0.7</td>
<td>135</td>
<td>0.01</td>
<td>0.01</td>
<td>0.6</td>
<td>1.0</td>
</tr>
<tr>
<td>5 - 10.5</td>
<td>46</td>
<td>25</td>
<td>0</td>
<td>132</td>
<td>0.005</td>
<td>0.0005</td>
<td>0.281</td>
<td>1.0</td>
</tr>
<tr>
<td>10.5 - 12</td>
<td>42</td>
<td>25</td>
<td>0</td>
<td>132</td>
<td>0.005</td>
<td>0.0005</td>
<td>0.331</td>
<td>1.0</td>
</tr>
<tr>
<td>112 - 15.8</td>
<td>37</td>
<td>25</td>
<td>0</td>
<td>132</td>
<td>0.005</td>
<td>0.0005</td>
<td>0.371</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Table 21. Soil Properties for EPRI Test No. 8.

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>(\phi) deg.</th>
<th>(\delta) deg.</th>
<th>(c_u) (ksf)</th>
<th>Unit Weight (pcf)</th>
<th>(x_p) (R)</th>
<th>(x_a) (R)</th>
<th>(K_0)</th>
<th>(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 4.5</td>
<td>32</td>
<td>25</td>
<td>0</td>
<td>110</td>
<td>0.01</td>
<td>0.002</td>
<td>0.470</td>
<td>1.0</td>
</tr>
<tr>
<td>4.5 - 6</td>
<td>38</td>
<td>30</td>
<td>0</td>
<td>110</td>
<td>0.005</td>
<td>0.0005</td>
<td>0.384</td>
<td>1.0</td>
</tr>
<tr>
<td>6 - 12</td>
<td>36</td>
<td>30</td>
<td>0</td>
<td>110</td>
<td>0.005</td>
<td>0.0005</td>
<td>0.410</td>
<td>1.0</td>
</tr>
<tr>
<td>12 - 13.5</td>
<td>45</td>
<td>30</td>
<td>0</td>
<td>110</td>
<td>0.005</td>
<td>0.0005</td>
<td>0.293</td>
<td>1.0</td>
</tr>
<tr>
<td>13.5 - 16.2</td>
<td>36</td>
<td>30</td>
<td>0</td>
<td>110</td>
<td>0.005</td>
<td>0.0005</td>
<td>0.410</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Table 22. Soil Properties for EPRI Test No. 10.

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>ϕ deg.</th>
<th>δ deg.</th>
<th>c_u (ksf)</th>
<th>Unit Weight (pcf)</th>
<th>$X_p \over R$</th>
<th>$X_a \over R$</th>
<th>K_o</th>
<th>$α$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 3.5</td>
<td>30</td>
<td>25</td>
<td>0</td>
<td>120</td>
<td>0.01</td>
<td>0.02</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>3.5 - 7</td>
<td>32.5</td>
<td>25</td>
<td>0</td>
<td>120</td>
<td>0.005</td>
<td>0.0005</td>
<td>0.462</td>
<td>1.0</td>
</tr>
<tr>
<td>7 - 10</td>
<td>43</td>
<td>25</td>
<td>0</td>
<td>130</td>
<td>0.005</td>
<td>0.0005</td>
<td>0.318</td>
<td>1.0</td>
</tr>
<tr>
<td>10 - 15</td>
<td>38</td>
<td>25</td>
<td>0</td>
<td>130</td>
<td>0.005</td>
<td>0.0005</td>
<td>0.384</td>
<td>1.0</td>
</tr>
<tr>
<td>15 - 16</td>
<td>45</td>
<td>25</td>
<td>0</td>
<td>130</td>
<td>0.005</td>
<td>0.0005</td>
<td>0.293</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Table 23. Soil Properties for EPRI Test No. 11

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>ϕ deg.</th>
<th>δ deg.</th>
<th>c_u (ksf)</th>
<th>Unit Weight (pcf)</th>
<th>$\frac{X_p}{R}$</th>
<th>$\frac{X_a}{R}$</th>
<th>K_o</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 6</td>
<td>35.5</td>
<td>25</td>
<td>0</td>
<td>110</td>
<td>0.005</td>
<td>0.0005</td>
<td>0.419</td>
<td>1.0</td>
</tr>
<tr>
<td>6 - 10</td>
<td>30</td>
<td>25</td>
<td>0</td>
<td>110</td>
<td>0.005</td>
<td>0.0005</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>10 - 12</td>
<td>0</td>
<td>18</td>
<td>1.7</td>
<td>125</td>
<td>0.005</td>
<td>0.0005</td>
<td>0.6</td>
<td>1.0</td>
</tr>
<tr>
<td>12 - 15</td>
<td>38</td>
<td>25</td>
<td>0</td>
<td>125</td>
<td>0.005</td>
<td>0.0005</td>
<td>0.384</td>
<td>1.0</td>
</tr>
<tr>
<td>15 - 20.3</td>
<td>35</td>
<td>25</td>
<td>0</td>
<td>125</td>
<td>0.005</td>
<td>0.0005</td>
<td>0.426</td>
<td>1.0</td>
</tr>
</tbody>
</table>
FIG. 23.—Ground-Line Moment Vs. Pier Rotation for EPRI Test Pier No. 1
FIG. 24.-Ground-Line Moment Vs. Pier Rotation for EPRI Test Pier No. 3
FIG. 25.-Ground-Line Moment Vs. Pier Rotation for EPRI Test Pier No. 5
FIG. 26.-Ground-Line Moment Vs. Pier Rotation for EPRI Test Pier No. 8
Ground-Line Moment (k-ft)

FIG. 27.-Ground-Line Moment Vs. Pier Rotation for EPRI Test Pier No. 10
FIG. 28.-Ground-Line Moment Vs. Pier Rotation for EPRI Test Pier No. 11
actual angle of wall friction, which would cause the
predicted load-deflection curve to match the field load
test results, must be less than that obtained from Table
10. From these, it appears that for piers embedded in
cohesionless soils the angle of friction between the pier
and the soil has a significant effect on the predicted
load-deflection curve.
Introduction

One of the objectives of this research study is to perform a series of static load tests on guardrail posts. The results from these tests will aid in determining if the steel guardrail post performs satisfactorily without a concrete footing. The specifications currently require the steel (W6x8.5) post to be placed in concrete. However, if the steel post placed without a concrete footing can perform, under lateral loading, similar to the standard timber post, then the requirement of a concrete footing may be unnecessary.

To assess the effects of varying soil conditions, it was decided to perform a series of tests in two soils with different properties. A suitable test site was located at the Texas A&M University Research and Extension Center.

Testing Program

The static guardrail post tests which were conducted are summarized in Table 24. Three tests were performed in each soil type, one using a standard timber post and two using steel posts. The two tests on the steel posts were performed with different embedment depths in order to bracket the response of the timber post.
Table 24. Summary of Tests

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Post Type</th>
<th>Embedment Depth (in.)</th>
<th>Height of Load (in.)</th>
<th>Soil Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wood</td>
<td>38</td>
<td>21</td>
<td>Cohesive</td>
</tr>
<tr>
<td>2</td>
<td>Steel</td>
<td>38</td>
<td>21</td>
<td>Cohesive</td>
</tr>
<tr>
<td>3</td>
<td>Steel</td>
<td>44</td>
<td>21</td>
<td>Cohesive</td>
</tr>
<tr>
<td>4</td>
<td>Wood</td>
<td>38</td>
<td>21</td>
<td>Cohesionless</td>
</tr>
<tr>
<td>5</td>
<td>Steel</td>
<td>38</td>
<td>21</td>
<td>Cohesionless</td>
</tr>
<tr>
<td>6</td>
<td>Steel</td>
<td>44</td>
<td>21</td>
<td>Cohesionless</td>
</tr>
</tbody>
</table>
Placement of Posts

In order to assess the effects of varying soil conditions, the tests were performed in two soils with significantly different properties. A stiff cohesive soil and a cohesionless gravel were used for this purpose. The soil at the test site is a stiff cohesive soil, thus only one soil pit had to be constructed of gravel material. The test set-up and the location of the posts are shown in Figs. 29, 30, and 31.

The posts were placed in the cohesive soil by augering and tamping the soil around the post. A 24 inch diameter auger was used, and the soil was tamped around the posts in several lifts. In a cohesionless soil however, augering is very difficult, due to the soil caving into the augered hole. Thus, after the excavation of the pit, the posts were held in place with struts, and the gravel was placed and compacted around the posts.

Soil Conditions

For the cohesive soil, soil conditions at the test site were determined using two soil borings. The boring locations, designated B-S1 and B-S2, are shown in Fig. 29. Undisturbed soil samples were taken with a 2.0 in. diameter thin-walled tube sampler. Laboratory tests on the undisturbed samples included Atterberg limits, moisture contents, unit weights, and triaxial compression
FIG. 29.-Location of Posts
FIG. 30.-Placement of Posts
FIG. 31.-Test Site for Static Tests
tests to determine the undrained shear strength of the cohesive soil. The results of these tests are summarized in Table 25.

The test results indicate that the site consisted of stiff to very stiff clay. The shear strength of the soil increases near the surface due to a decrease in moisture content. This decrease in water content near the surface is a result of drying of the upper layer of soil.

The cohesionless soil used was crushed limestone gravel. The soil condition at the site were determined using a McGuin water pycnometer to obtain the in-site unit weight and by taking soil samples for laboratory testing. The pycnometer is shown in Fig. 32.

Laboratory testing of the samples included sieve analysis and water content determinations. The gradation curve obtained from the sieve analysis is shown in Fig. 33. The gravel was classified as a GW material by the Unified Soil Classification System. Since the maximum particle size of this material is too large to permit determination of the shear strength using a standard triaxial compression test, the angle of shearing resistance was found from correlations with the gradation curve, maximum particle size, relative density, and the overburden pressure. These correlations were developed by Leps (25) and are shown in Fig. 34. From these correlations a range of 48 to 52 degrees was chosen for
Table 25. Properties of Cohesive Soil.

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Generalized Description</th>
<th>Unit Weight (pcf)</th>
<th>ϕ deg.</th>
<th>c_u (ksf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>Dark, grey stiff clay</td>
<td>126</td>
<td>0</td>
<td>3.0</td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td>125</td>
<td>0</td>
<td>2.5</td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td>123</td>
<td>0</td>
<td>1.5</td>
</tr>
<tr>
<td>2.0</td>
<td></td>
<td>123</td>
<td>0</td>
<td>1.6</td>
</tr>
<tr>
<td>3.0</td>
<td></td>
<td>125</td>
<td>0</td>
<td>1.9</td>
</tr>
</tbody>
</table>
FIG. 32.-McGuin Water Pycnometer Used to Obtain In-situ Unit Weight
FIG. 33.-Gradation Curve for the Cohesionless Soil
FIG. 34.—Shear Strength of Rockfill Materials from Large Triaxial Tests (after Leps (25))
the angle of internal friction. The properties of the cohesionless soil are summarized in Table 26.

Equipment and Instrumentation

In order to conduct these tests, it was necessary to develop a loading system capable of (1) applying a horizontal force on the post at a uniform displacement rate, (2) measuring the load acting on the post at known displacements, and (3) measuring the displacement of the post at the ground surface.

Loading System

A hydraulic loading device was used to apply the lateral force to the posts. The loading system is illustrated in Figs. 35 and 36. A hydraulic cylinder was attached to the concrete anchor and the post. The ram of the hydraulic cylinder was fully extended at the beginning of the test. A small hydraulic pump was used to retract the ram and to apply the load to the post.

Load Measurement

The load applied to the post was measured by means of a force transducer attached between the post and the hydraulic cylinder, as shown in Figs. 35 and 36. The transducer was calibrated up to a maximum load of 10,000 pounds. The force transducer was constructed of a metal
Table 26. Properties of Cohesionless Soil.

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Generalized Description</th>
<th>Unit Weight (pcf)</th>
<th>φ deg.</th>
<th>cy (ksf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>Well graded crushed limestone</td>
<td>115</td>
<td>48 - 52</td>
<td>0</td>
</tr>
<tr>
<td>1.0</td>
<td>gravel.</td>
<td>115</td>
<td>48 - 52</td>
<td>0</td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td>120</td>
<td>48 - 52</td>
<td>0</td>
</tr>
<tr>
<td>2.0</td>
<td></td>
<td>120</td>
<td>48 - 52</td>
<td>0</td>
</tr>
<tr>
<td>3.0</td>
<td></td>
<td>125</td>
<td>48 - 52</td>
<td>0</td>
</tr>
</tbody>
</table>
FIG. 35.-Lateral Loading System
FIG. 36.-Static Testing System
bar instrumented with a full bridge of strain gages. The output from these strain gages were measured with a digital microvoltmeter calibrated to read the load directly.

Displacement Measurement

For the static load tests, the post deflection at the ground surface was measured. Since the soil around the post deforms as the post is loaded, the post displacement must be measured from a fixed point some distance away from the post. A wooden stake was driven into the ground about 15 feet away from the post. A metal tape was attached to the stake and the post displacements were measured from this fixed point as shown in Fig. 37.

Test Procedure

The procedure used in these tests is summarized below.

A specially constructed loading bracket was attached to the post at the height of 21 inches above the ground. This bracket, shown in Fig. 38, assured the pull to be horizontal and eliminated the development of stress concentrations in the post itself. The load transducer was attached to the loading bracket. The hydraulic cylinder was full extended and positioned between the
FIG. 37.-Measurement of Post Displacements
FIG. 38a.-Loading Bracket for the Circular Timber Post

FIG. 38b.-Loading Bracket for the Steel Post
concrete anchor and the load transducer. A fork lift was used to hold the cylinder at a height of 21 inches in order to keep the weight of the equipment from applying an initial load. The load transducer was then calibrated and zeroed. The wooden stake was driven, and the tape positioned for displacement measurements. The hydraulic pump was turned on and the load was applied to the post. The load was read off the digital voltmeter at every 1/4 inch of movement of the post at the ground surface. The tests were terminated after the hydraulic cylinder had traveled the entire stroke length.

Test Results

The results of the static guardrail post tests are presented in Figs. 39 to 48 and in Table 27. The load-deflection curves for each test performed in the cohesive soil are given in Figs. 39 to 41, and the results from these three tests plotted on the same graph are shown in Figs. 42 and 43. The load-deflection curves for each test performed in the cohesionless soil are given in Figs. 44 to 46, and the results from these three tests plotted on the same graph are shown in Figs. 47 and 48. Maximum load values and dissipated energy values for all tests are presented in Table 27.

From the results of these static post tests, it is clear that the steel guardrail posts perform similar to
FIG. 39.-Lateral Load Versus Deflection for Post 1
FIG. 40.—Lateral Load Versus Deflection for Post 2
FIG. 41.-Lateral Load Versus Deflection for Post 3
FIG. 42.-Static Test Results in the Cohesive Soil
FIG. 43.-Static Test Results in the Cohesive Soil
FIG. 44.-Lateral Load Versus Deflection for Post 4
FIG. 45.-Lateral Load Versus Deflection for Post 5
FIG. 46. - Lateral Load Versus Deflection for Post 6
FIG. 47.-Static Tests Results in the Cohesionless Soil
FIG. 48.—Static Test Results in the Cohesionless Soil
Table 27
SUMMARY OF RESULTS: STATIC TESTS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.7</td>
<td>3.7</td>
<td>4.2</td>
</tr>
<tr>
<td>2</td>
<td>3.3</td>
<td>3.3</td>
<td>3.8</td>
</tr>
<tr>
<td>3</td>
<td>3.8</td>
<td>3.8</td>
<td>4.3</td>
</tr>
<tr>
<td>4</td>
<td>3.2</td>
<td>2.9</td>
<td>4.4</td>
</tr>
<tr>
<td>5</td>
<td>3.3</td>
<td>3.2</td>
<td>4.2</td>
</tr>
<tr>
<td>6</td>
<td>3.9</td>
<td>3.9</td>
<td>5.2</td>
</tr>
</tbody>
</table>

*Energy dissipated after 18 in. of movement.
the standard timber posts.

In the cohesive soil, the steel post embedded 44 inches performed almost exactly as the timber post embedded the minimum 38 inches. The steel post embedded 38 inches performed similar to the wood post, however there was a small decrease in both the maximum load and the energy dissipated. The decrease in the maximum lateral load was 11 percent, and the decrease in the energy dissipated was 10 percent.

In the cohesionless soil, the lateral load capacity and the energy absorbed by the steel post embedded 44 inches were greater than those of the timber post. For the steel post embedded 38 inches, the maximum load was 3 percent higher than the maximum load carried by the timber post, however the energy absorbed by the steel post was 5 percent lower than the energy absorbed by the timber post.

Comparison of Test Results With Theoretical Predictions

The parameters and the data needed for the theoretical analysis of the six tests are listed in Tables 28 to 33. The field load test results are shown in Figs. 49 to 54, with the analytical results obtained using the computer program LATPIL.

Since the angle of internal friction of the cohesionless soil could not be determined precisely by
Table 28 Input Data for Post 1.

Pile Properties
Dimensions: 7 in. diameter
Embedment = 38 in.
No. of Increments = 20

Soil Properties

<table>
<thead>
<tr>
<th>Layer</th>
<th>φ (deg.)</th>
<th>δ (deg.)</th>
<th>c_u (ksf)</th>
<th>Unit Weight</th>
<th>Depth (ft)</th>
<th>X_p/R</th>
<th>X_a/R</th>
<th>K_o</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>22</td>
<td>3.0</td>
<td>115</td>
<td>0.5</td>
<td>0.07</td>
<td>0.01</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>22</td>
<td>2.5</td>
<td>115</td>
<td>1.0</td>
<td>0.07</td>
<td>0.01</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>22</td>
<td>1.5</td>
<td>115</td>
<td>1.5</td>
<td>0.07</td>
<td>0.01</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>22</td>
<td>1.6</td>
<td>115</td>
<td>2.0</td>
<td>0.07</td>
<td>0.01</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>22</td>
<td>1.9</td>
<td>115</td>
<td>3.167</td>
<td>0.07</td>
<td>0.01</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Surface surcharge = 0.0
Tension cutoff = 1
Tolerance = 0.0001
Table 29 Input Data for Post 2.

Pile Properties
Dimensions: 3.94 in. x 5.83 in.
Embedment = 38 in.
No. of Increments = 20

Soil Properties

<table>
<thead>
<tr>
<th>Layer</th>
<th>φ (deg.)</th>
<th>δ (deg.)</th>
<th>cu (ksf)</th>
<th>Unit Weight</th>
<th>Depth (ft)</th>
<th>Xp/R</th>
<th>Xa/R</th>
<th>Ko</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>22</td>
<td>3.0</td>
<td>115</td>
<td>0.5</td>
<td>0.07</td>
<td>0.01</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>22</td>
<td>2.5</td>
<td>115</td>
<td>1.0</td>
<td>0.07</td>
<td>0.01</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>22</td>
<td>1.5</td>
<td>115</td>
<td>1.5</td>
<td>0.07</td>
<td>0.01</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>22</td>
<td>1.6</td>
<td>115</td>
<td>2.0</td>
<td>0.07</td>
<td>0.01</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>22</td>
<td>1.0</td>
<td>115</td>
<td>3.167</td>
<td>0.07</td>
<td>0.01</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Surface surcharge = 0.0
Tension cutoff = 1
Tolerance = 0.0001

Height of Load = 1.75 ft
Flexural Stiffness = 3.303 x 10^6 lb-ft^2
Effective Pile Weight = 70 lbs
Pile Properties
Dimensions: 3.94 in. x 5.83 in.
Embedment = 44 in.
No. of Increments = 20

Soil Properties

<table>
<thead>
<tr>
<th>Layer</th>
<th>φ (deg.)</th>
<th>δ (deg.)</th>
<th>c_u (ksf)</th>
<th>Unit Weight</th>
<th>Depth (ft)</th>
<th>X_p/R</th>
<th>X_a/R</th>
<th>K_0</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>22</td>
<td>3.0</td>
<td>115</td>
<td>0.5</td>
<td>0.07</td>
<td>0.01</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>22</td>
<td>2.5</td>
<td>115</td>
<td>1.0</td>
<td>0.07</td>
<td>0.01</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>22</td>
<td>1.5</td>
<td>115</td>
<td>1.5</td>
<td>0.07</td>
<td>0.01</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>22</td>
<td>1.6</td>
<td>115</td>
<td>2.0</td>
<td>0.07</td>
<td>0.01</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>22</td>
<td>1.9</td>
<td>115</td>
<td>3.67</td>
<td>0.07</td>
<td>0.01</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Surface surcharge = 0.0
Tension cutoff = 1
Tolerance = 0.0001
Table 31 Input Data for Post 4.

Pile Properties
Dimensions: 3.94 in. x 5.83 in.
Embedment = 38 in.
No. of Increments = 20

Soil Properties

<table>
<thead>
<tr>
<th>Layer</th>
<th>φ (deg.)</th>
<th>δ (deg.)</th>
<th>c_u (ksf)</th>
<th>Unit Weight</th>
<th>Depth (ft)</th>
<th>(\frac{X_p}{R})</th>
<th>(\frac{X_a}{R})</th>
<th>K_o</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>52</td>
<td>22</td>
<td>0</td>
<td>115</td>
<td>0.5</td>
<td>0.01</td>
<td>0.0005</td>
<td>0.257</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>52</td>
<td>22</td>
<td>0</td>
<td>115</td>
<td>1.0</td>
<td>0.01</td>
<td>0.0005</td>
<td>0.257</td>
<td>1.0</td>
</tr>
<tr>
<td>3</td>
<td>51.4</td>
<td>22</td>
<td>0</td>
<td>115</td>
<td>1.5</td>
<td>0.01</td>
<td>0.0005</td>
<td>0.264</td>
<td>1.0</td>
</tr>
<tr>
<td>4</td>
<td>50.5</td>
<td>22</td>
<td>0</td>
<td>115</td>
<td>2.0</td>
<td>0.01</td>
<td>0.0005</td>
<td>0.275</td>
<td>1.0</td>
</tr>
<tr>
<td>5</td>
<td>49.3</td>
<td>22</td>
<td>0</td>
<td>115</td>
<td>3.167</td>
<td>0.01</td>
<td>0.0005</td>
<td>0.289</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Surface surcharge = 0
Tension cutoff = 1
Tolerance = 0.0001

Height of Load = 1.75 ft
Flexural Stiffness = 1.483 x 10^6 lb-ft^2
Effective Pile Weight = 55 lbs
Table 32 Input Data for Post 5.

Pile Properties
Dimensions: 3.94 in. x 5.83 in.
Embedment = 38 in.
No. of Increments = 20

Soil Properties

<table>
<thead>
<tr>
<th>Layer</th>
<th>φ (deg.)</th>
<th>δ (deg.)</th>
<th>(c_u) (ksf)</th>
<th>Unit Weight</th>
<th>Depth (ft)</th>
<th>(X_p) (R)</th>
<th>(X_a) (R)</th>
<th>(K_o)</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>52</td>
<td>22</td>
<td>0</td>
<td>115</td>
<td>0.5</td>
<td>0.01</td>
<td>0.0005</td>
<td>0.257</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>52</td>
<td>22</td>
<td>0</td>
<td>115</td>
<td>1.0</td>
<td>0.01</td>
<td>0.0005</td>
<td>0.275</td>
<td>1.0</td>
</tr>
<tr>
<td>3</td>
<td>51.4</td>
<td>22</td>
<td>0</td>
<td>115</td>
<td>1.5</td>
<td>0.01</td>
<td>0.0005</td>
<td>0.264</td>
<td>1.0</td>
</tr>
<tr>
<td>4</td>
<td>50.5</td>
<td>22</td>
<td>0</td>
<td>115</td>
<td>2.0</td>
<td>0.01</td>
<td>0.0005</td>
<td>0.275</td>
<td>1.0</td>
</tr>
<tr>
<td>5</td>
<td>49.3</td>
<td>22</td>
<td>0</td>
<td>115</td>
<td>3.167</td>
<td>0.01</td>
<td>0.0005</td>
<td>0.289</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Surface surcharge = 0
Tension cutoff = 1
Tolerance = 0.0001

Height of Load = 1.75 ft.
Flexural Stiffness = 3.303 \(\times 10^6 \) lb-ft²
Effective Pile Weight = 70 lbs
Pile Properties

- **Dimensions:** 3.92 in. x 5.83 in.
- **Embedment:** 44 in.
- **No. of Increments:** 20

Soil Properties

Table 33: Input Data for Post 6.

<table>
<thead>
<tr>
<th>Layer</th>
<th>ϕ (deg.)</th>
<th>δ (deg.)</th>
<th>c_u (ksf)</th>
<th>Unit Weight</th>
<th>Depth (ft)</th>
<th>X_D/R</th>
<th>X_A/R</th>
<th>K_0</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>52</td>
<td>22</td>
<td>0</td>
<td>115</td>
<td>0.5</td>
<td>0.01</td>
<td>0.0005</td>
<td>0.257</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>52</td>
<td>22</td>
<td>0</td>
<td>115</td>
<td>1.0</td>
<td>0.01</td>
<td>0.0005</td>
<td>0.257</td>
<td>1.0</td>
</tr>
<tr>
<td>3</td>
<td>51.4</td>
<td>22</td>
<td>0</td>
<td>115</td>
<td>1.5</td>
<td>0.01</td>
<td>0.0005</td>
<td>0.264</td>
<td>1.0</td>
</tr>
<tr>
<td>4</td>
<td>50.5</td>
<td>22</td>
<td>0</td>
<td>115</td>
<td>2.0</td>
<td>0.01</td>
<td>0.0005</td>
<td>0.275</td>
<td>1.0</td>
</tr>
<tr>
<td>5</td>
<td>49.3</td>
<td>22</td>
<td>0</td>
<td>115</td>
<td>3.67</td>
<td>0.01</td>
<td>0.0005</td>
<td>0.289</td>
<td>1.0</td>
</tr>
</tbody>
</table>

- **Surface surcharge:** 0
- **Tension cutoff:** 1
- **Tolerance:** 0.0001

Height of Load: 1.75 ft
Flexural Stiffness: 3.303×10^6 lb-ft2
Effective Pile Weight: 70 lbs
FIG. 49.—Comparison of Analysis and Field Load Test for Post 1
FIG. 50.-Comparison of Analysis and Field Load Test for Post 2

- From analysis using program LATPIL
- Field load test

Lateral Load (kips) vs. Post Deflection at Ground Surface (in)
FIG. 51.-Comparison of Analysis and Field Load Test for Post 3
From analysis using program LATPIL

Field load test

FIG. 52.-Comparison of Analysis and Field Load Test for Post 4
FIG. 53.-Comparison of Analysis and Field Load Test for Post 5
FIG. 54.-Comparison of Analysis and Field Load Test for Post 6
laboratory tests, the ranges of values selected from the correlations, as previously discussed, were used.

The agreement between the analysis and the field load tests is good in all six tests. In the cohesive soil, the analytical results and the field test results match very well at ground-line displacements less than 4 inches. A post displacement of 4 inches at the ground surface corresponds to a post rotation of about 10 degrees. For displacements in excess of 4 inches, the post rotates a significant amount and the applied load tends to pull the post out of the ground. This axial pull on the post induces vertical shear stresses along the perimeter of the post which tend to increase the lateral capacity of the post. For this reason, the theoretical analysis underpredicts the lateral load for post displacements greater than 4 inches.

In the cohesionless soil, the theoretical predictions agreed well with the field load tests. Both the shapes of the load-deflection curves and the maximum load values are predicted well by the model. The wood post in the cohesionless soil reached its maximum lateral capacity at 4 inches of ground surface movement, and the lateral load remained fairly constant for ground surface displacements in excess of 4 inches. However, the steel posts continued to gain lateral capacity throughout the entire test.
Introduction

The response of the guardrail posts to static loads was used to evaluate the lateral load capacity and the energy absorption capacity of the two types of guardrail posts. However, the response of the guardrail posts when hit by a moving vehicle is a better measure of the performance of the post-soil system. Thus, one of the objectives of this research study was to perform a series of dynamic load tests on the two types of guardrail posts. The results from these tests, and from the static load tests, will determine whether the steel guardrail post can perform satisfactorily without the concrete footing.

Testing Program

The dynamic load tests that were conducted are summarized in Table 34.

From the results of the static load tests, it was decided that dynamic load tests on the steel guardrail posts embedded 44 inches were not necessary. Both the static lateral load capacity and the energy dissipation capacity of the steel posts embedded 44 inches exceeded the capacities for the wood posts embedded 38 inches. Although the dynamic behavior of the guardrail posts is
Table 34. Summary of Dynamic Tests

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Post Type</th>
<th>Embedment Depth (in.)</th>
<th>Height of Rail (in.)</th>
<th>Soil Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>Wood</td>
<td>38</td>
<td>21</td>
<td>Cohesionless</td>
</tr>
<tr>
<td>C2</td>
<td>Steel</td>
<td>38</td>
<td>21</td>
<td>Cohesionless</td>
</tr>
<tr>
<td>C3</td>
<td>Wood</td>
<td>38</td>
<td>21</td>
<td>Cohesive</td>
</tr>
<tr>
<td>C4</td>
<td>Steel</td>
<td>38</td>
<td>21</td>
<td>Cohesive</td>
</tr>
</tbody>
</table>
quite different from the static behavior, the results of the static tests give a good indication of the relative performance of these posts.

Equipment and Instrumentation

Dynamic load testing of the guardrail posts require systems capable of (1) dynamic load application, (2) dynamic load measurement, and (3) measurement of post deflection.

Loading System

The dynamic testing program was accomplished using a cart of known mass to simulate an automobile. This cart, shown in Fig. 55, was used because of the extreme rigidity of the cart. Consequently, very little energy is dissipated in deforming or crushing of the cart itself.

The cart was positioned about 100 feet away from the posts. A cable was attached to the cart, placed around the pulley, as shown in Fig. 56, and connected to a truck which pulled the cart into the post. A cable release mechanism was placed directly ahead of the pulley to detach the cable from the cart. Since the cart has no means of steering two concrete barriers, as shown in Fig. 57, were used to guide the cart toward the post.
FIG. 55.-Automobile Simulation Cart
FIG. 56.-Schematic of Test Layout
FIG. 57.-Concrete Guide Barriers
Dynamic Load Measurement

The cart was instrumented with an accelerometer as shown in Fig. 58 to measure the lateral deceleration during impact with the post. By knowing the mass of the cart, the lateral force applied to the guardrail post can be calculated using the product of the cart mass and the cart deceleration. The accelerometer data was recorded by a computer every 0.0003 seconds, and an output of force was obtained directly from this computer.

Post Displacement Measurement

Since the duration of the impact test is only a fraction of a second, direct measurement of the post displacement during the test is very difficult. However, the post displacement can be obtained indirectly by two methods. In the first method, each test was photographed with a high speed camera at a speed of 408 frames per second. The displacements of the post were scaled off the high speed film. In the second method, the post displacement can be calculated from the accelerometer data by integrating the deceleration time curve twice. The cart velocity at the point of impact must be known for the second method and this was obtained from the high speed film.
FIG. 58.-Cart With Electronic Equipment
Placement of the Posts

The dynamic tests were performed in the same two soils used in the static tests. However, a test site located near the pavement at the Texas A&M University Research and Extension Center was used instead of the site for the static tests. This site was chosen because the posts needed to be installed near the edge of the runway so the cart could be easily pulled toward the post. The procedure used for installing the posts was the same as that used for the static tests.

Soil Conditions

The properties of the cohesive soil were determined by performing laboratory tests on samples obtained with a 2.0 in. diameter thin-walled tube samples. As for the static tests, the laboratory tests on the soil samples included Atterberg limits, moisture content, unit weight, and triaxial compression tests to determine the undrained shear strength of the cohesive soil. The results of these tests are shown in Tables 35 and 36. The test results show the properties to be very similar to the properties of the cohesive soil used in the static tests.

The crushed limestone gravel used in the static tests was also used for the impact tests. Thus, the properties are the same as previously determined for the static tests.
Table 35 Soil Properties for Test C3.

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Generalized Description</th>
<th>Unit Weight (pcf)</th>
<th>ϕ_u (deg.)</th>
<th>c_u (ksf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>Dark Grey Stiff Clay</td>
<td>125</td>
<td>0</td>
<td>3.2</td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td>126</td>
<td>0</td>
<td>2.5</td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td>124</td>
<td>0</td>
<td>1.4</td>
</tr>
<tr>
<td>2.0</td>
<td></td>
<td>123</td>
<td>0</td>
<td>1.6</td>
</tr>
<tr>
<td>3.0</td>
<td></td>
<td>125</td>
<td>0</td>
<td>2.0</td>
</tr>
</tbody>
</table>
Table 36 Soil Properties for Test C4.

<table>
<thead>
<tr>
<th>Depth</th>
<th>Generalized Description</th>
<th>Unit Weight (pcf)</th>
<th>ϕ_u (deg.)</th>
<th>c_u (ksf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>Dark Grey Stiff Clay</td>
<td>125</td>
<td>0</td>
<td>2.0</td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td>124</td>
<td>0</td>
<td>1.6</td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td>124</td>
<td>0</td>
<td>1.4</td>
</tr>
<tr>
<td>2.0</td>
<td></td>
<td>124</td>
<td>0</td>
<td>1.5</td>
</tr>
<tr>
<td>3.167</td>
<td></td>
<td>125</td>
<td>0</td>
<td>1.6</td>
</tr>
</tbody>
</table>
Test Results

The results of the four impact tests are shown in Table 37 and Figs. 59-74. For each test the results obtained include the deceleration-time curve, velocity-time curve, displacement-time curve, and the load-deflection curve. Table 37 presents a comparison of the ultimate lateral load, dissipated energy and the impact velocity for all four tests. Sequential photographs of each test are presented in Appendix IV.

The wood post in test C1 broke upon impact with the cart. The post, however, had no visible signs of defects or cracks before the test. The maximum lateral load carried by the post was 13.3 kips. However, the wood post used in test C3 carried a lateral load of 16.3 kips without breaking. Thus, due to the nonhomogeneity of wood, the strength of the timber posts varies significantly. Since the post in test C1 broke during impact, a comparison of the steel and timber post in the cohesionless soil is not possible.

In the cohesive soil, the steel post (test C4) performed similar to the timber post (test C3). The maximum lateral load carried by the steel post was 4% higher than the maximum lateral load carried by the timber post. The total energy dissipated by the steel post also exceeded the total energy dissipated by the wood post by 10%. Thus, based on the lateral load
Table 37. Summary of Results: Dynamic Tests

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Impact Velocity (ft/sec)</th>
<th>Maximum Force (kips)</th>
<th>Energy After 18 in. (ft-kip)</th>
<th>Total Energy (ft-kip)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1**</td>
<td>26.6</td>
<td>13.3</td>
<td>-</td>
<td>1.3</td>
</tr>
<tr>
<td>C2</td>
<td>26.1</td>
<td>22.4</td>
<td>22.4</td>
<td>29.2</td>
</tr>
<tr>
<td>C3</td>
<td>22.7</td>
<td>16.3</td>
<td>19.2</td>
<td>27.2</td>
</tr>
<tr>
<td>C4</td>
<td>24.1</td>
<td>17.0</td>
<td>17.1</td>
<td>29.9</td>
</tr>
</tbody>
</table>

** Post broke during impact.
FIG. 59.-Cart Deceleration Versus Time for Test C1
FIG. 60.-Cart Velocity Versus Time for Test C1

Velocities (ft/sec) vs. Time (milliseconds)
FIG. 61.-Cart Displacement Versus Time for Test C1
FIG. 62.-Lateral Load Versus Post Displacement for Test C1
FIG. 63.-Cart Deceleration Versus Time for Test C2
FIG. 64-Cart Velocity Versus Time for Test C2
FIG. 65.-Cart Displacement Versus Time for Test C2
FIG. 66.—Lateral Load Versus Post Displacement for Test C2
FIG. 67.-Cart Deceleration Versus Time for Test C3
FIG. 68.-Cart Velocity Versus Time for Test C3
FIG. 69.-Cart Displacement Versus Time for Test C3
FIG. 70.-Lateral Load Versus Post Displacement for Test C3
FIG. 71.-Cart Deceleration Versus Time for Test C4
FIG. 72.-Cart Velocity Versus Time for Test C4
FIG. 73.-Cart Displacement Versus Time for Test C4
FIG. 74.-Lateral Load Versus Post Displacement for Test C4
capacity and the total dissipated energy, the performance of the steel guardrail post actually exceeded the performance of the timber post.

Comparison of Test Results With Theoretical Predictions

The parameters and the data needed for the theoretical analysis of the impact tests are listed in Tables 38 to 40. Since the wood post broke during impact in test C1, a theoretical analysis was not performed. The analytical predictions obtained using the computer program LATPIL are shown in Figs. 75 to 77 with the field load test results.

Since the viscosity of the soil cannot be determined easily, a range of values were used to obtain the analytical predictions. The range of viscosity values used for each of the tests was selected in order to bracket the field load test results.

As shown in Fig. 75, for test C2 the predicted load-deflection curves closely follow the field load test results. However, for the tests performed in the cohesive soil the analytical predictions do not compare well with the results from the field load test.

For test C3, the shape of the predicted load deflection curves closely resemble the shape of the load-deflection curve from the field load test, but the analysis underpredicts the lateral load capacity. For
Table 38 Input Data for Post C2.

Pile Properties
- **Dimensions:** 3.74 in. x 5.83 in.
- **Embedment:** 38 in.
- **No. of Increments:** 20

Soil Properties

<table>
<thead>
<tr>
<th>Layer</th>
<th>ϕ (deg.)</th>
<th>δ (deg.)</th>
<th>c_u (ksf)</th>
<th>Unit Weight (pcf)</th>
<th>Depth (ft)</th>
<th>$\frac{X_p}{R}$</th>
<th>$\frac{X_a}{R}$</th>
<th>K_o</th>
<th>α</th>
<th>μ (lb-sec)/ft2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>52</td>
<td>22</td>
<td>0</td>
<td>115</td>
<td>0.5</td>
<td>0.01</td>
<td>0.0005</td>
<td>0.257</td>
<td>1.0</td>
<td>50-150</td>
</tr>
<tr>
<td>2</td>
<td>52</td>
<td>22</td>
<td>0</td>
<td>115</td>
<td>1.0</td>
<td>0.01</td>
<td>0.0005</td>
<td>0.257</td>
<td>1.0</td>
<td>50-150</td>
</tr>
<tr>
<td>3</td>
<td>51.4</td>
<td>22</td>
<td>0</td>
<td>115</td>
<td>1.5</td>
<td>0.01</td>
<td>0.0005</td>
<td>0.264</td>
<td>1.0</td>
<td>50-150</td>
</tr>
<tr>
<td>4</td>
<td>50.5</td>
<td>22</td>
<td>0</td>
<td>115</td>
<td>2.0</td>
<td>0.01</td>
<td>0.0005</td>
<td>0.275</td>
<td>1.0</td>
<td>50-150</td>
</tr>
<tr>
<td>5</td>
<td>49.3</td>
<td>22</td>
<td>0</td>
<td>115</td>
<td>3.167</td>
<td>0.01</td>
<td>0.0005</td>
<td>0.289</td>
<td>1.0</td>
<td>50-150</td>
</tr>
</tbody>
</table>

- **Surface surcharge:** 0.0
- **Tension cutoff:** 1
- **Tolerance:** 0.001

- **Height of Load:** 1.75 ft
- **Flexural Stiffness:** 3.303×10^6 lb-ft2
- **Effective Pile Weight:** 70 lbs
Table 39 Input Data for Post C3.

Pile Properties
Dimensions: 7 in. diameter
Embedment = 38 in.
No. of Increments = 20

Height of Load = 1.75 ft
Flexural Stiffness = \(3.303 \times 10^6\) lb·ft²
Effective Pile Weight = 55 lbs

Soil Properties

<table>
<thead>
<tr>
<th>Layer</th>
<th>(\phi) (deg.)</th>
<th>(\delta) (deg.)</th>
<th>(c_u) (ksf)</th>
<th>Unit Weight (pcf)</th>
<th>Depth (ft)</th>
<th>(\frac{X_p}{R})</th>
<th>(\frac{X_a}{R})</th>
<th>(K_o)</th>
<th>(\alpha)</th>
<th>(\mu) (lb·sec)(^2) ft(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>22</td>
<td>3200</td>
<td>120</td>
<td>0.5</td>
<td>0.07</td>
<td>0.01</td>
<td>1.0</td>
<td>1.0</td>
<td>100-1000</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>22</td>
<td>2500</td>
<td>120</td>
<td>1.0</td>
<td>0.07</td>
<td>0.01</td>
<td>1.0</td>
<td>1.0</td>
<td>100-1000</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>22</td>
<td>1400</td>
<td>120</td>
<td>1.5</td>
<td>0.07</td>
<td>0.01</td>
<td>1.0</td>
<td>1.0</td>
<td>100-1000</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>22</td>
<td>1600</td>
<td>120</td>
<td>2.0</td>
<td>0.07</td>
<td>0.01</td>
<td>1.0</td>
<td>1.0</td>
<td>100-1000</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>22</td>
<td>2000</td>
<td>120</td>
<td>3.167</td>
<td>0.07</td>
<td>0.01</td>
<td>1.0</td>
<td>1.0</td>
<td>100-1000</td>
</tr>
</tbody>
</table>

Surface surcharge = 0.0
Tension cutoff = 1
Tolerance = 0.001
Table 40 Input Data for Post C4.

Pile Properties
Dimensions: 3.94 in. x 5.83 in.
Embedment = 38 in.
No. of Increments = 20
Height of Load = 1.75 ft
Flexural Stiffness = 3.303×10^6 lb-ft2
Effective Pile Weight = 70 lbs

Soil Properties

<table>
<thead>
<tr>
<th>Layer</th>
<th>ϕ (deg.)</th>
<th>δ (deg.)</th>
<th>c_u (ksf)</th>
<th>Unit Weight (pcf)</th>
<th>Depth (ft)</th>
<th>X_p/R</th>
<th>X_a/R</th>
<th>K_0</th>
<th>α</th>
<th>μ (lb-sec) ft2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>22</td>
<td>2000</td>
<td>120</td>
<td>0.5</td>
<td>0.07</td>
<td>0.01</td>
<td>1.0</td>
<td>1.0</td>
<td>50-125</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>22</td>
<td>1600</td>
<td>120</td>
<td>1.0</td>
<td>0.07</td>
<td>0.01</td>
<td>1.0</td>
<td>1.0</td>
<td>50-125</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>22</td>
<td>1400</td>
<td>120</td>
<td>1.5</td>
<td>0.07</td>
<td>0.01</td>
<td>1.0</td>
<td>1.0</td>
<td>50-125</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>22</td>
<td>1500</td>
<td>120</td>
<td>2.0</td>
<td>0.07</td>
<td>0.01</td>
<td>1.0</td>
<td>1.0</td>
<td>50-125</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>22</td>
<td>1600</td>
<td>120</td>
<td>3.167</td>
<td>0.07</td>
<td>0.01</td>
<td>1.0</td>
<td>1.0</td>
<td>50-125</td>
</tr>
</tbody>
</table>

Surface surcharge = 0
Tension cutoff = 1
Tolerance = 0.001
From analysis using program LATPIL,
\(\mu = 150 \text{ lb-sec/ft}^2 \)

From analysis using program LATPIL,
\(\mu = 100 \text{ lb-sec/ft}^2 \)

Field load test

From analysis using program LATPIL,
\(\mu = 50 \text{ lb-sec/ft}^2 \)

FIG. 75.-Comparison of Analysis and Field Load Test Results for Test C2
From analysis using program LATPIL,
\(\mu = 1000 \text{ lb-sec/ft}^2 \)

From analysis using program LATPIL,
\(\mu = 100 \text{ lb-sec/ft}^2 \)

From analysis using program LATPIL, \(\mu = 500 \text{ lb-sec/ft}^2 \)

FIG. 76.-Comparison of Analysis and Field Test Results for Test C3
From analysis using program LATPIL, \(\mu = 125 \text{ lb-sec/ft}^2 \)

From analysis using program LATPIL, \(\mu = 100 \text{ lb-sec/ft}^2 \)

From analysis using program LATPIL, \(\mu = 75 \text{ lb-sec/ft}^2 \)

From analysis using program LATPIL, \(\mu = 50 \text{ lb-sec/ft}^2 \)

Field load test

FIG. 77.-Comparison of Analysis and Field Test Results for Test C4
test C4, the shape of the predicted load-deflection curves are similar to the shape of the predicted load-deflection curves for test C3. However, the predicted load-deflection curves do not resemble the field load test curve. The predicted lateral loads agree well with the field load test results.

The results of these comparisons suggest the following reasons for the discrepancies between the analytical predictions and the field load test results for the posts in the cohesive soil:

1. Effective shear strength parameters, ϕ' and c', are required to define the failure zone as shown in Figs. 15 and 16. The shear strength parameters measured in the laboratory and used in the analysis were the undrained shear strength parameters.

2. Since the analytical prediction underpredicts the field test results for test C3, the drag coefficients used for the circular shafts are conservative.

3. The field test results for test C4 are not consistent with the results obtained from the other tests. The decrease in the lateral load at 7 inches of movement and the subsequent increase in the lateral load indicates that there is some error in the test results.
To determine the effect of these possible errors on the results of the analytical predictions, a parameter study was conducted by changing the value of the effective angle of friction, ϕ'. For both tests C3 and C4, the soil is assumed to be normally consolidated, thus having no effective cohesion. For each value assumed, an analytical prediction was obtained. The results of this study are shown in Figs. 78 and 79.

From the results of this parameter study, it is concluded that the analytical model is somewhat sensitive to the effective angle of internal friction. Although a wide range of values for ϕ' were used the analytical predictions for test C3 are still conservative. Thus, the drag coefficients used in the analytical model for circular piles must be conservative. For test C4, the analytical predictions were less sensitive to the angle of internal friction, because the load capacity is greater than that of test C3.
FIG. 7B.-Effect of Effective Angle of Friction on Analytical Predictions for Test C3
From analysis using program LATPIL; $\phi = 40^0$, $\mu = 100 \text{ lb-sec/ft}^2$

From analysis using program LATPIL; $\phi = 35^0$, $\mu = 100 \text{ lb-sec/ft}^2$

From analysis using program LATPIL; $\phi = 25^0$, $\mu = 100 \text{ lb-sec/ft}^2$

Field load test

FIG. 79.-Effect of Effective Angle of Friction on Analytical Predictions for Test C4
CONCLUSIONS AND RECOMMENDATIONS

Introduction

In this chapter, the conclusions drawn from this research study are summarized, and the recommendations for further research are discussed.

Conclusions

The conclusions that can be drawn from this research study are as follows:

1. The analytical model developed during this research study can be used for the analysis of laterally loaded piles or drilled piers. The comparison of test results with the analytical predictions indicate that the analysis procedure developed are reliable for statically loaded drilled piers.

2. The static guardrail post tests conducted as part of this research study indicate that the steel guardrail posts embedded 38 inches without a concrete footing performed similar to the timber post embedded 38 inches.

3. Comparisons of the static field test results with the analytical predictions indicate that the analytical model provides a useful means for predicting the response of guardrail posts to static loads.
4. The dynamic guardrail post tests conducted as part of this research study showed that the steel guardrail post embedded 38 inches without a concrete footing performed similar to the timber post embedded 38 inches. Thus, based on the results of both the static and dynamic field tests, the steel guardrail post embedded without a concrete footing performs satisfactorily as a traffic barrier system.

5. Comparisons of the dynamic field test results with the analytical model appears to provide a useful means for predicting the response of guardrail posts to dynamic loads. However, the analytical model is sensitive to the soil viscosity.

6. It should be emphasized however, that the above results and conclusions are based on limited number of tests performed in the field on the steel and timber posts. Due to the limited time and the resources available to the authors, repeatability of the test results was never verified. Therefore, it is essential that the above statements are applied to state standards and specifications with caution and additional tests be performed in the future to check the repeatability of the above results.

Recommendations for Further Research

The following areas are recommended for further research:

1. The conclusions drawn from this research study were
based on a limited number of load tests conducted on the steel and timber guardrail posts embedded in two different soils. To further support the findings of this study, additional load tests should be conducted in various soils which are used as backfill materials around guardrail posts by the highway departments.

2. To better understand the dynamic behavior of guardrail posts under lateral loads, additional dynamic field load tests should be performed. Guardrail posts could be instrumented to measure accelerations and stress distributions along the post. The tests should be conducted in various types of backfill materials.

3. Since the dynamic behavior of the soil is significantly influenced by the viscosity of the soil, a study to develop a procedure to determine soil viscosity is also desirable.

4. In addition, the computer program LATPIL can be modified to compute the load-deflection curve without the acceleration and the velocity data as input.
APPENDIX I.-REFERENCES
APPENDIX I.-REFERENCES

University of Texas at Austin, November 1970.

APPENDIX II.-NOTATION
APPENDIX II.-NOTATION

The following symbols are used in this paper:

- **A** = empirical coefficient in Terzaghi's equation for subgrade modulus;
- **A_b** = area of the pier base in contact with the underlying soil;
- **A_p** = projected area of shaft segment;
- **B** = pile width or diameter;
- **B_o** = reference diameter of 0.6 meters;
- **B_w** = pile cross-section dimension;
- **c** = cohesion of the soil;
- **C_D** = drag coefficient;
- **C_u** = undrained cohesive shear strength;
- **D** = pier embedment depth;
- **EIp** = flexural stiffness of the pier;
- **E_m** = initial slope of the soil stress-strain curve;
- **E_p** = modulus of elasticity of the soil as obtained from the pressuremeter test;
- **E_s** = modulus of elasticity of the soil;
- **E_Si** = initial slope of the p-y curve;
- **F_B** = compressive force of the base of the pier;
- **F_{ld}** = drag force on pier segment;
- **F_{lp}** = lateral earth pressure resultant force on pier segment;
F_{ls} = lateral force resultant of the horizontal shear stresses or a pier segment;

H = height above the ground-line to the point of application of the lateral load;

h_c = critical depth for determining soil pressure from pressuremeter limit pressure;

I = moment of inertia of pier and soil about the ground-line

K_a = coefficient of active earth pressure;

K_C = earth pressure coefficient for cohesion;

K_0 = coefficient of at-rest earth pressure;

K_P = coefficient of passive earth pressure;

K_q = earth pressure coefficient for overburden pressure;

k_h = lateral subgrade modulus;

k_{s1} = subgrade modulus for a one foot square plate;

L = embedment depth of the pier;

M_b = moment on base of shaft;

m = number of pier segments below the point of rotation;

n = number of pier segments above the point of rotation;

n_h = constant of horizontal subgrade modulus;

P_A = applied axial load to pier;

P_i = lateral force on pier segment i;
\[P_A = \text{applied lateral load to pier}; \]
\[p = \text{soil reaction pressure (force/unit length)}; \]
\[P_{\text{ult}} = \text{ultimate soil reaction pressure (force/unit length)}; \]
\[Q = \text{movement required to develop ultimate skin friction}; \]
\[R = \text{depth to the point of rotation}; \]
\[R_e = \text{radius of effective soil boundary}; \]
\[S_f = \text{shape factor}; \]
\[t = \text{pier segment thickness}; \]
\[V_B = \text{shear force on base of the pier}; \]
\[V_i = \text{vertical shear force on the perimeter of a pier segment}; \]
\[v = \text{velocity of pier segment}; \]
\[W = \text{effective weight of the pier}; \]
\[X_a = \text{lateral movement required to develop ultimate active earth pressure}; \]
\[X_p = \text{lateral movement required to develop ultimate passive earth pressure}; \]
\[x_i = \text{lateral movement of pier segment } i; \]
\[\bar{x}_i = \text{eccentricity of the vertical shear force relative to the shaft centerline for shaft segment } i; \]
\[x_b = \text{eccentricity of the vertical compressive force on the base relative to the centerline of the shaft}; \]
\(y \) = lateral deflection;
\(y_v \) = vertical movement of shaft segment;
\(y_{50} \) = pier deflection at one-half of the ultimate lateral pressure;
\(z \) = depth below the ground surface;
\(z_c \) = critical depth for determining the lateral subgrade modulus from the pressuremeter limit pressure;
\(z_i \) = depth below the ground surface to the midpoint of shaft segment \(i \);
\(\alpha \) = angular acceleration of the pier;
\(\alpha \) = angle which defines the geometry of the failure mechanism;
\(\alpha_r \) = shear strength reduction factor;
\(\alpha'_l \) = rheological coefficient used in determining the lateral subgrade modulus from the pressuremeter limit pressure;
\(\beta \) = ground slope;
\(\beta \) = angle which defines the geometry of the failure mechanism used to compute the ultimate lateral soil pressure for clean sands;
\(\delta \) = angle of friction between the shaft and the soil;
\(\epsilon_{50} \) = strain corresponding to one-half of the maximum principal stress difference.
determined from an unconsolidated, undrained
triaxial compression test;

$\gamma = \text{total unit weight of the soil;}

\gamma' = \text{effective unit weight of the soil;}

\theta = \text{angle of rotation of the shaft;}

\lambda_c = \text{reduction coefficient for the lateral}
\text{subgrade modulus determined from the}
\text{pressuremeter limit pressure for depths}
\text{less than } z ;

\mu = \text{soil viscosity;}

\nu = \text{Poisson's ratio for the soil;}

\rho = \text{mass density of the soil;}

\sigma_a = \text{active earth pressure;}

\sigma_p = \text{passive earth pressure;}

\sigma_{ra} = \text{radial active earth pressure;}

\sigma_{rp} = \text{radial passive earth pressure;}

\sigma' = \text{effective overburden pressure of the soil;}

\tau_m = \text{maximum shear strength of the soil;}

\tau_{r\theta} = \text{horizontal shear stress around circular}
\text{shaft;}

\tau_{rz} = \text{vertical shear stress;}

\tau_{zm} = \text{maximum vertical shear stress;}

\phi = \text{angle of internal friction of the soil.}
APPENDIX III.-COMPUTER PROGRAM LATPIL
COMPUTER PROGRAM INPUT

Input Definitions

The following symbols are used in the program input:

- **B** = pile diameter or width, ft;
- **B1** = pile cross-section depth, ft;
- **EL** = pile embedment depth, ft;
- **HP** = height of applied lateral load above ground surface, ft;
- **EPILE** = modulus of elasticity of pile, lb/ft;
- **AIPILE** = second moment of area of pile cross-section, ft\(^4\);
- **N** = number of pile segments;
- **AXP** = axial load on pile, lb;
- **WP** = effective pile weight, lb;
- **PHI (I)** = array containing the value of the angle of internal friction of each soil layer, degrees;
- **DELTA (I)** = array containing the value of the angle of friction between the pile and the soil for each soil layer, degrees;
- **C (I)** = array containing the value of soil cohesion of each soil layer, lb/ft;
- **GAMMT (I)** = array containing the value of the total unit weight of each soil layer, lb/ft;
- **D1 (I)** = array containing the depth to the bottom of the soil layer, ft;
= array containing the value of tilt required
to develop passive earth pressure for each
soil layer, dimensionless;
= array containing the value of tilt required
to develop active earth pressure for each
soil layer, dimensionless;
= array containing the value of the at-rest
earth pressure coefficient (K) for each
soil layer, dimensionless;
= array containing the value of the shear
strength reduction factor for each soil
layer, dimensionless;
= array containing the value of the soil
viscosity for each soil layer, lb·sec/ft;
= array containing the value of the amount of
vertical movement required to develop
ultimate skin friction, ft;
= surface surcharge, lb/ft;
= depth to the water table, ft;
= unit weight of water, lb/ft;
= tolerance on solution (0.0001 is usually
sufficient);
= option code; if NSTOP = 0, computation is
performed, and if NSTOP = 1 only data is
printed;
= option code; if NTCUT = 0, tensile active
pressures are allowed, and if NTCUT = 1, tensile active pressures are not allowed;

NSOL = option code; if NSOL = 0, only rigid solution is performed, and if NSOL = 1, both rigid and flexible solutions are performed;

NDISP = number of displacement values for which solutions are generated

DISP (I) = array containing the post displacements at the height of the applied load for which solutions are to be generated, in.;

V (I) = array containing the post velocities at the point of the applied load, ft/sec; and

ACCEL (I) = array containing the post accelerations at the point of the applied load, ft/sec .

Input Format

I. First Card

<table>
<thead>
<tr>
<th>Item</th>
<th>Column</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>1-10</td>
<td>F10.3</td>
</tr>
<tr>
<td>B1*</td>
<td>11-20</td>
<td>F10.3</td>
</tr>
<tr>
<td>EL</td>
<td>21-30</td>
<td>F10.3</td>
</tr>
<tr>
<td>HP</td>
<td>31-40</td>
<td>F10.3</td>
</tr>
<tr>
<td>N</td>
<td>41-45</td>
<td>I5</td>
</tr>
</tbody>
</table>

*For circular piles B1 = 0

II. Second Card

<table>
<thead>
<tr>
<th>Item</th>
<th>Column</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPILE</td>
<td>1-20</td>
<td>F20.3</td>
</tr>
<tr>
<td>AIPILE</td>
<td>21-40</td>
<td>F20.3</td>
</tr>
</tbody>
</table>
III. Next Series of Cards

Soil layer properties are input in sequential order beginning with the uppermost layer. There are always 5 soil layers and 10 cards in this series. For layer J, the input is as follows:

Card 1

<table>
<thead>
<tr>
<th>Item</th>
<th>Column</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>DELTA (J)</td>
<td>1-5</td>
<td>F5.1</td>
</tr>
<tr>
<td>PHI (J)</td>
<td>6-10</td>
<td>F5.1</td>
</tr>
<tr>
<td>C (J)</td>
<td>11-20</td>
<td>F10.3</td>
</tr>
<tr>
<td>GAMMT (J)</td>
<td>21-30</td>
<td>F10.3</td>
</tr>
<tr>
<td>D1 (J)</td>
<td>31-40</td>
<td>F10.3</td>
</tr>
<tr>
<td>XP (J)</td>
<td>41-50</td>
<td>F10.3</td>
</tr>
<tr>
<td>XA (J)</td>
<td>51-60</td>
<td>F10.3</td>
</tr>
<tr>
<td>EO (J)</td>
<td>61-70</td>
<td>F10.3</td>
</tr>
<tr>
<td>ALPHA (J)</td>
<td>71-80</td>
<td>F10.3</td>
</tr>
</tbody>
</table>

Card 2

<table>
<thead>
<tr>
<th>Item</th>
<th>Column</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIS (J)</td>
<td>1-10</td>
<td>F10.3</td>
</tr>
<tr>
<td>YSM (J)</td>
<td>11-20</td>
<td>F10.3</td>
</tr>
</tbody>
</table>

IV. Next Card

<table>
<thead>
<tr>
<th>Item</th>
<th>Column</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>AXP</td>
<td>1-10</td>
<td>F10.3</td>
</tr>
<tr>
<td>WP</td>
<td>11-20</td>
<td>F10.3</td>
</tr>
<tr>
<td>Q</td>
<td>21-30</td>
<td>F10.3</td>
</tr>
</tbody>
</table>
V. Next Card

<table>
<thead>
<tr>
<th>Item</th>
<th>Column</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>DW</td>
<td>1-10</td>
<td>F10.3</td>
</tr>
<tr>
<td>GH20</td>
<td>11-20</td>
<td>F10.3</td>
</tr>
</tbody>
</table>

VI. Next Card

<table>
<thead>
<tr>
<th>Item</th>
<th>Column</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSTOP</td>
<td>1-5</td>
<td>I5</td>
</tr>
<tr>
<td>NTCUT</td>
<td>5-10</td>
<td>I5</td>
</tr>
<tr>
<td>TOL</td>
<td>10-20</td>
<td>F10.3</td>
</tr>
</tbody>
</table>

VII. Next Card

<table>
<thead>
<tr>
<th>Item</th>
<th>Column</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDISP</td>
<td>1-5</td>
<td>I5</td>
</tr>
</tbody>
</table>

VIII. Next Series of Cards

There are as many cards in this series as there are displacement values for which solutions are desired. For displacement value number \(J \) the input is as follows:

<table>
<thead>
<tr>
<th>Item</th>
<th>Column</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISP ((J))</td>
<td>1-10</td>
<td>F10.2</td>
</tr>
<tr>
<td>V ((J))</td>
<td>11-20</td>
<td>F10.2</td>
</tr>
<tr>
<td>ACCEL ((J))</td>
<td>21-30</td>
<td>F10.2</td>
</tr>
</tbody>
</table>

IX. Next Card

<table>
<thead>
<tr>
<th>Item</th>
<th>Column</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSOL</td>
<td>1-5</td>
<td>I5</td>
</tr>
</tbody>
</table>
DIMENSION PHI(5), C(5), GAMMT(5), D1(5), XP(5), XA(5), EO(5), ALPHA(5)
DIMENSION X(50), P1(50), PASS(50), ACT(50), PMA(50)
DIMENSION M(50)
DIMENSION E(5), EA(5), EPMEO(5), EOMEA(5), DELTA(5)
DIMENSION Z(50), ZM1(50), HSHEAR(50), VSHEAR(50)
DIMENSION PASSP(50), ACTP(50), PMAP(50), MP(50), HSHEAP(50)
DIMENSION DRAG(50), DRAGFP(50), VIS(5), SHFC(5), YS(5), Y(50)
DIMENSION DISP(25), V(25), ACCEL(25)

VARIABLES USED IN THIS PROGRAM

INPUT DATA

PHI(5) - ANGLE OF INTERNAL FRICTION FOR THE FIVE SOIL LAYERS
DELTA(5) - ANGLE OF FRICTION BETWEEN PILE AND SOIL LAYER
C(5) - SHEAR STRENGTH OF THE SOIL LAYERS
GAMMT(5) - TOTAL UNIT WEIGHT OF THE SOIL LAYERS
D1(5) - DEPTH TO LOWER BOUNDARY OF EACH OF THE SOIL LAYERS
XP(5) - MOVEMENT REQUIRED TO DEVELOP PASSIVE PRESSURE
XA(5) - MOVEMENT REQUIRED TO DEVELOP ACTIVE PRESSURE
EO(5) - AT-REST EARTH PRESSURE COEFFICIENTS
ALPHA(5) - SHEAR STRENGTH REDUCTION FACTORS
VIS(5) - SOIL VISCOSITY
YSM(5) - MOVEMENT REQUIRED TO DEVELOP ULTIMATE SKIN FRICTION

B - PILE DIAMETER OR PILE WIDTH
B1 - PILE CROSS-SECTION DEPTH
EL - PILE EMBEDMENT LENGTH
H - HEIGHT OF APPLIED LATERAL LOAD
N - NUMBER OF PILE INCREMENTS

AXP - APPLIED AXIAL LOAD
WP - EFFECTIVE WEIGHT OF THE PILE
Q - SURCHARGE AT GROUND SURFACE

DW - DEPTH TO GROUND WATER TABLE
GH20 - UNIT WEIGHT OF WATER

NSTOP - SWITCH TO DETERMINE IF ONLY DATA IS TO BE PRINTED
TOL - TOLERANCE ON THE DEPTH OF ROTATION
TCUT - SWITCH FOR TENSION CUTOFF
NSOL - OPTION CODE: 0 - RIGID SOLUTION; 1 - FLEXIBLE SOLUTION
DISP(2S) - POST DISPLACEMENTS AT HEIGHT OF LOAD FOR WHICH SOLUTIONS ARE TO BE COMPUTED
V(2S) - POST VELOCITIES AT HEIGHT OF APPLIED LOAD (AUTOMOBILE VELOCITY)
ACCEL(2S) - POST ACCELERATIONS AT HEIGHT OF APPLIED LOAD (AUTOMOBILE ACCELERATIONS OR DECELERATIONS)

CALCULATED QUANTITIES

X(50) - LATERAL DISPLACEMENT OF EACH PILE SEGMENT
Y(50) - VERTICAL DISPLACEMENT OF EACH PILE SEGMENT
XFLEX(50) - LATERAL DISPLACEMENT OF EACH PILE SEGMENT COMPUTED USING SINGULARITY FUNCTIONS
P1(50) - OVERBURDEN PRESSURE AT EACH PILE SEGMENT
PASS(50) - PASSIVE PRESSURE AT EACH PILE SEGMENT
ACT(50) - ACTIVE PRESSURE AT EACH PILE SEGMENT
PMA(50) - RESULTANT FORCE AT EACH PILE SEGMENT
M(50) - PORTION OF OVERTURNING MOMENT DUE TO EACH PILE SEGMENT
TOTM - TOTAL SUM OF MOMENTS
HSHEAR(50) - HORIZONTAL SHEAR FORCE ON PILE SEGMENT
VSHEAR(50) - VERTICAL SHEAR FORCE ON PILE SEGMENT
BSHEAR - SHEAR FORCE ON THE BASE OF THE PILE
PTOT - TOTAL LATERAL LOAD AT HEIGHT H ABOVE GROUND
GLMOM - GROUND-LINE MOMENT
GLDEF - GROUND-LINE DEFLECTION
FBase - COMPRRESSIVE FORCE ON PILE BASE
DRAGC - DRAG COEFFICIENT
DRAGF(50) - DRAG FORCE ON EACH PILE SEGMENT
RN - REYNOLD'S NUMBER
AINERT - SECOND MOMENT OF INERTIA OF PILE-SOIL SYSTEM ABOUT THE POINT OF APPLICATION OF THE LOAD

READ 800,B,B1,EL,H,N
READ 803,EPILE,AIPILE
DO 10 I=1,5
 READ 805, DELTA(I),PHI(I),C(I),GAMMT(I),D1(I),XP(I),XA(I),EO(I),AL $PHA(I)
10 READ 806,VIS(I),YSM(I)
READ 810, AXP,WP,Q
 READ 815, DW,GH20
READ 820, NSTOP,NTCUT,TOL
READ 810,DISP(I),V(I),ACCEL(I)
READ 821,NDISP
PRINT 830
PRINT 840
DO 20 I=1,5
PRINT 845, I,PHI(I),DELTA(I),C(I),GAMMT(I),D1(I)
PRINT 850, XP(I),XA(I),EO(I),ALPHA(I)
PRINT 855, VIS(I)
PRINT 860, DW
PRINT 870
PRINT 875, B,B1,EL,H,N,EPILE,AIPILE
PRINT 880
PRINT 885, AXP,WP,Q,GH20,NTCUT,TOL
IF (NSTOP.NE.0) STOP
CALL OVERP(PHI,C,GAMMT,D1,N,P1,DW,GH20,Q,Z,ZM1,EL)
CALL SOILP(PHI,EP,EA,EO,EPMEO,EOMEA,DELTA,C,SHFC,B1)
EL1=EL/N
DO 500 K3=1,NDISP
XH=DISP(K3)/12.
VELH=V(K3)
ACCH=ACCEL(K3)
R=0.65
I7=0
DO 106 K=1,100
R1=R*EL+H
THETA=ARSIN(XH/R1)
A=THETA*180./3.14159
LR1=INT(R*EL/EL1)
DO 40 J=1,N
ROT(J)=THETA
IF (((2*J-1)*EL1*0.5).GT.(R*EL))GO TO 45
Y(J)=(R*EL-(2*J-1)*EL1*0.5)*(1.-COS(THETA))
X(J)=(R*EL-(2*J-1)*EL1*0.5)*SIN(THETA)
SIGNX(J)=1.
GO TO 40
45 X(J)=((2*J-1)*EL1*0.5-R*EL)*SIN(THETA)
SIGNX(J)=-1.0
Y(J)=((2*J-1)*EL1*0.5-R*EL)*(1.-COS(THETA))
GO TO 40
40 CONTINUE
CALL MOMINT(EL,R,H,B,D1,PHI,GAMMT,WP,AINERT,X,N,XP,XA,B1)
CALL LATPR(PHI,C,EP,EA,EO,EPMEQ,EOMEA,D1,EL,N,THETA,H,PASS,ACT,PMA
$,ALPHA,B,HSHEAR,VSHEAR,VTOTL,17,NTCUT,R,X,XP,XA,P1,SIGNX,ROT,DRAGF
$,GAMMT,VIS,XH,VELH,B1,SHFC,YSM,?,ACCH,DELTA,AXP,WP,FBASE)
CALL MOMEQ(EL,N,B,R,H,PMA,HSHEAR,VSHEAR,VTOTL,PBASA,AXP,WP,VTOTL,TH
$ETA,X,C,PHI,BSHEAR,K,M,ALPHA,XH,ROT,SIGNX,DRAGF,B1,AINERT,ACCH$

IF (TOTM) 50,60,70
50 IF (K.EQ.1) GO TO 80
 IF (TOTM/TOTMP) 55,56,57
55 E=E*0.1
 GO TO 80
56 GO TO 110
57 GO TO 80
60 GO TO 110
70 IF (K.EQ.1) GO TO 90
 IF (TOTM/TOTMP) 75,76,77
75 E=E*0.1
 GO TO 90
76 GO TO 110
77 GO TO 90
80 R=R+E
 IF (E.LT.TOL) GO TO 110
 GO TO 100
90 R=R-E
 IF (E.LT.TOL) GO TO 110
100 DO 105 L=1,N
 PASSP(L)=PASS(L)
 ACTP(L)=ACT(L)
 PMAP(L)=PMA(L)
 MP(L)=M(L)
 HSHEAP(L)=HSHEAR(L)
 VSHEAP(L)=VSHEAR(L)
 DRAGFP(L)=DRAGF(L)
105 CONTINUE
BSHEAP=BSHEAR
TOTMP=TOTM
106 CONTINUE
110 IF (ABS(TOTM)-ABS(TOTMP)) 120,120,140
120 GO TO 150
140 DO 145 Il=1,N
 PASS(Il)=PASSP(Il)
 ACT(Il)=ACTP(Il)
 PMA(Il)=PMAP(Il)
 M(Il)=MP(Il)
 HSHEAR(Il)=HSHEAP(Il)
 VSHEAR(Il)=VSHEAP(Il)
 DRAGF(Il)=DRAGFP(Il)
145 CONTINUE
TOTM=TOTMP
BSHEAR=BSHEAP
150 PTOT=0.0
 DO 200 J=1,N
221
200 CONTINUE
PTOT=PTOT+PMA(J)+HSHEAR(J)+DRAGF(J)

GLMOM=PTOT+H
GLDEF=R*EL*TAN(THETA)*12.
PRINT 900
R=R*EL
PRINT 905, A,R,PTOT,GLMOM,XH
PRINT 910
DO 300 L1=1,N
PRINT 920, Z(L1),X(L1)*SIGNX(L1),PASS(L1),ACT(L1),PMA(L1),HSHEAR(L
$1),VSHEAR(L1),DRAGF(L1)
300 CONTINUE
PRINT 922, BSHEAR,TOTM
IF (NSOL.EQ.0) GO TO 500
TOLM=ABS(TOTM)
DO 310 J=1,N
PMA(J)=PMA(J)
HSHEAR(J)=HSHEAR(J)
VSHEAR(J)=VSHEAR(J)
DRAGF(J)=DRAGF(J)
310 CONTINUE
PTOTP=PTOT
GLMOMP=GLMOM
ANGLE=THETA
K8=1
315 K7=0
K8=K8+1
THETAG=ANGLE
316 A=THETAG*180./3.14159
K7=K7+1
THETA=THETAG
317 CALL FLEXEQ(B,H,EL,R,PMA,HSHEAR,PTOTP,N,XH,THETAG,EPILE,ALI
$ILE,XFLEX,GLMOMP,TOTM,VSHEAR,ROT,DRAGF,B1)
DO 320 KL=1,N
X(K1)=ABS(XFLEX(K1))
SIGNX(K1)=ABS(XFLEX(K1))/XFLEX(K1)
Y(K1)=ABS((R*EL-(2*K1-1)*EL)*0.5)*(1.0-COS(ROT(K1))
320 CONTINUE
CALL MOMINT(EL,R,H,B,D1,PHI,GAMMT,WP,AINERT,X,N,XP,XA,B1)
324 CALL LATPR(PHI,C,EP,EA,EO,EPMEO,EMEAS,EL,N,THETA,H,PASS,
ACT,PMA$
$,ALPHA,B,HSHEAR,VSHEAR,VTOL,T7,NT Cut,R,XP,XP,XA,P1,SIGNX,ROT,DRAGF$
$,GAMMT,VIS,XH,VELH,B1,SHFC,YM,Y,ACCH,DELTA,AXP,WP,FBASE)
CALL MOMEQ(EL,N,B,R,H,PMA,HSHEAR,VSHEAR,TOTM,FBASE,AXP,WP,VTOL,TH$
$ETA,XFLEX,C,PHI,BSHEAR,K,H,ALPHA,XH,ROT,SIGNX,DRAGF,B1,AINERT,ACCH$
$)
PTOT=0.0
DO 330 J=1,N
PTOT=PTOT+PMA(J)+HSHEAR(J)+DRAGF(J)
330 CONTINUE
PTOT=PTOT-BSHEAR
GLMOM=PTOT*H
IF (R.EQ.1) GO TO 341
I7=INT(R*N)+1
DO 340 J=I7,N
340 X(J)=-1.0*X(J)
341 IF (ABS(TOTM).LT.TOLM) GO TO 348
IF (K7.NE.1) GO TO 347
IF (TOTM.LE.0.0) GO TO 346
THETAP=THETAG
THETAG=(1.+1./K8**2.)*THETAP
TOTMP=TOTM
GO TO 316
346 THETAP=THETAG
THETAG=(1.-1./K8**2.)*THETAP
TOTMP=TOTM
GO TO 316
347 SLOPE=(TOTMP-TOTM)/(THETAP-THETAG)
THETAP=THETAG
THETAG=THETAP-TOTM/SLOPE
TOTMP=TOTM
GO TO 316
348 DO 349 J=1,N
PMAP(J)=(PMAP(J)+PMA(J))/2.
HSHEAP(J)=(HSHEAP(J)+HSHEAR(J))/2.
VSHEAP(J)=(VSHEAP(J)+VSHEAR(J))/2.
DRAGFP(J)=(DRAGFP(J)+DRAGF(J))/2.
349 CONTINUE
PTOTP=(PTOTP+PTOT)/2.
GLMOMP=(GLMOMP+GLMOM)/2.
350 ERRORF=ABS(THETAG-ANGLE)
IF (ERRORF.LE.TOL) GO TO 355
ANGLE=(ANGLE+THETAG)/2.
GO TO 315
355 GLDEF=X(1)+EL1/2.*SIN(ROT(1))
GLSLP=THETAG
A=GLSLP*180./3.14159
PRINT 930
R=R*EL
PRINT 935,A,R,PTOT,GLMOM,GLDEF
PRINT 910
DO 360 J=1,N
PRINT 920,Z(J),X(J),PASS(J),ACT(J),PMA(J),HSHEAR(J),VSHEAR(J),DRAGF(J)
$F(J)
360 CONTINUE
PRINT 922,BSHEAR,TOTM
500 CONTINUE
STOP
800 FORMAT (4F10.3,I5)
803 FORMAT (2F20.3)
805 FORMAT (2F5.1,7F10.3)
806 FORMAT (2F10.3)
810 FORMAT (3F10.3)
815 FORMAT (2F10.3)
820 FORMAT (215,F10.3)
821 FORMAT (2F10.3)
830 FORMAT (1',T59,'**************',/,' ',T59,'* INPUT DATA *',/,'$',' ',T59,'**************')
840 FORMAT ('O',T5,'SOIL PROPERTIES',/','+',T5,'**************')
845 FORMAT (',',T5,'LAYER ',I2,/',',',',T10,'ANGLE OF FRICTION = ',F5.1,/ '$',' ',T10,'FRICTION ANGLE BETWEEN PILE AND SOIL = ',F5.1,/,',',',T10,'$','SHEAR STRENGTH = ',F6.0,/,',',',T10,'TOTAL UNIT WEIGHT = ',F5.1,/, '$',' ',T10,'DEPTH TO BOTTOM OF LAYER = ',F6.2)
850 FORMAT ('O',T10,'MOVEMENT NEEDED TO DEVELOP PASSIVE PRESSURE / PIL $E EMBEDMENT = ',F6.4,/,',',',T10,'MOVEMENT NEEDED TO DEVELOP ACTIVE $PRESSURE / PILE EMBEDMENT = ',F6.4,/,',',',T10,'AT-REST EARTH PRESSU $RE COEFFICIENT = ',F5.3,/,',',',T10,'SHEAR REDUCTION FACTOR = ',F4.2)
855 FORMAT ('O',T5,'SOIL VISCOSITY = ',F6.2,///)
860 FORMAT (',',T10,'DEPTH TO WATER TABLE = ',F5.2,///)
870 FORMAT (',',T10,'SOIL PROPERTIES',/','+',T5,'**************')
875 FORMAT (',',T10,'PILE WIDTH = ',F6.3,/,',',',T10,'PILE DEPTH = ',F6.3,/$',',',',T10,'PILE EMBEDMENT = ',F6.2,/,',',',T10,'HEIGHT OF APPLIED LATE $RAL LOAD = ',F6.2,/,',',',T10,'NUMBER OF PILE INCREMENTS = ',I5,/,',',',T10,'$','T10,'MODULUS OF ELASTICITY = ',E11.4,/,',',',T10,'SHEAR REDUCTION FACTOR = ',F4.2)
880 FORMAT ('O',T5,'OTHER INFORMATION', '/','+',T5,'**************')
885 FORMAT ('O',T10,'APPLIED AXIAL LOAD = ',F10.2,/,',',',T10,'EFFECTIVE $WEIGHT OF PILE = ',F10.2,/,',',',T10,'SURFACE SURCHARGE = ',F6.1,/,',',',T10,'UNIT WEIGHT OF WATER = ',F6.2,/,',',',T10,'TENSION CUTOFF = ',I2 $$/',',',',T10,'TOLERANCE = ',F10.6)
900 FORMAT ('1',T52,'**************',/,' ',T52,'* R $IGID SOLUTION'*X,'*',/,' ',T52,'**************')
905 FORMAT ('O',T10,'ANGLE OF ROTATION = ',F7.3,/,',',',T10,'DEPTH TO ROT $ATION POINT = ',F10.6,/,',',',T10,'TOTAL LATERAL LOAD = ',F10.2,/,',',',T10,'$T10,'GROUND-LINE MOMENT = ',F10.1,/,',',',T10,'DEFLECTION AT TOP OF P $ILE = ',F10.6,///)
910 FORMAT (' ',T16,'DEPHT',',',8X,'LAT DISP',',',9X,'PASS',',',12X,'ACT',',',9X,'PAS $S-ACT',',',9X,'HSHEAR',',',9X,'VSHEAR',',',9X,'DFORCE', '/','+',',T16, '/',' ',',',8X,'$', ' ,9X,' ',',12X,' ',',9X,' ',',9X,' ',',9X,' ',',9X,' ' ' ,224

```
360 CONTINUE  
PRINT 922,BSHEAR,TOTM  
500 CONTINUE  
STOP  
800 FORMAT (4F10.3,I5)  
803 FORMAT (2F20.3)  
805 FORMAT (2F5.1,7F10.3)  
806 FORMAT (2F10.3)  
810 FORMAT (3F10.3)  
815 FORMAT (2F10.3)  
820 FORMAT (215,F10.3)  
821 FORMAT (2F10.3)  
830 FORMAT (1',T59,'**************',/,' ',T59,'* INPUT DATA *',/,'$',' ',T59,'**************')  
840 FORMAT ('O',T5,'SOIL PROPERTIES', '/','+',T5,'**************')  
845 FORMAT (',',T5,'LAYER ',I2, '/',',',',T10,'ANGLE OF FRICTION = ',F5.1,/ '$',' ',T10,'FRICTION ANGLE BETWEEN PILE AND SOIL = ',F5.1, '/',',',',T10,'$','SHEAR STRENGTH = ',F6.0, '/',',',',T10,'TOTAL UNIT WEIGHT = ',F5.1, '/', '$',' ',T10,'DEPTH TO BOTTOM OF LAYER = ',F6.2)  
850 FORMAT ('O',T10,'MOVEMENT NEEDED TO DEVELOP PASSIVE PRESSURE / PIL $E EMBEDMENT = ',F6.4, '/',',',',T10,'MOVEMENT NEEDED TO DEVELOP ACTIVE $PRESSURE / PILE EMBEDMENT = ',F6.4, '/',',',',T10,'AT-REST EARTH PRESSU $RE COEFFICIENT = ',F5.3, '/',',',',T10,'SHEAR REDUCTION FACTOR = ',F4.2)  
855 FORMAT ('O',T5,'SOIL VISCOSITY = ',F6.2,///)  
860 FORMAT (',',T10,'DEPTH TO WATER TABLE = ',F5.2,///)  
870 FORMAT (',',T10,'SOIL PROPERTIES', '/','+',T5,'**************')  
880 FORMAT ('O',T5,'OTHER INFORMATION', '/','+',T5,'**************')  
900 FORMAT ('1',T52,'**************',/,' ',T52,'* R $IGID SOLUTION'*X,'*',/,' ',T52,'**************')  
905 FORMAT ('O',T10,'ANGLE OF ROTATION = ',F7.3, '/',',',',T10,'DEPTH TO ROT $ATION POINT = ',F10.6, '/',',',',T10,'TOTAL LATERAL LOAD = ',F10.2, '/',',',',T10,'$T10,'GROUND-LINE MOMENT = ',F10.1, '/',',',',T10,'DEFLECTION AT TOP OF P $ILE = ',F10.6, ///)  
910 FORMAT (' ',T16,'DEPHT',',',8X,'LAT DISP',',',9X,'PASS',',',12X,'ACT',',',9X,'PAS $S-ACT',',',9X,'HSHEAR',',',9X,'VSHEAR',',',9X,'DFORCE', '/','+',',T16, '/',' ',',',8X,'$', ' ,9X,' ',',12X,' ',',9X,' ',',9X,' ',',9X,' ',',9X,' ' ' ,224

```

To convert this into a plain text representation, you can use a text editor or a code editor that supports markdown or plain text format. The code is written in FORTRAN, and it's a part of a program that deals with soil properties and pile behavior. The program prints out various data and calculations related to soil properties, pile properties, and other information. The text is structured with FORTRAN format specifications and includes comments indicating the purpose of each section.
$'\$,8X,'//)
920 FORMAT (' ',10X,F10.6,5X,F10.6,5X,F10.2,5X,F10.2,5X,F10.2,5X,F10.2
$,5X,F10.2,4X,F10.2)
922 FORMAT('0',T10,'BASE SHEAR FORCE =',F10.1,'/','0',T10,'SUM OF MOMENT
SS AT POINT OF LOAD APPLICATION = ',E10.3,/
930 FORMAT ('1',T52,'**
',/,' ',T52,'* FLEXIBLE SOLUTION *',/,' ',T52,'**
935 FORMAT('0',T10,'GROUND-LINE SLOPE =',F8.5,/,0',T10,'DEPTH TO ZERO
$ DISPLACEMENT =',F8.3,/,0',T10,'TOTAL LATERAL LOAD =',F10.2,/,0'
$,T10,'GROUND-LINE MOMENT =',F10.1,/,0',T10,'GROUND-LINE DEFLCTIO
SN =',F10.4,//)
END
C
C ***
C
C SUBROUTINE OVERP CALCULATES THE OVERBURDEN PRESSURE AT
C THE MIDPOINT OF EACH PILE SEGMENT
C ***
C
SUBROUTINE OVERP(PHI,C,GAMMT,Dl,N,Pl,DW,GH20,Q,Z,ZM1,EL)
DIMENSION PHI(5),C(5),GAMMT(5),Dl(5),Pl(N),Z(N),ZM1(N)
EL1=EL/N
DO 100 I=1,N
Pl(I)=0.0
100 Z(I)=(I-0.5)*EL1
L1=INT(Dl(1)/EL1)
L2=INT(Dl(2)/EL1)
L3=INT(Dl(3)/EL1)
L4=INT(Dl(4)/EL1)
L1Pl=L1+1
L2Pl=L2+1
L3P1=L3+1
L4Pl=L4+1
ZM1(1)=EL1*0.5
DO 200 J=2,N
ZM1(J)=Z(J)-Z(J-1)
200 IF (Z(1).GT.DW) GAMMT(1)=GAMMT(1)-GH20
Pl(1)=Pl(1)+ZM1(1)*GAMMT(1)+Q
DO 210 I=2,L1
U=0.0
210 IF (Z(I).GT.DW) U=GH20
Pl(I)=Pl(I-1)+ZM1(I)*(GAMMT(I)-U)
DO 220 I=L1Pl,L2
U=0.0
220 IF (Z(I).GT.DW) U=GH20
225
SUBROUTINE SOILP(PHI, EP, EA, EO, EPMEO, EOMEA, DELTA, C, SHFC, B1)
DIMENSION C(5), SHFC(5)
PI=3.14159
DO 10 I=1,5
DR=DELTA(I)*PI/180.
PHIR=PHI(I)*PI/180.
RAD=SQR(SIN(DR+PHIR)*SIN(PHIR)/COS(DR))
EP(I)=(COS(PHIR)**2)/(COS(DR)*(1.-RAD)**2)
EA(I)=(COS(PHIR)**2)/(COS(DR)*(1.+RAD)**2)
EPMEO(I)=EP(I)-EO(I)
EOMEA(I)=EO(I)-EA(I)
IF (EPMEO(I).LT.0.0) EPMEO(I)=0.0
IF (EOMEA(I).LT.0.0) EOMEA(I)=0.0
SHFC(I)=PI/4.
 IF(C(I).NE.0.0.AND.B1.NE.0.0) SHFC(I)=2./3.
10 CONTINUE
RETURN
END

**
* SUBROUTINE LATPR CALCULATES THE FOLLOWING QUANTITIES *
* AT EACH PILE SEGMENT: *
* (1) PASSIVE PRESSURE *
* (2) ACTIVE PRESSURE *
* (3) RESULTANT PRESSURE (PASS - ACT) *
* (4) HORIZONTAL SHEAR FORCE *
* (5) VERTICAL SHEAR FORCE *
**

SUBROUTINE LATPR(PHI,C,EP,EA,EO,EOMEA,D1,EL,N,THETA,H,PASS,A
$CT,PMA,ALPHA,B,HSHEAR,VSHEAR,VTOTL,I7,NTCUT,R,X,XA,P1,SIGNX,ROT
$,$,DRAF,GAMMT,VIS,XH,VELH,B!,SHFC,YSM,Y,ACCH,DELTA,AXP,WP,FBASE)
DIMENSION ACT(N),PMA(N),X(N),ALPHA(5),VSHEAR(N),GAMMT(5),DRAF(N)
DIMENSION HSHEAR(N),XP(S),X(N),P1(N),PHI(5),C(5),SIGNX(N),ROT(N)
DIMENSION SHFC(5),YSM(5),Y(N),DELTA(5)
VTOTL=0.0
PI=3.14159
EL1=EL/N
L1=INT(D1(1)/EL1)
L2=INT(D1(2)/EL1)
L3=INT(D1(3)/EL1)
L4=INT(D1(4)/EL1)
LR1=INT(R*EL/EL1)
DO 10 I=1,N
IF (I.LE.L1) J=1
IF (I.GT.L1.AND.I.LE.L2) J=2
IF (I.GT.L2.AND.I.LE.L3) J=3
IF (I.GT.L3.AND.I.LE.L4) J=4
IF (I.GT.L4) J=5
IF (VELH.EQ.0.0) GO TO 5
VEL=VELH*X(I)/XH
BD=SQRT(B*EL1)
IF (B1.EQ.0.0) BD=B
RN=VEL*BD*GAMMT(J)/(32.2*VIS(J))
IF (RN.LE.0.0) GO TO 5
IF (B1.NE.0.0) GOTO 6
DRAGC=10.*(0.650515*ALOG10(RN)+1.12764)

227
GO TO 9
6 DRAGC=10.*(-1.0*AALOG10(RN)+1.301)
9 DRAGF(I)=DRAGC*B*EL1*VEL**2./2.*GAMMT(J)/32.2*SIGNX(I)
GO TO 7
5 DRAGF(I)=0.0
7 XPASS=XP(J)*R*ABS(1-(2*I-1)*0.5*EL1/R/EL)
 XACT=XA(J)*R*ABS(1-(2*I-1)*0.5*EL1/R/EL)
 IF (XPASS.LE.0.0)XPASS=XP(J)/100.
 IF (XACT.LE.0.0)XACT=XA(J)/100.
8 Cl=EO(J)*Pl(I)
 Al=(Pl(I)*EPMEO(J)+2.*C(J)*SQRT(EP(J)))*TANH(2.*X(I)/XPASS)
 PASS(I)=Al+Cl
 ACT(I)=(Pl(I)*EOMEA(J)+2.*C(J)*SQRT(EA(J)))*TANH(-2.*X(I)/XACT)+Cl
 IF (NTCUT.NE.1) GO TO 15
 IF (ACT(I).LT.0.0) ACT(I)=0.0
15 PMa(I)=SIGNX(I)*(PASS(I)-ACT(I))*SHFC(J)*EL1*B*COS(ROT(I))
 IF (Bl.EQ.0.0)GO TO 18
 HSHEAR(I)=ALPHA(J)*2.*Bl*EL1*((PASS(I)+ACT(I))/2.*TAN(PHI(J)*PI/18
 $0.0.)*C(J))
 VSHEAR(I)=ALPHA(J)*EL1*B*((PASS(I)-ACT(I))*SHFC(J)*TAN(PHI(J)*PI/1
 $80.0.)*C(J))*TANH(2./YSM(J)*Y(I))
 GO TO 19
18 HSHEAR(I)=ALPHA(J)*B*EL1*(TAN(PHI(J)*PI/180.)*3.*A1+PI/4.*EO(J)*Pl
 $*(I)*TAN(PHI(J)*PI/180.)/3.*A1+PI/4.*EO(J)*Pl
 VSHEAR(I)=ALPHA(J)*B*EL1*(Pl/4.)*TAN(PHI(J)*PI/180.0)*A1+EO(J)*Pl(I)
 $*TAN(PHI(J)*PI/180.0)+C(J))*TANH(2./YSM(J)*Y(I))
19 HSHEAR(I)=SIGNX(I)*HSHEAR(I)*TANH(2.*X(I)/YSM(J))
10 CONTINUE
LRLP1=LRL1+1
DO 17 I=I,N
 IF (I.GE.LRLP1)GO TO 16
 VTOTL=VTOTL+VSHEAR(I)
107 CONTINUE
VTOTL=VTOTL-VSHEAR(I)
16 CONTINUE
SVERT=(AXP+WP)*COS(THETA)-VTOTL
 IF (SVERT.LT.0.0)SVERT=0.0
 FBASE=SVERT
 RETURN
END

**
**
** SUBROUTINE MOMEQ SUMS MOMENTS FOR THE ENTIRE PILE
**
**
SUBROUTINE MOMEQ(EL, N, B, R, H, PMA, HSHEAR, VSHEAR, TOTM, TBASE, AXP, WP, VT, $OTL, THETA, X, C, PHI, BSHEAR, K, M, ALPHA, XH, ROT, SIGNX, DRAGF, B1, AINERT, AC $CH)

DIMENSION PMA(N), HSHEAR(N), VSHEAR(N), DRAGF(N)
DIMENSION X(N), C(5), PHI(5), M(N), ALPHA(5), ROT(N), SIGNX(N)
PI=3.14159
EL1=EL/N
B2=B1
IF (B1.EQ.0.0) B2=B
RACC=ACCH*COS(ROT(1))/(H+R*EL)
DO 10 I=1,N
VMA=H*COS(ROT(I)+(2*I-1)*EL1*0.5*COS(ROT(I))
M(I)=VMA*(PMA(I)+HSHEAR(I)+DRAGF(I))-VSHEAR(I)*B2/2.
10 CONTINUE
25 TOTM=0.0
DO 30 I=1,N
30 TOTM=TOTM+M(I)
BSHEAR=ALPHA(5)*C(5)*PI*B**2/8.+FBASE*TAN(PHI(5)*PI/180.)
IF (B1.NE.0.0) BSHEAR=ALPHA(5)*C(5)*B*B1/2.+FBASE*TAN(PHI(5)*PI/18
$0.)
TOTM=TOTM-BSHEAR*(EL+H)-AINERT*RACC
RETURN
END

* * SUBROUTINE FLEXEQ COMPUTES THE PILE DEFLECTIONS USING * * THE PRESSURES CALCULATED.
* * * ***

SUBROUTINE FLEXEQ(B, H, EL, R, PMA, HSHEAR, PTOT, N, XH, THETAG, EPILE, AIPIL $E, XFLEX, GLMOM, TOTM, VSHEAR, ROT, DRAGF, B1)
DIMENSION PMA(N), HSHEAR(N), XFLEX(N), COEFS(50), VSHEAR(N), ROT(N)
DIMENSION DRAGF(N)
EL1=EL/N
PI=3.14159
COEFS(1)=(PMA(1)+HSHEAR(1)+DRAGF(1))/EL1
DO 100 I=2,N
COEFS(I)=(PMA(I)-PMA(I-1)+HSHEAR(I)-HSHEAR(I-1)+DRAGF(I)-DRAGF(I-1 $))/EL1
100 CONTINUE
CONST1=-1.*EPILE*AIPILE*THETAG

229
CONST2 = EPILE * AIPILE * XH
B2 = B1
IF (B1.EQ.0.0) B2 = B
R7 = R*EL
DO 200 J = 1, N
SUM = 0.0
SUM1 = 0.0
Z = (J - 0.5) * EL1
DO 150 K = 1, J
SUM = SUM - 1./24. * COEFS(K) * (Z - EL1 * (K - 1))**2 - 0.5 * VSHEAR(K) * B2 / 2. * (Z - (K - 0.5) * EL1)**2.
SUM1 = SUM1 - 1./6.* COEFS(K) * (Z - EL1 * (K - 1))**3 - VSHEAR(K) * B2 / 2. * (Z - (K - 0.5) * EL1)
150 CONTINUE
XFLEX(J) = (1./6. * PTOT * (Z + H)**3 + SUM + CONST1 * (Z + H) + CONST2) / (EPILE * AIPILE)
ROT(J) = (PTOT / 2. * (Z + H)**2 + SUM1 + CONST1) / (EPILE * AIPILE)
ROT(J) = ABS(ROT(J))
200 CONTINUE
DO 220 I = 1, N
IF (XFLEX(I).LE.0.) GO TO 230
220 CONTINUE
R = 1.0
GO TO 240
230 R = ((2*I - 1)*0.5 + XFLEX(I - 1) / (XFLEX(I - 1) - XFLEX(I))) / N
240 RETURN
END

**
**
** SUBROUTINE MOMINT CALCULATES THE MOMENT OF INERTIA OF
** THE PILE AND SOIL INVOLVED IN THE FAILURE ABOUT THE
** POINT OF LOAD APPLICATION
**
**

SUBROUTINE MOMINT(EL, R, H, B, D1, PHI, GAMMT, WP, AINERT, X, N, XP, XA, B1)
DIMENSION D1(5), PHI(5), GAMMT(5), X(N), XP(5), XA(5)
PI = 3.14159
EL1 = EL / N
L1 = INT(D1(1) / EL1)
L2 = INT(D1(2) / EL1)
L3 = INT(D1(3) / EL1)
L4 = INT(D1(4) / EL1)
AINERT = 0.0

230
DO 10 I=1,N
IF (I.LE.L1) J=1
IF (I.GT.L1.AND.I.LE.L2) J=2
IF (I.GT.L2.AND.I.LE.L3) J=3
IF (I.GT.L3.AND.I.LE.L4) J=4
IF (I.GT.L4) J=5
XPASS=XP(J)*R*ABS(1-(2*I-1)*0.5*EL1/R/EL)
XACT=XA(J)*R*ABS(1-(2*I-1)*0.5*EL1/R/EL)
IF (XPASS.LE.0.0) XPASS=XP(J)/100.
IF (XACT.LE.0.0) XACT=XA(J)/100.
DIST1=ABS((R*EL-(2*I-1)*0.5*EL1))*TAN((45.+PHI(J)/2.)*PI/180.)
DIST1=DIST1*TANH(2.*X(I)/XPASS)
DIST2=ABS((R*EL-(2*I-1)*0.5*EL1))*TAN((45.-PHI(J)/2.)*PI/180.)
DIST2=DIST2*TANH(2.*X(I)/XACT)
RADIUS=(2*I-1)*0.5*EL1+H
TMASS=DIST1*B+DIST1**2./2.*(PHI(J)*PI/180.+PI/2.)
TMASS=TMASS+DIST2*B+DIST2**2./2.*(PI/2.-PHI(J)*PI/180.)
TMASS=TMASS*EL1*GAMMT(J)/32.2
AINERT=AINERT+TMASS*RADIUS**2.
10 CONTINUE
IF (B1.EQ.0.0) GO TO 15
AINERT=AINERT+WP/32.2/12.*B1**2.+WP/32.2/3.*(EL+H)**2.
GO TO 20
15 AINERT=AINERT+WP/32.2/16.*B**2.+WP/32.2/3.*(EL+H)**2.
20 RETURN
END
SAMPLE OUTPUT

The sample output listing shown on the following pages is for the dynamic impact test C2. The input data for the computer program LATPIL is listed below.

<table>
<thead>
<tr>
<th>V</th>
<th>m</th>
<th>v</th>
<th>k</th>
<th>T</th>
<th>I</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3283</td>
<td>0.4917</td>
<td>3.167</td>
<td>1.75</td>
<td>20</td>
<td>4176000000.</td>
<td>0.00079089</td>
</tr>
<tr>
<td>22.52</td>
<td>0.</td>
<td>115.0</td>
<td>0.63</td>
<td>0.005</td>
<td>0.0005</td>
<td>0.2569</td>
</tr>
<tr>
<td>100.000</td>
<td>0.025</td>
<td>115.0</td>
<td>1.26</td>
<td>0.005</td>
<td>0.0005</td>
<td>0.2569</td>
</tr>
<tr>
<td>22.52</td>
<td>0.</td>
<td>115.0</td>
<td>1.89</td>
<td>0.005</td>
<td>0.0005</td>
<td>0.2639</td>
</tr>
<tr>
<td>100.000</td>
<td>0.025</td>
<td>115.0</td>
<td>2.52</td>
<td>0.005</td>
<td>0.0005</td>
<td>0.2746</td>
</tr>
<tr>
<td>22.50.5</td>
<td>0.</td>
<td>115.0</td>
<td>3.167</td>
<td>0.005</td>
<td>0.0005</td>
<td>0.2892</td>
</tr>
<tr>
<td>100.000</td>
<td>0.025</td>
<td>115.0</td>
<td>62.4</td>
<td>0.70</td>
<td>0.00100</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.2522</td>
<td>26.083</td>
<td>7.445</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.565</td>
<td>26.033</td>
<td>92.443</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SOIL PROPERTIES

LAYER 1
- Angle of Friction = 52.0
- Friction Angle Between Pile and Soil = 22.0
- Shear Strength = 0.0
- Total Unit Weight = 115.0
- Depth to Bottom of Layer = 0.63
- Movement Needed to Develop Passive Pressure / Pile Embedment = 0.0050
- Movement Needed to Develop Active Pressure / Pile Embedment = 0.0005
- At-Rest Earth Pressure Coefficient = 0.257
- Shear Reduction Factor = 1.00
- Soil Viscosity = 100.00

LAYER 2
- Angle of Friction = 52.0
- Friction Angle Between Pile and Soil = 22.0
- Shear Strength = 0.0
- Total Unit Weight = 115.0
- Depth to Bottom of Layer = 1.26
- Movement Needed to Develop Passive Pressure / Pile Embedment = 0.0050
- Movement Needed to Develop Active Pressure / Pile Embedment = 0.0005
- At-Rest Earth Pressure Coefficient = 0.257
- Shear Reduction Factor = 1.00
- Soil Viscosity = 100.00

LAYER 3
- Angle of Friction = 51.4
- Friction Angle Between Pile and Soil = 22.0
- Shear Strength = 0.0
- Total Unit Weight = 115.0
- Depth to Bottom of Layer = 1.89
- Movement Needed to Develop Passive Pressure / Pile Embedment = 0.0050
- Movement Needed to Develop Active Pressure / Pile Embedment = 0.0005
- At-Rest Earth Pressure Coefficient = 0.284
- Shear Reduction Factor = 1.00
- Soil Viscosity = 100.00

LAYER 4
- Angle of Friction = 50.5
- Friction Angle Between Pile and Soil = 22.0
- Shear Strength = 0.0
- Total Unit Weight = 115.0
- Depth to Bottom of Layer = 2.52
- Movement Needed to Develop Passive Pressure / Pile Embedment = 0.0050
MOVEMENT NEEDED TO DEVELOP ACTIVE PRESSURE / PILE EMBEDMENT = 0.0005
AT-REST EARTH PRESSURE COEFFICIENT = 0.275
SHEAR REDUCTION FACTOR = 1.00
SOIL VISCOSITY = 100.00

LAYER 5
ANGLE OF FRICTION = 49.3
FRICTION ANGLE BETWEEN PILE AND SOIL = 22.0
SHEAR STRENGTH = 0.0
TOTAL UNIT WEIGHT = 115.0
DEPTH TO BOTTOM OF LAYER = 3.17
MOVEMENT NEEDED TO DEVELOP PASSIVE PRESSURE / PILE EMBEDMENT = 0.0050
MOVEMENT NEEDED TO DEVELOP ACTIVE PRESSURE / PILE EMBEDMENT = 0.0005
AT-REST EARTH PRESSURE COEFFICIENT = 0.289
SHEAR REDUCTION FACTOR = 1.00
SOIL VISCOSITY = 100.00

DEPTH TO WATER TABLE = 3.17

PILE PROPERTIES

PILE WIDTH = 0.328
PILE DEPTH = 0.492
PILE EMBEDMENT = 3.17
HEIGHT OF APPLIED LATERAL LOAD = 1.75
NUMBER OF PILE INCREMENTS = 20
MODULUS OF ELASTICITY = 0.4176E+10
MOMENT OF INERTIA = 0.7909E-03

OTHER INFORMATION

APPLIED AXIAL LOAD = 0.00
EFFECTIVE WEIGHT OF PILE = 70.00
SURFACE SURCHARGE = 0.0
UNIT WEIGHT OF WATER = 62.40
TENSION CUTOFF = 1
TOLERANCE = 0.001000

**
* RIGID SOLUTION *
**

ANGLE OF ROTATION = 1.597
DEPTH TO ROTATION POINT = 1.994892
TOTAL LATERAL LOAD = 11923.45
GROUND-LINE MOMENT = 20866.0
DEFLECTION AT TOP OF PILE = 0.104350

<table>
<thead>
<tr>
<th>DEPTH</th>
<th>LAT DISP</th>
<th>PASS</th>
<th>ACT</th>
<th>PASS-ACT</th>
<th>HShear</th>
<th>VShea</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.079175</td>
<td>0.053385</td>
<td>402.76</td>
<td>1.03</td>
<td>18.40</td>
<td>40.22</td>
<td>1.25</td>
</tr>
<tr>
<td>0.237525</td>
<td>0.048973</td>
<td>1208.27</td>
<td>3.08</td>
<td>49.19</td>
<td>120.62</td>
<td>3.43</td>
</tr>
<tr>
<td>0.395875</td>
<td>0.044561</td>
<td>2013.78</td>
<td>5.13</td>
<td>61.98</td>
<td>200.87</td>
<td>5.21</td>
</tr>
<tr>
<td>0.554225</td>
<td>0.040149</td>
<td>2819.30</td>
<td>7.19</td>
<td>147.57</td>
<td>359.76</td>
<td>7.52</td>
</tr>
<tr>
<td>0.712575</td>
<td>0.035737</td>
<td>3624.81</td>
<td>9.24</td>
<td>147.57</td>
<td>359.76</td>
<td>7.52</td>
</tr>
<tr>
<td>0.870925</td>
<td>0.031325</td>
<td>4430.32</td>
<td>11.30</td>
<td>180.36</td>
<td>436.72</td>
<td>8.05</td>
</tr>
<tr>
<td>1.029275</td>
<td>0.026913</td>
<td>5235.83</td>
<td>13.35</td>
<td>213.15</td>
<td>509.05</td>
<td>8.17</td>
</tr>
<tr>
<td>1.187625</td>
<td>0.022501</td>
<td>6041.34</td>
<td>15.41</td>
<td>245.94</td>
<td>591.49</td>
<td>8.35</td>
</tr>
<tr>
<td>1.345975</td>
<td>0.018089</td>
<td>6846.85</td>
<td>17.47</td>
<td>278.73</td>
<td>673.93</td>
<td>8.54</td>
</tr>
<tr>
<td>1.504325</td>
<td>0.013677</td>
<td>7652.36</td>
<td>19.53</td>
<td>311.52</td>
<td>756.36</td>
<td>8.73</td>
</tr>
<tr>
<td>1.662675</td>
<td>0.009265</td>
<td>8457.87</td>
<td>21.59</td>
<td>344.31</td>
<td>838.79</td>
<td>8.92</td>
</tr>
<tr>
<td>1.821025</td>
<td>0.004853</td>
<td>9263.38</td>
<td>23.65</td>
<td>377.10</td>
<td>921.22</td>
<td>9.11</td>
</tr>
<tr>
<td>1.979375</td>
<td>0.000441</td>
<td>10068.90</td>
<td>25.71</td>
<td>409.89</td>
<td>1003.65</td>
<td>9.30</td>
</tr>
<tr>
<td>2.137725</td>
<td>-0.003971</td>
<td>9012.90</td>
<td>30.00</td>
<td>-366.63</td>
<td>-268.21</td>
<td>2.02</td>
</tr>
<tr>
<td>2.296075</td>
<td>-0.008383</td>
<td>8059.52</td>
<td>32.23</td>
<td>-393.79</td>
<td>-541.61</td>
<td>4.52</td>
</tr>
<tr>
<td>2.454425</td>
<td>-0.012795</td>
<td>7106.14</td>
<td>34.46</td>
<td>-420.97</td>
<td>-705.48</td>
<td>6.12</td>
</tr>
<tr>
<td>2.612775</td>
<td>-0.017207</td>
<td>6152.76</td>
<td>36.70</td>
<td>-448.14</td>
<td>-869.36</td>
<td>7.75</td>
</tr>
<tr>
<td>2.771125</td>
<td>-0.021619</td>
<td>5199.38</td>
<td>38.94</td>
<td>-475.32</td>
<td>-1033.23</td>
<td>9.38</td>
</tr>
<tr>
<td>2.929475</td>
<td>-0.026031</td>
<td>4246.00</td>
<td>41.18</td>
<td>-502.50</td>
<td>-1197.10</td>
<td>11.01</td>
</tr>
<tr>
<td>3.087825</td>
<td>-0.030443</td>
<td>3292.62</td>
<td>43.42</td>
<td>-529.68</td>
<td>-1360.96</td>
<td>12.64</td>
</tr>
</tbody>
</table>

BASE SHEAR FORCE = 82.3
SUM OF MOMENTS AT POINT OF LOAD APPLICATION = -0.120E03

FLEXIBLE SOLUTION

GROUN <FLEXIBLE SOLUTION>

GROUN <FLEXIBLE SOLUTION>
<table>
<thead>
<tr>
<th>DEPTH</th>
<th>LAT DISP</th>
<th>PASS</th>
<th>ACT</th>
<th>PASS-ACT</th>
<th>HSHEAR</th>
<th>VSHEA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.079715</td>
<td>0.009056</td>
<td>402.76</td>
<td>1.03</td>
<td>16.39</td>
<td>40.24</td>
<td>1.94</td>
</tr>
<tr>
<td>0.237225</td>
<td>0.063744</td>
<td>1208.27</td>
<td>3.08</td>
<td>49.18</td>
<td>120.71</td>
<td>5.38</td>
</tr>
<tr>
<td>0.395975</td>
<td>0.058432</td>
<td>2013.78</td>
<td>5.13</td>
<td>201.16</td>
<td>201.16</td>
<td>8.22</td>
</tr>
<tr>
<td>0.554285</td>
<td>0.053216</td>
<td>2819.30</td>
<td>7.19</td>
<td>114.75</td>
<td>281.56</td>
<td>10.46</td>
</tr>
<tr>
<td>0.712575</td>
<td>0.047808</td>
<td>3624.81</td>
<td>9.24</td>
<td>147.54</td>
<td>361.82</td>
<td>12.12</td>
</tr>
<tr>
<td>0.870725</td>
<td>0.042496</td>
<td>4430.32</td>
<td>11.30</td>
<td>189.33</td>
<td>444.66</td>
<td>13.17</td>
</tr>
<tr>
<td>1.029725</td>
<td>0.037184</td>
<td>5235.03</td>
<td>13.35</td>
<td>213.11</td>
<td>520.43</td>
<td>13.63</td>
</tr>
<tr>
<td>1.187625</td>
<td>0.031872</td>
<td>6039.60</td>
<td>15.90</td>
<td>227.61</td>
<td>540.57</td>
<td>12.22</td>
</tr>
<tr>
<td>1.345975</td>
<td>0.026550</td>
<td>6845.42</td>
<td>18.02</td>
<td>257.96</td>
<td>602.85</td>
<td>11.55</td>
</tr>
<tr>
<td>1.504325</td>
<td>0.021246</td>
<td>7651.23</td>
<td>20.14</td>
<td>288.30</td>
<td>648.85</td>
<td>10.34</td>
</tr>
<tr>
<td>1.662075</td>
<td>0.015930</td>
<td>8457.04</td>
<td>22.26</td>
<td>318.65</td>
<td>695.14</td>
<td>8.59</td>
</tr>
<tr>
<td>1.820525</td>
<td>0.010624</td>
<td>9262.76</td>
<td>25.56</td>
<td>342.26</td>
<td>750.73</td>
<td>5.45</td>
</tr>
<tr>
<td>1.979375</td>
<td>0.005312</td>
<td>9458.28</td>
<td>27.78</td>
<td>339.41</td>
<td>828.60</td>
<td>2.99</td>
</tr>
<tr>
<td>2.137725</td>
<td>0.000000</td>
<td>9654.90</td>
<td>30.00</td>
<td>386.56</td>
<td>7.25</td>
<td>0.00</td>
</tr>
<tr>
<td>2.296075</td>
<td>0.005312</td>
<td>9680.52</td>
<td>32.33</td>
<td>393.72</td>
<td>-351.14</td>
<td>3.33</td>
</tr>
<tr>
<td>2.454425</td>
<td>0.010624</td>
<td>8998.93</td>
<td>35.62</td>
<td>365.72</td>
<td>-551.25</td>
<td>3.00</td>
</tr>
<tr>
<td>2.612775</td>
<td>0.015930</td>
<td>9279.50</td>
<td>38.99</td>
<td>389.32</td>
<td>-742.28</td>
<td>7.61</td>
</tr>
<tr>
<td>2.771125</td>
<td>0.021246</td>
<td>10160.08</td>
<td>41.35</td>
<td>412.91</td>
<td>-862.63</td>
<td>13.81</td>
</tr>
<tr>
<td>2.929475</td>
<td>0.026550</td>
<td>10740.85</td>
<td>43.71</td>
<td>436.51</td>
<td>-948.18</td>
<td>17.99</td>
</tr>
<tr>
<td>3.087825</td>
<td>0.031872</td>
<td>11321.23</td>
<td>46.08</td>
<td>460.10</td>
<td>-1016.24</td>
<td>22.77</td>
</tr>
</tbody>
</table>
BASE SHEAR FORCE = 31.7
SUM OF MOMENTS AT POINT OF LOAD APPLICATION = 0.693E 03

GROUND-LINE SLOPE = 2.53602
DEPTH TO ZERO DISPLACEMENT = 2.302
TOTAL LATERAL LOAD = 15180.40
GROUND-LINE MOMENT = 26565.7
GROUND-LINE DEFLECTION = 0.0571

<table>
<thead>
<tr>
<th>DEPTH</th>
<th>LAT DISP</th>
<th>PASS</th>
<th>ACT</th>
<th>PASS-ACT</th>
<th>HShear</th>
<th>VSHEA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.079175</td>
<td>0.054199</td>
<td>402.76</td>
<td>1.03</td>
<td>16.39</td>
<td>40.23</td>
<td>2.47</td>
</tr>
<tr>
<td>0.237525</td>
<td>0.048532</td>
<td>1208.27</td>
<td>5.13</td>
<td>81.97</td>
<td>299.79</td>
<td>6.38</td>
</tr>
<tr>
<td>0.395875</td>
<td>0.043093</td>
<td>213.30</td>
<td>7.19</td>
<td>174.76</td>
<td>280.37</td>
<td>0.01</td>
</tr>
<tr>
<td>0.554225</td>
<td>0.037684</td>
<td>3924.81</td>
<td>9.24</td>
<td>147.55</td>
<td>358.46</td>
<td>0.12</td>
</tr>
<tr>
<td>0.712575</td>
<td>0.032946</td>
<td>5238.83</td>
<td>11.30</td>
<td>180.35</td>
<td>433.11</td>
<td>0.90</td>
</tr>
<tr>
<td>0.870925</td>
<td>0.028255</td>
<td>6339.42</td>
<td>13.35</td>
<td>213.15</td>
<td>500.49</td>
<td>0.23</td>
</tr>
<tr>
<td>1.029275</td>
<td>0.023826</td>
<td>5238.83</td>
<td>15.90</td>
<td>227.66</td>
<td>501.97</td>
<td>0.24</td>
</tr>
<tr>
<td>1.187625</td>
<td>0.019661</td>
<td>5593.60</td>
<td>18.02</td>
<td>258.03</td>
<td>527.85</td>
<td></td>
</tr>
<tr>
<td>1.346075</td>
<td>0.014760</td>
<td>6438.42</td>
<td>20.14</td>
<td>286.40</td>
<td>518.77</td>
<td>0.66</td>
</tr>
<tr>
<td>1.504325</td>
<td>0.012121</td>
<td>7085.23</td>
<td>22.26</td>
<td>318.76</td>
<td>462.58</td>
<td>4.31</td>
</tr>
<tr>
<td>1.662675</td>
<td>0.008741</td>
<td>7931.04</td>
<td>25.56</td>
<td>342.38</td>
<td>396.43</td>
<td>7.66</td>
</tr>
<tr>
<td>1.821025</td>
<td>0.005614</td>
<td>7677.65</td>
<td>28.78</td>
<td>393.55</td>
<td>370.16</td>
<td>1.62</td>
</tr>
<tr>
<td>1.979375</td>
<td>0.002732</td>
<td>8345.27</td>
<td>31.90</td>
<td>416.40</td>
<td>366.55</td>
<td>3.62</td>
</tr>
<tr>
<td>2.137725</td>
<td>0.000089</td>
<td>5379.52</td>
<td>35.00</td>
<td>438.76</td>
<td>418.76</td>
<td>6.24</td>
</tr>
<tr>
<td>2.296075</td>
<td>-0.002226</td>
<td>9680.52</td>
<td>38.23</td>
<td>465.39</td>
<td>-168.77</td>
<td>0.02</td>
</tr>
<tr>
<td>2.454425</td>
<td>-0.004520</td>
<td>8986.93</td>
<td>41.62</td>
<td>495.90</td>
<td>-293.53</td>
<td>0.45</td>
</tr>
<tr>
<td>2.612775</td>
<td>-0.006503</td>
<td>9579.50</td>
<td>45.00</td>
<td>499.51</td>
<td>-416.09</td>
<td>0.79</td>
</tr>
<tr>
<td>2.771125</td>
<td>-0.008281</td>
<td>10160.08</td>
<td>48.35</td>
<td>513.12</td>
<td>-535.60</td>
<td>1.01</td>
</tr>
<tr>
<td>2.929475</td>
<td>-0.009660</td>
<td>10740.85</td>
<td>51.71</td>
<td>526.74</td>
<td>-642.07</td>
<td>1.12</td>
</tr>
<tr>
<td>3.087825</td>
<td>-0.011244</td>
<td>11321.22</td>
<td>55.08</td>
<td>539.35</td>
<td>-736.80</td>
<td>1.11</td>
</tr>
</tbody>
</table>

BASE SHEAR FORCE = 0.0
SUM OF MOMENTS AT POINT OF LOAD APPLICATION = 0.426E 03
APPENDIX IV.-SEQUENTIAL PHOTOGRAPHS OF IMPACT TESTS
FIG. 80.—Sequence Photographs for Test C1
FIG. 81a.-Sequence Photographs for Test C2
FIG. 81b.-Sequence Photographs for Test C2
FIG. 82a.-Sequence Photographs for Test C3
FIG. 82b.-Sequence Photographs for Test C3
FIG. 83a.-Sequence Photographs for Test C4
FIG. 83b.-Sequence Photographs for Test C4