Strength of Guardrail Post in Rock

Abstract

The Texas State Department of Highways and Public Transportation (TSDHPT) uses two types of guardrail posts: a circular wood post and a steel W6 x 8.5 post. The posts are embedded into soil and rock depending upon the site in which the guardrail system is to be constructed. This research study was concerned only with the wood post embedded in rock. When located in rocky terrain, the current plans and specifications require the wood post to be placed in a drilled hole in the rock 18 in. deep and backfilled with soil or concrete as required by the engineer. If concrete is required, the guardrail system becomes expensive. The research study reported herein was conducted to determine whether a soil backfill would develop the required strength for the post to perform satisfactorily as a traffic barrier system.

A series of static load tests was conducted on such posts using backfills of clay, sand, decayed limestone and concrete. The results of these tests indicate that the wood guardrail post embedded 18 in. in rock will perform satisfactorily whether backfilled with clay, sand, decayed limestone or concrete. The cohesionless soil (sand or decayed limestone in this case) is recommended because it is economical and easier to place or tamp around the post.
STRENGTH OF GUARDRAIL POST IN ROCK

by

David W. Eggers
Research Assistant

T. J. Hirsch
Research Engineer

and

Hayes E. Ross, Jr.
Research Engineer

Research Report No. 343-1 (Supplement)
on Study No. 2-18-83-343

Sponsored by
State Department of Highways and Public Transportation
in cooperation with the
U.S. Department of Transportation
Federal Highway Administration

September 1984

Texas Transportation Institute
The Texas A&M University System
College Station, Texas 77843
DISCLAIMER

The contents of this report reflect the views of the authors, who are responsible for the opinions, findings, and conclusions presented herein. The contents do not necessarily reflect the official views or policies of the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

KEY WORDS

Guardrail, Post, Safety, Barriers

ACKNOWLEDGMENTS

This research study was conducted under a cooperative program between the Texas Transportation Institute (TTI), the State Department of Highways and Public Transportation (SDHPT) and the Federal Highway Administration (FHWA). Mr. Ralph K. Banks (Supervising Field Engineer, SDHPT) and Mr. Harold D. Cooner (Supervising Designing Engineer, SDHPT) were closely involved in all phases of the study.

IMPLEMENTATION STATEMENT

The results of this study are being implemented by the Highway Design Division, D-8, of SDHPT.
TABLE OF CONTENTS

INTRODUCTION

Uses and Applications of Highway Guardrails 1
Wood Posts as Guardrails 1
Scope of Study 2

STATIC LOAD TEST

Equipment and Instrumentation 3
Test Procedure 4
Test Results 5
Conclusions 5

REFERENCES 20

LIST OF TABLES

Table No.

1 Summary of Static Tests 6
2 Summary of Results 7

LIST OF FIGURES

Figure No.

1 Concrete Block to Simulate Rock 8
2 Test Setup 9
3 Post Cuts 10
4 Drawing of Testing Apparatus 11
5 Actual Testing Apparatus 12
6 Ground Deflection Measurement 13
7 Deflection Measurement at 23 in. Height 13
8 Loading Bracket 14
9 Rods Used for Measuring Displacements 14
10 Lateral Load versus Deflection for Test 1 15
11 Lateral Load versus Deflection for Test 2 16
12 Lateral Load versus Deflection for Test 3 17
13 Lateral Load versus Deflection for Test 4 18
14 Lateral Load versus Deflection for all Tests 19
INTRODUCTION

USES AND APPLICATIONS OF HIGHWAY GUARDRAILS

The primary function of guardrails and median barriers is to safely redirect errant vehicles. Guardrail installations on shoulders prevent vehicle access to steep embankments or fixed objects, whereas median barriers are used between the roadways of divided highways to prevent "across-the-median" collisions with opposing traffic. Properly designed installations accomplish the redirection of errant vehicles in such a manner as to minimize the vulnerability of vehicle occupants as well as the involvement of following and adjacent traffic. Other desirable guardrail and median barrier system characteristics include minimal damage to vehicles and barrier systems and economy in construction, installation, and maintenance.

When a vehicle in motion collides with a guardrail, a substantial portion of its energy is absorbed by the guardrail. The lateral forces carried by the guardrail are transmitted to the ground through the guardrail posts. This research study was conducted to determine if a wood post embedded in rock using soil for the backfill material would absorb as much energy as a wood post embedded just in soil.

WOOD POSTS AS GUARDRAILS

The State Department of Highways and Public Transportation current specifications require the wood post to have a minimum diameter of 7 in., a minimum embedment depth of 38 in. in soil and 18 in. in rock. Wood posts with domed tops have a minimum overall length of 69 in. A length of 66 in. is required if the top of the wood post is beveled. When the
guardrail is located in rocky terrain, usually the posts are placed in a 12 in. diameter by 18 in. deep hole that is drilled into the rock. The hole is backfilled with soil or concrete as required by the engineer. When concrete is required, the guardrail system becomes more expensive to construct. To date, no experimental work has been performed to determine whether the concrete fill is required in order for the wood post guardrail system to perform satisfactorily as a traffic barrier in rocky terrain.

SCOPE OF STUDY

The 7 in. diameter wood post embedded into 38 in. of soil has performed adequately as a traffic barrier. These guardrail systems have successfully redirected errant vehicles. Any guardrail system that performed similarly to the system using wood posts embedded in soil would be considered as performing satisfactorily. With this in mind, this study was conducted to determine whether concrete fill or soil is required for the wood guardrail posts to perform satisfactorily when embedded 18 in. in rock. The procedure used in conducting this study was:

1. Static field load tests were performed on the wood guardrail post embedded 18 in. into rock. Four different types of backfill were used -- sand, decayed limestone, clay, and concrete.

2. The results from these static tests were compared with the results of a wood post embedded 38 in. in cohesive and cohesionless soil.

STATIC LOAD TEST

The static guardrail post tests that were conducted using different types of soils and concrete as the fill material are summarized in
Table 1. Also in Table 1 are two tests reported in TTI Research Report No. 343-1 (2). These tests used a wood post embedded 38 in. in cohesive and cohesionless soil. Tests 1-4 are embedded 18 in. into concrete in order to simulate rocky terrain. Three different soil types were used to set the wood guardrail post. A test using concrete as the fill material was also performed.

In order to model rocky terrain, a concrete block was constructed. A 12 in. diameter hole is located in the middle of the block to simulate a hole augered through rock. The hole reaches to a depth of 18 in., which is the current requirement set by SDHPT. This reinforced 3 ft x 5 ft concrete block is shown in Figures 1 and 2.

Since only 18 in. of embedment depth is required when the guardrail system is located in rocky terrain, 20 in. of the standard 69 in. wood post had to be cut off the bottom. Because of the steel framed testing apparatus, a portion of the top (approximately 3 in.) was cut off in order to ease the placement of the post inside the hole. These cuts are shown in Figure 3, and the testing apparatus is shown in Figures 4 and 5. For the first three tests, soils were used to set the post in place. The soil was poured into the hole in 6 in. layers and tamped around the post. For the fourth test, concrete was poured into the hole until it was full. After the concrete was poured and vibrated, a period of two weeks was allowed for curing.

EQUIPMENT AND INSTRUMENTATION

In order to conduct these tests, it was necessary to develop a loading system capable of (1) applying a horizontal force to the post at a uniform
displacement rate, (2) measuring the load acting on the post at known displacements, and (3) measuring the displacement of the post at ground level and at 21 in. A hydraulic loading device was used to apply the lateral force to the post. The loading system is illustrated in Figures 4 and 5.

The load applied to the post was measured by means of a force transducer attached between the post and the hydraulic cylinder, as shown in Figures 4 and 5. The transducer was calibrated up to a maximum load of 15,000 lb. The force transducer was constructed of a metal bar instrumented with a full bridge of strain gages. The output from these strain gages was measured with a digital microvoltmeter calibrated to read the load directly. For the four static load tests, the post deflection at the ground surface was measured. This was done by attaching a metal rod to the center of the post and placing a tape with 1/2 in. increments to the concrete block, as shown in Figure 6. In order to locate the pivot point of the post, a second measurement was taken at 23 in. from ground level, as shown in Figure 7. For energy absorption comparison, the measured horizontal deflections at 23 in. were converted graphically to deflections at 21 in. The energy is transmitted from the guardrail to the post at a height of approximately 21 in. during the impact of the vehicle.

TEST PROCEDURE

A specially constructed loading bracket was attached to the post at the height of 21 in. above the top of the concrete block. This bracket, shown in Figure 8, assured the pull to be horizontal and eliminated the development of stress concentrations in the post itself. The hydraulic cylinder was bolted to the steel frame at a height of 21 in. from the top of the concrete block in order to keep the weight of the equipment from
applying an initial load. The load transducer was then calibrated and zeroed. The load was read off the digital voltmeter at every 1/2 in. of movement of the post at 23 in. until the post failed. The tests were terminated after the hydraulic cylinder had traveled the entire stroke length.

TEST RESULTS

The results of the static guardrail post tests are presented in Figures 10 to 14 and in Table 2. The load-deflection curves for each different fill material are given in Figures 10 to 13. The load-deflection curves from these three tests along with results from test Nos. 1 and 4 of TTI Research Report No. 343-1 (2) are plotted in Figure 14. Maximum load values and dissipated energy values for all tests are presented in Table 2.

CONCLUSIONS

From the results of these static post tests, it is clear that the wood guardrail post embedded 18 in. into rock using soil for the backfill absorbs more energy than if concrete is used for the fill material. The energy dissipated by the posts in rock is equal to or less than the energy dissipated by a post embedded 38 in. in soil.

The maximum lateral load capacity for all the static tests in rock was much greater than for the tests on posts embedded 38 in. in soil. The load capacities were much higher because when embedded in rock the post breaks instead of soil failure.

The 7 in. diameter wood guardrail post embedded 18 in. in rock should perform satisfactorily with any of the backfill materials used here -- sand, decayed limestone, clay, and concrete. The cohesionless soil backfill is recommended because it is economical and easy to place.
TABLE 1. SUMMARY OF STATIC TEST

<table>
<thead>
<tr>
<th>TEST NO.</th>
<th>GENERALIZED FILL DESCRIPTION</th>
<th>UNIT WEIGHT (pcf)</th>
<th>HEIGHT OF LOAD (in.)</th>
<th>SOIL TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1B</td>
<td>Dark Red, Stiff Clay</td>
<td>82.35</td>
<td>21</td>
<td>Red Clay Cohesive</td>
</tr>
<tr>
<td>2B</td>
<td>Poorly Graded Crushed Limestone Gravel</td>
<td>104.80</td>
<td>21</td>
<td>Georgetown Cohesionless</td>
</tr>
<tr>
<td>3B</td>
<td>Well Graded Sand</td>
<td>112.60</td>
<td>21</td>
<td>Pit-Run Sand Cohesionless</td>
</tr>
<tr>
<td>4B</td>
<td>Ready-Mix Concrete</td>
<td>150</td>
<td>21</td>
<td>--</td>
</tr>
<tr>
<td>1*</td>
<td>Dark Grey, Stiff Clay</td>
<td>124.50</td>
<td>21</td>
<td>Grey Clay Cohesive</td>
</tr>
<tr>
<td>4*</td>
<td>Decayed Limestone</td>
<td>119</td>
<td>21</td>
<td>Cohesionless</td>
</tr>
</tbody>
</table>

Test results were taken from TTI Research Report No. 343-1 (Test No. 1).
TABLE 2. SUMMARY OF RESULTS

<table>
<thead>
<tr>
<th>TEST</th>
<th>TYPE OF FILL</th>
<th>EMBEDMENT DEPTH (in.)</th>
<th>MAXIMUM FORCE (kips)</th>
<th>ENERGY ABSORBED** (ft-kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1B</td>
<td>Red Clay</td>
<td>18</td>
<td>11.38</td>
<td>4.2</td>
</tr>
<tr>
<td>2B</td>
<td>Georgetown</td>
<td>18</td>
<td>8.43</td>
<td>2.8</td>
</tr>
<tr>
<td>3B</td>
<td>Pit-Run Sand</td>
<td>18</td>
<td>8.44</td>
<td>3.3</td>
</tr>
<tr>
<td>4B</td>
<td>Concrete</td>
<td>18</td>
<td>9.40</td>
<td>2.7</td>
</tr>
<tr>
<td>1*</td>
<td>Embedded in soil - clay</td>
<td>38</td>
<td>3.7</td>
<td>4.2</td>
</tr>
<tr>
<td>4*</td>
<td>Embedded in soil - cohesionless</td>
<td>38</td>
<td>3.2</td>
<td>4.4</td>
</tr>
</tbody>
</table>

*Same as Table 1.

**Energy dissipated after 18 in. or less (if post broke) of horizontal deflection.
FIGURE 1. CONCRETE BLOCK TO SIMULATE ROCK
FIGURE 3. POST CUTS
FIG. 5. ACTUAL TESTING APPARATUS
FIGURE 6. GROUND DEFLECTION MEASUREMENT

FIGURE 7. DEFLECTION MEASUREMENT AT 23 IN. HEIGHT
FIG. 8. LOADING BRACKET

FIG. 9. RODS USED FOR MEASURING DISPLACEMENTS
18 in. EMBEDMENT IN ROCK RED CLAY BACKFILL

ENERGY ABSORBED = 4.2 k-ft

MAXIMUM LOAD = 11.38 kips

HORIZONTAL DISPLACEMENT (in.) MEASURED AT 21 in. HEIGHT

FIG. 10. LATERAL LOAD VS. DEFLECTION FOR TEST 1
18 in. EMBEDMENT IN ROCK
DECAYED LIMESTONE BACKFILL

ENERGY ABSORBED = 2.8 k-ft

MAXIMUM LOAD = 8.43 kips

HORIZONTAL DISPLACEMENT (in.)
MEASURED AT 21 in. HEIGHT

FIG. 11. LATERAL LOAD VS. DEFLECTION FOR TEST 2
18 in. EMBEDMENT IN ROCK
WELL GRADED SAND BACKFILL

ENERGY ABSORBED = 3.3 k-ft

MAXIMUM LOAD = 8.44 kips

HORIZONTAL DISPLACEMENT (in.)
MEASURED AT 21 in. HEIGHT

FIG. 12. LATERAL LOAD VS. DEFLECTION FOR TEST 3
EMBEDMENT IN ROCK
CONCRETE BACKFILL

ENERGY ABSORBED = 2.7 k-ft

MAXIMUM LOAD = 9.40 kips

HORIZONTAL DISPLACEMENT (in.)
MEASURED AT 21 in. HEIGHT

FIG. 13. LATERAL LOAD VS. DEFLECTION FOR TEST 4
FIG. 14. LATERAL LOAD VS. DEFLECTION FOR ALL TESTS
REFERENCES

METRIC CONVERSION FACTORS

Approximate Conversions to Metric Measures

<table>
<thead>
<tr>
<th>Symbol</th>
<th>When You Know</th>
<th>Multiply by</th>
<th>To Find</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>in</td>
<td>inches</td>
<td>2.5</td>
<td>centimeters</td>
<td>cm</td>
</tr>
<tr>
<td>ft</td>
<td>feet</td>
<td>30</td>
<td>centimeters</td>
<td>cm</td>
</tr>
<tr>
<td>yd</td>
<td>yards</td>
<td>0.9</td>
<td>meters</td>
<td>m</td>
</tr>
<tr>
<td>mi</td>
<td>miles</td>
<td>1.6</td>
<td>kilometers</td>
<td>km</td>
</tr>
</tbody>
</table>

AREA

<table>
<thead>
<tr>
<th>Symbol</th>
<th>When You Know</th>
<th>Multiply by</th>
<th>To Find</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>in²</td>
<td>square inches</td>
<td>6.5</td>
<td>square centimeters</td>
<td>cm²</td>
</tr>
<tr>
<td>ft²</td>
<td>square feet</td>
<td>0.09</td>
<td>square meters</td>
<td>m²</td>
</tr>
<tr>
<td>yd²</td>
<td>square yards</td>
<td>0.8</td>
<td>square meters</td>
<td>m²</td>
</tr>
<tr>
<td>mi²</td>
<td>square miles</td>
<td>2.6</td>
<td>square kilometers</td>
<td>km²</td>
</tr>
<tr>
<td>ac</td>
<td>acres</td>
<td>0.4</td>
<td>hectares</td>
<td>ha</td>
</tr>
</tbody>
</table>

MASS (weight)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>When You Know</th>
<th>Multiply by</th>
<th>To Find</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>oz</td>
<td>ounces</td>
<td>28</td>
<td>grams</td>
<td>g</td>
</tr>
<tr>
<td>lb</td>
<td>pounds</td>
<td>0.45</td>
<td>kilograms</td>
<td>kg</td>
</tr>
<tr>
<td></td>
<td>short tons (2000 lb)</td>
<td>0.9</td>
<td>tonnes</td>
<td>t</td>
</tr>
</tbody>
</table>

VOLUME

<table>
<thead>
<tr>
<th>Symbol</th>
<th>When You Know</th>
<th>Multiply by</th>
<th>To Find</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>tsp</td>
<td>teaspoons</td>
<td>5</td>
<td>milliliters</td>
<td>ml</td>
</tr>
<tr>
<td>Tbsp</td>
<td>tablespoons</td>
<td>15</td>
<td>milliliters</td>
<td>ml</td>
</tr>
<tr>
<td>fl oz</td>
<td>fluid ounces</td>
<td>30</td>
<td>milliliters</td>
<td>ml</td>
</tr>
<tr>
<td>c</td>
<td>cups</td>
<td>0.24</td>
<td>liters</td>
<td>l</td>
</tr>
<tr>
<td>pt</td>
<td>pints</td>
<td>0.47</td>
<td>liters</td>
<td>l</td>
</tr>
<tr>
<td>qt</td>
<td>quarts</td>
<td>0.95</td>
<td>liters</td>
<td>l</td>
</tr>
<tr>
<td>gal</td>
<td>gallons</td>
<td>3.8</td>
<td>liters</td>
<td>l</td>
</tr>
<tr>
<td>ft³</td>
<td>cubic feet</td>
<td>0.03</td>
<td>cubic meters</td>
<td>m³</td>
</tr>
<tr>
<td>yd³</td>
<td>cubic yards</td>
<td>0.76</td>
<td>cubic meters</td>
<td>m³</td>
</tr>
</tbody>
</table>

TEMPERATURE (exact)

<table>
<thead>
<tr>
<th>°F</th>
<th>Fahrenheit temperature</th>
<th>°C</th>
<th>Celsius temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/9 (after subtracting 32)</td>
<td>9/5 (then add 32)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*1 in = 2.54 (exactly). For other exact conversions and more detailed tables, see NBS Misc. Publ. 286, Units of Weights and Measures, Price $2.25, SD Catalog No. C13.10:286.