Integrating the Transportation System with a University Transportation Master Plan

URL: http://tti.tamu.edu/documents/0-6608-P2.pdf

in cooperation with the Federal Highway Administration and the Texas Department of Transportation
Integrating the Transportation System with a University Transportation Master Plan

by

Rafael Aldrete-Sanchez
Research Engineer
Texas Transportation Institute

and

Jeffrey Adam Shelton
Assistant Research Scientist
Texas Transportation Institute

Product 0-6608-P2
Project 0-6608
Project Title: Integrating the Transportation System with a University Campus Transportation Master Plan

Sponsored by the
Texas Department of Transportation
and the
Federal Highway Administration

Published: February 2010

TEXAS TRANSPORTATION INSTITUTE
The Texas A&M University System
College Station, Texas 77843-3135
Agenda

- Introduction
- Conduct Literature Review
- Review Accident Locations
- Develop and Perform Faculty, Staff, and Student Surveys
- Characterize Current and Future systems
- Identify Gaps and Develop Scenarios
- Analyze Transportation System Integration and Interactions
- Estimate Costs
- Case Study Conclusions and Recommendations
Introduction and Research Objectives

- TxDOT commissioned TTI and the University of Texas at El Paso (UTEP) to perform a research study of the integration of the transportation system with the UTEP transportation master plan.

- The objective is to document a methodology to analyze the interaction of a university campus transportation system and its surrounding metropolitan transportation system and to integrate both systems in a seamless fashion.

- The study uses UTEP as a case study, but its results will have a near-term applicability for TxDOT particularly in urban areas where there is highly dense university campus populations.
Agenda

- Introduction
- Conduct Literature Review
- Review Accident Locations
- Develop and Perform Faculty, Staff, and Student Surveys
- Characterize Current and Future systems
- Identify Gaps and Develop Scenarios
- Analyze Transportation System Integration and Interactions
- Estimate Costs
- Case Study Conclusions and Recommendations
Literature Review Task Overview

- Methodology
  - Focused on university campus master plans and campus transportation-related studies

- Organization of practices
  - Collaborative transportation planning practices
  - Pedestrian and bicycle practices
  - Transit-related practices
  - Parking-related practices
  - Motor vehicular traffic practices

- Task progress
  - Preliminary draft done
  - Draft reviewed by project expert panel (comments to be addressed)
  - Overall progress: 95%
University Campus Master Planning Areas

- Transportation
- Land use and development
- General infrastructure (e.g., storm water management, potable water facilities, sanitary sewer and treatment, and solid waste facilities)
- Campus safety and security
- Intergovernmental coordination and public relations
- Conservation and efficiency (e.g., energy and natural resource conservation and environmental protection)
- Capital improvements (e.g., financial capacity and project capital needs)
- Others (e.g., impact of technology advances, major social events, and diversity support)

Note: all of these areas are closely related to each other
Campus Master Transportation Planning

Traffic management
- Intersection traffic control
- Campus entrance control
- Special event traffic control

Roadways and routes
- Roadway layout
- Intersection design
- Crosswalk/bike path design
- Transit routes/terminals

Parking
- Parking demand
- Parking locations
- Special event parking

Other facilities
- Campus lighting
- Emergency lights/telephones

Safety and security
- Pedestrian/bicycle safety
- Emergency evacuation
- Incident management

Accessibility
- Transit terminals/routes
- Crosswalks
- Bicycle paths

Sustainability
- Fuel conservation
- Air pollution reduction
- Noise pollution reduction

Mobility
- Campus congestion reduction
- Mobility of host transportation systems

Planning Elements
- Transit
- Bicycle
- Pedestrian

Traffic Modes

Planning Goals
Campus Transportation Planning Practices

- Collaborative transportation planning
  - Collaboration with state transportation agencies, county, city, and other local public agencies (LPAs)

- Pedestrian and bicycle
  - Network: walkways and bicycle paths, maintenance, connectivity, etc.
  - Facilities: bike lockers, showers, shaded parking/walkways, pedestrian movers, etc.
  - Incentives: bicycle sharing programs, purchase discounts, rental bicycles, etc.
  - Safety: network improvement, safety awareness education, safety equipment (e.g., helmets and fluorescent vests), etc.

- Transit
  - Collaborative planning in routes, terminals, fare/passes, etc.
  - Incentives: fare discounts, transit malls/hubs, facilities at transit stops, service flexibility, etc.
  - Improvements: use Intelligent Transportation Systems (ITS) for vehicle location and arriving time, determine service schedule/routes considering class schedule/location, etc.
Campus Transportation Planning Practices

- Parking
  - Parking management: permit system, visitor parking, off-campus parking, advanced parking management systems, parking management at nearby neighborhoods, etc.
  - Campus resident parking: resident parking management, off-campus resident parking, incentives for car-free residents, etc.

- Motor vehicular traffic
  - Campus vehicular traffic control: roadway network configuration, roadway closures, class and activity schedule and location, etc.
  - Vehicular traffic and parking reduction: parking management skills, promoting alternative modes including carpool and vanpools, flexible working schedules, telecommunication technologies, car sharing programs, etc.
  - Emergency and service vehicle accessibility: persons with disabilities, service vehicles, vehicles in case of emergencies (e.g., fire, flood, hazardous material spill, and terrorism), etc.
Agenda

- Introduction
- Conduct Literature Review
  - Review Accident Locations
- Develop and Perform Faculty, Staff, and Student Surveys
- Characterize Current and Future systems
- Identify Gaps and Develop Scenarios
- Analyze Transportation System Integration and Interactions
- Estimate Costs
- Case Study Conclusions and Recommendations
Review Accident Locations—Task Overview

- Based on a formal crash analysis
- Statistical analysis using historical data
  - Demographics
  - UTEP-enrollment patterns
  - Peak-periods and trends
  - Visibility conditions
  - Transportation modes
- Identify and prioritize traffic accident hotspots based on:
  - Frequency of the accidents
  - Frequency and severity of injuries
- Task progress
  - Draft reviewed by project expert panel (comments to be addressed)
  - Overall progress: 95%
Demographics and UTEP-Enrollment Patterns

- El Paso population: 606,913 habitants (July 2007)
- For population 25 years and over, educational demographics are as follow:
  - High school or higher: 68.6%
  - Bachelor's degree or higher: 18.3%
  - Graduate or professional degree: 6.2%
- Enrollment has been increasing at 2.0% per year exceeding the average enrollment of public universities in Texas by 0.6%
- In 2007 with 20,154 students, enrollment was already exceeding the projections for year 2010
Peak Months for Traffic Accidents inside UTEP Campus

- Percentage of accidents per month inside UTEP campus
  - Data from January 2006 to May 2009

- Peak months are close to the beginning of each term of classes
  - Spring: February
  - Summer: June
  - Fall: September
Peak Days and Hours for Traffic Accidents inside UTEP

- Class schedules are repetitive
- Peak periods are highly correlated to attendance

Traffic Accidents inside UTEP Campus per Weekday

Traffic Accidents inside UTEP Campus per Hour

Student's Attendance per Day (Yi-Chang 2002)

Student's Attendance per Hour (Yi-Chang 2002)
Visibility Conditions and Transportation Modes

- Data constraints to further segregate visibility conditions
  - Artificial lighting
  - Time periods with poor visibility conditions

- Daylight or nighttime classification
  - Accident’s time of the day
  - The official Daylight Savings Times for sunrises and sunsets

- Transportation modes involved reported by UTEP Police Department
- Excludes accidents inside parking lots
Modal Share of Accidents

Notes:
1) Transportation modes involved reported by UTEP Police Department
2) Excludes accidents inside parking lots
Corridor Analysis

Accidents Served by UTEP Police Department

- 99 accidents on corridors
- No fatalities
- 22 injuries — 7 inside parking lots
- 5 Accidents on corridors and parking lots entrance
- 357 minor accidents inside the parking lots

Accidents Served by El Paso Police Department (EPPD)

- 837 traffic accidents
- 3 fatalities
  - 2 N Mesa St. & Cincinnati (1 pedestrian)
  - 1 N Mesa St. & E Hague Rd. (1 pedestrian)
- 224 injuries
## Traffic Accidents Hotspots

<table>
<thead>
<tr>
<th>High Priority</th>
<th>Intermediate</th>
<th>Low Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>I-10 &amp; Schuster Ave.</strong></td>
<td><strong>N Mesa St. &amp; University Ave.</strong></td>
<td><strong>Sun Bowl Dr.</strong></td>
</tr>
<tr>
<td>132 Accidents</td>
<td>18 Accidents</td>
<td>18 Accidents</td>
</tr>
<tr>
<td>1 Incapacitating injury</td>
<td>8 Injuries</td>
<td>8 Injuries</td>
</tr>
<tr>
<td>7 Non-incapacitating</td>
<td>(2 pedestrians)</td>
<td></td>
</tr>
<tr>
<td>17 Minor injuries</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>N Mesa St. &amp; Cincinnati Ave.</strong></td>
<td><strong>Sun Bowl Dr. &amp; Shuster Ave.</strong></td>
<td><strong>W University Ave. (UTEP)</strong></td>
</tr>
<tr>
<td>54 Accidents</td>
<td>40 Accidents</td>
<td>19 Accidents</td>
</tr>
<tr>
<td>2 Fatalities (1 pedestrian)</td>
<td>1 Non-incapacitating</td>
<td>1 Minor injury</td>
</tr>
<tr>
<td>4 Non-incapacitating</td>
<td>10 Minor injuries</td>
<td></td>
</tr>
<tr>
<td>12 Minor injuries</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>N Mesa St. &amp; Glory Rd.</strong></td>
<td><strong>I-10 &amp; Porfirio Diaz St.</strong></td>
<td><strong>Hawthorne St. (UTEP)</strong></td>
</tr>
<tr>
<td>57 Accidents</td>
<td>49 Accidents</td>
<td>16 Accidents</td>
</tr>
<tr>
<td>1 Incapacitating</td>
<td>1 Non-incapacitating</td>
<td>3 injuries</td>
</tr>
<tr>
<td>5 Non-incapacitating</td>
<td>8 Minor injuries</td>
<td></td>
</tr>
<tr>
<td>12 Minor injuries</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>N Mesa St. &amp; Schuster Ave.</strong></td>
<td><strong>N Oregon St. &amp; Schuster Ave.</strong></td>
<td><strong>Wiggins Dr. (UTEP)</strong></td>
</tr>
<tr>
<td>41 Accidents</td>
<td>15 Accidents</td>
<td>15 Accidents</td>
</tr>
<tr>
<td>1 Incapacitating</td>
<td>3 Non-incapacitating</td>
<td></td>
</tr>
<tr>
<td>4 Non-incapacitating</td>
<td>4 Minor injuries</td>
<td></td>
</tr>
<tr>
<td>30 Minor injuries</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>N Mesa St. &amp; Hague Rd.</strong></td>
<td><strong>W Schuster Ave. &amp; Hawthorne St.</strong></td>
<td><strong>Dormitory Rd. (UTEP)</strong></td>
</tr>
<tr>
<td>16 Accidents</td>
<td>11 Accidents</td>
<td>6 Accidents</td>
</tr>
<tr>
<td>1 Fatality (pedestrian)</td>
<td>3 Non-incapacitating</td>
<td></td>
</tr>
<tr>
<td>2 Non-incapacitating</td>
<td>1 Minor injury</td>
<td></td>
</tr>
<tr>
<td>5 Minor injuries</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Legend
- **Frequency of Crashes served by UTEP-PD**
- **Frequency of Crashes served by EPPD**

![Traffic Hotspots Map](image-url)
Agenda

- Introduction
- Conduct Literature Review
- Review Accident Locations
  - Develop and Perform Faculty, Staff, and Student Surveys
- Characterize Current and Future systems
- Identify Gaps and Develop Scenarios
- Analyze Transportation System Integration and Interactions
- Estimate Costs
- Case Study Conclusions and Recommendations
Faculty, Staff, and Student Surveys (Task 4)

- The survey was conducted the week of July 6, 2009
  - By Internet (via email broadcast)
  - By going to classrooms
  - All responses were entered into the survey web site

<table>
<thead>
<tr>
<th>Respondent</th>
<th>No. of responses</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faculty</td>
<td>59</td>
<td>6.1%</td>
</tr>
<tr>
<td>Staff</td>
<td>188</td>
<td>19.5%</td>
</tr>
<tr>
<td>Student</td>
<td>713</td>
<td>74.0%</td>
</tr>
<tr>
<td>Visitor</td>
<td>4</td>
<td>0.4%</td>
</tr>
<tr>
<td>Total</td>
<td>964</td>
<td>100%</td>
</tr>
</tbody>
</table>
Mode of Transportation to/from Campus

- Drive alone, 79.9%
- Carpool, 9.1%
- Drop off, 2.6%
- Walking, 3.6%
- Bicycle, 1.0%
- Bus, 3.8%
Trip Origins and Entry Points to Campus (Cars)
Arrival Time Distribution

Percent of All Trips

Arrival Time

- 6am-7am
- 7am-8am
- 8am-9am
- 9am-10am
- 10am-11am
- 11am-12pm
- 12pm-1pm
- 1pm-2pm
- 2pm-3pm
- 3pm-4pm
- 4pm-5pm
- 5pm-6pm
- 6pm-7pm
- 7pm-8pm
Parking Locations (Destinations in UTEP)

- Academic Services Building Area (A), 27.4%
- Inner Campus (B), 16.2%
- Sun Bowl Parking Garage (C), 15.3%
- Along Sun Bowl Dr. (D), 7.3%
- Memorial Gym Area (E), 4.7%
- Between Don Haskins Center/Fitness Area (F), 9.8%
- Not applicable, 15.6%
- Mesa Street Business District East of Campus (G), 3.7%
Questions Related to Safety

- Closing inner campus to traffic will improve safety?
  - Yes, 59.9%
  - No, 40.1%

- Too many pedestrian-vehicle conflicts?
  - Yes, 32.5%
  - No, 67.5%
Questions Related to Safety

- Do you perceive any traffic safety problem on campus?
- Most frequently cited problems (from 319 comments)
  - Vehicles do not yield to pedestrians/bicyclists (64 or 20%)
  - Jaywalking (57 or 18%)
  - Crowd at Hawthorne/University intersection (47 or 15%)
  - Congestion at I-10/Schuster (44 or 14%)
  - Speeding on campus roads (41 or 13%)
  - Parking-related problems (22 or 7%)
- Implies:
  - Need to separate pedestrian and vehicle paths
  - Schuster realignment
  - Traffic calming
Agenda

- Introduction
- Conduct Literature Review
- Review Accident Locations
- Develop and Perform Faculty, Staff, and Student Surveys
- Characterize Current and Future Systems
- Identify Gaps and Develop Scenarios
- Analyze Transportation System Integration and Interactions
- Estimate Costs
- Case Study Conclusions and Recommendations
Current Infrastructure – Parking Conditions

- UTEP Parking
  - More than 9,800 parking spaces
  - 54 parking lots
  - 1 multiple level parking garage
  - 125 carpool parking spaces
    » Located in remote parking lot and by the Academic Services Building
Current Infrastructure UTEP Campus Map
Current Infrastructure – Miner Metro Shuttle Bus Service

- Miner Metro Service
  - Miner Metro shuttles are free to all UTEP faculty, staff, students, and visitors
  - Service is available Monday through Friday when classes are in session during the fall, spring, and summer semesters
  - This service does not operate during wintermester, maymester, university holidays, or intersessions
  - Consists of four routes
    » Route 1: East
      - Monday through Thursday between 6:35 a.m. and 9:30 p.m. and Friday between 6:35 a.m. and 6:30 p.m. (15 min intervals)
    » Route 2: Campus Loop
      - Monday through Friday between 7:00 a.m. and 5:30 p.m. (25 min)
    » Route 3: West
      - Monday through Thursday between 6:35 a.m. and 9:30 p.m. and Friday between 6:35 a.m. and 6:30 p.m. (15 min interval)
    » Route 4: CHS/Nursing
      - Monday through Friday between 7:00 a.m. and 5:45 p.m.
Current Infrastructure – Miner Metro Bus Routes
Current Infrastructure – Sun Metro Bus Routes

- Sun Metro Service
  - Routes 10, 11, 12, 13, 14, 15, 16, 70, and Smart 101 pass by UTEP main campus
    - Route 70 only operates in the spring and fall semesters
  - Most of the stops for these routes where students get off are located near the intersection of Oregon St. and University Ave. and Mesa St. and University Ave.

- Student fare: $0.75 cents
Current Infrastructure – Special Events

- Special Events at UTEP
  - Don Haskins Center
    » Seating capacity: 11,767
    » Events held:
      - UTEP basketball games
      - Sports events
      - Concerts
      - UTEP commencement ceremonies
      - El Paso Community College graduations
      - Area high school graduation ceremonies
    » Parking lots used:
      - P-11 is closed for trucks and buses related to the event
      - Lots P-9, P-10, P-12, P-13, R-2, R-3, and R-4 are reserved for people attending the event
Current Infrastructure – Special Events cont.

– Sun Bowl Stadium
  » Seating capacity: 52,000
  » Events held:
    – UTEP football games and sports events
    – Concerts
  » Parking lots used:
    – Lots P-5, P-6, P-7, P-8, P-9, P-10, and parking garage

– Magoffin Auditorium
  » Seating capacity: 1,156
  » Events held:
    – UTEP ballet
    – El Paso Wind Symphony
    – Small concerts and plays
    – UTEP pre-commencement ceremonies
  » Parking lots used:
    – Parking spaces along Circle Dr. and Kerbey Ave.
Current Infrastructure – Surrounding Area

- **Land Use**
  - Private residents and UTEP are the primary land users
  - UTEP is surrounded by commercial and medical facilities
  - Neighborhoods located in Sunset Heights, El Paso High, and Rim-University have more residences for multiple families
  - The commercial area is located primarily along Mesa St. and includes:
    - Retail shops
    - Complexes
    - Restaurants
    - Office buildings
  - Medical area consists of:
    - Providence Memorial Hospital
    - Las Palmas Medical Center
    - Sierra Medical
Future Infrastructure – Proposed Constructions

- New Buildings
  - Proposed Phase I will consist of 1,633,300 gross square feet (gsf) of buildings distributed among:
    » North Campus – 558,000 gsf
    » Core Campus – 1,000,300 gsf
    » Schuster Road – 75,000 gsf
  - Proposed Phase II will consist of 1,434,000 gsf of buildings distributed among:
    » North Campus – 303,000 gsf
    » Core Campus – 388,300 gsf
    » Schuster Road – 743,000 gsf

- Pedestrian plan
  - Will also consist of two phases of proposed open spaces and pedestrian walkways
Future Infrastructure – Proposed Construction

- Proposed Buildings and Parking Garages in Phase I

- Proposed Buildings and Parking Garages in Phase II
Future Infrastructure – Transit Terminal

- Transit Terminal
  - This Sun Metro transit terminal will be combined with one of the parking garages proposed in Phase I:
    - The Glory Road Transit Terminal and parking garage will be located at 100 E. Glory Road (next to the Don Haskins Center)
    - It will consist of a seven-story building of 202,000 sq. ft.
    - Transit terminal will be located on the ground floor
      - Four off street bus bays and four on street bus bays
    - Six floors of open parking garage for 442 cars
    - Enclosed waiting area with restrooms
    - Outdoor waiting areas

- The following screen shots of the proposed transit terminal were obtained from: www.neomedia-dg.com/Content/glory-road-transit-terminal.html
  *(This design may not be the final design for the terminal)*
Future Infrastructure – Transit Terminal cont.
Future Infrastructure – Closure of Inner Campus

- Some of the features and modifications of closing part of inner campus include:
  - University Ave. is closed from the Union on the east to Wiggins Rd. and Hawthorne St. is closed from University Ave. to the Physical Sciences Building
  - A new pedestrian zone at the core of campus around Memorial Triangle
  - Closing the streets mentioned above along with parking lot IC-10 provides opportunity to create a new campus center
  - This open space would be well used for formal and informal campus gatherings
  - Pedestrian circulation will flow through the center of campus, and vehicular circulation will be kept at the perimeter except for special occasions
  - Smaller pedestrian paths connect between buildings and spaces creating a fine grain circulation network
  - Added green space will provide an area for passive recreation and socialization currently not found on campus
  - Closing University Ave. in this zone will ensure a safe environment for pedestrians
Future Infrastructure – Closure of Inner Campus cont.

Screen shot of proposed closed campus core with traffic redirected behind the Liberal Arts Building
Agenda

- Introduction
- Conduct Literature Review
- Review Accident Locations
- Develop and Perform Faculty, Staff, and Student Surveys
- Characterize Current and Future Systems
  - Identify Gaps and Develop Scenarios
- Analyze Transportation System Integration and Interactions
- Estimate Costs
- Case Study Conclusions and Recommendations
Gap Identification and Scenario Development

- The gap identification process focused on the following aspects:
  - Inadequate traffic control
  - Parking management
  - Pedestrian crossings
  - Bike paths
  - Transit service/UTEP shuttle program

- Findings and scenarios are based on the results obtained from the accident data analysis, UTEP surveys, a campus field study, and the literature review conducted.

- The most critical improvements of transportation infrastructure are focused on enhancing safety and management.
Accident Location Data Analysis – Common Issues

- Most common issues identified on the 6 priority intersections were:
  - Conflicts between pedestrians and vehicles causing spillbacks (e.g., Sun Bowl Dr. at University)
  - Pedestrian crossings striping not visible to drivers and inadequate lighting
  - Grade configuration along Mesa St. contributes to a reduced line of sight as well as lower reaction time for vehicles

The Crossing Striping on Hague Rd. near Mesa St. is Barely Visible to Drivers
Accident Location Data Analysis – Cincinnati and Mesa St.

- The conflict between pedestrians and vehicles continues to grow and is often susceptible to accidents
  - “Jaywalking” is usually observed along Mesa St.
  - Demand for pedestrian signals is higher than other intersections due to nightlife and restaurants nearby
 accident location data analysis – campus entry points

- The I-10 Schuster off-ramps (both east and westbound) serve as one of the main entry points to the campus.
- The pedestrian-vehicle conflict on Sun Bowl Dr. and University causes a spillback on I-10.
- A pedestrian bridge could aid and mitigate the queue present at morning peak hours.

During Morning Peak Hours, there is a Spillback on both Schuster Off-Ramps.
UTEP Surveys

Issues

- As observed from the survey results, the following conclusions were obtained:
  - The current car pool program at UTEP doesn’t provide enough incentives for students to enroll in the program (only a 15% discount is offered)
  - Public transportation system is rarely utilized due to unreliable travel times as well as stations that are relatively far from the main campus buildings
  - The long headways of UTEP’s shuttle service might be the cause of its low usage among college students

Improvements Needed

- The university car pool program needs to offer better incentives such as higher permit discounts and exclusive parking lots to increase the user base

- Now with the new Bus Rapid Transit (BRT) system (Smart-101), the use of public transportation might increase since it offers a 10-minute headway and drop-off areas close to campus

- The shuttle service needs more express routes between the parking lots with the most demand at peak hours (such as remote parking lots)
Campus Field Study

- The field study conducted by TTI researchers at the UTEP campus helped identify additional concerns.
- There is a need for designated pick-up and drop-off locations to enhance safety and traffic conditions around the area.
- The lack of designated drop off locations create significant delays, queues, and safety concerns for both pedestrians and vehicles.

Most Common Pick-Up and Drop-Off Locations around Campus
Campus Field Study cont.

- It was noted that portable radar speed signs seemed to be effective in controlling traffic around campus
  - With the radars deployed, the majority of vehicles respect the speed limit
  - Without the radars, vehicles start to speed up even though there are pedestrian crossings nearby due to adjacent parking lots
Literature Review

Pedestrian Crossings

- High-intensity Activated crosswalk (HAWK) signal devices could improve the safety of pedestrian crossings at high risk intersections such as Mesa/Cincinnati

Bike Riding Incentives

- Currently, the bike pathway network still needs improvements in areas where no paths exist
- The University should also get more involved with the community by offering lockers rentals or discounted safety gear (e.g., helmets)

Parking Management

- Students often park in the neighborhoods around the campus to avoid paying full price for a permit and thus creates complaints from the neighbors
- The university should work closely with the different neighborhoods to develop strategies to mitigate the well-known issue
Agenda

- Introduction
- Conduct Literature Review
- Review Accident Locations
- Develop and Perform Faculty, Staff, and Student Surveys
- Characterize Current and Future Systems
- Identify Gaps and Develop Scenarios
- Analyze Transportation System Integration and Interactions
- Estimate Costs
- Case Study Conclusions and Recommendations
Analyze Transportation System Integration and Interactions

- Multi-resolution modeling approach
  - Mesoscopic
    » Analyze how traffic redistributes given various design alternatives
  - Microscopic
    » Analyze pedestrian/vehicle conflict points, transit service, traffic control, and parking alternatives
Integration between Systems
Integration between Systems

Queue Spillback to Freeway Main Lanes in both Directions

Existing
Integration between Systems

No Significant Queuing at Intersection with 2 lanes
Integration between Systems

- Modeled for 2030
  - Used Metropolitan Planning Organization (MPO) gateway model for mesoscopic simulation
  - Included the remaining UTEP infrastructure improvements
  - Realigned campus entrance
  - Realigned Schuster Ave.
  - Connected Schuster to Paisano W.
  - Modeled in accordance with latest TxDOT drawings
    » Network included Southern Relief Route
    » Toll rates were $0.16/mile auto and $0.46/mile trucks
    » Provided access control at various locations:
      - Paisano W.
      - Downtown
      - US 54
      - Yarbrough
      - Zaragoza
Integration between Systems
Integration between Systems

Schuster Off-Ramp Westbound
Integration between Systems

Mesa Northbound at Schuster
Integration between Systems

Mesa Southbound at Glory Rd.
Integration between Systems

Schuster Eastbound from Paisano W.
Integration between Systems

Inbound Traffic to Roundabout
Integration between Systems

- Flow of vehicles on roundabouts weighs heavily on entry flow and diameter
- Proposed roundabout has a compact diameter
- Future flow will be heavy from 2 directs
- Simulation model is more “forgiving” than real life conditions

Source: Roundabouts: An Informational Guide Federal Highway Administration (FHWA)-RD-00-67
Integration between Systems
## Integration between Systems

<table>
<thead>
<tr>
<th>Sun Metro Routes</th>
<th>Travel Time from Farthest Stop Point to UTEP</th>
<th>Average Headway</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>7 min</td>
<td>30 min</td>
</tr>
<tr>
<td>11</td>
<td>10 min</td>
<td>1 hr</td>
</tr>
<tr>
<td>12</td>
<td>50 min</td>
<td>1 hr</td>
</tr>
<tr>
<td>13</td>
<td>40 min</td>
<td>1 hr</td>
</tr>
<tr>
<td>14</td>
<td>1 hr</td>
<td>30 min</td>
</tr>
<tr>
<td>15</td>
<td>30 min</td>
<td>25 min</td>
</tr>
<tr>
<td>16</td>
<td>45 min</td>
<td>2 hrs</td>
</tr>
<tr>
<td>70</td>
<td>30 min</td>
<td>30 min</td>
</tr>
<tr>
<td>101</td>
<td>20 min</td>
<td>10 min</td>
</tr>
</tbody>
</table>
Integration between Systems
Interactions between Modes

- Pedestrians cause significant speed reduction on Sun Bowl, Schuster, University, and Mesa
- Miner Metro experiences delays when traveling up Sun Bowl Dr. (route 2)
- Pedestrians cross at mid-block locations throughout the inner campus
- Campus lacks adequate drop-off locations
- Inadequate transit service from east side, northeast, and lower valley areas of El Paso
- Only 1 Miner Metro route services southern campus parking lots
- Special events on campus create unique traffic flow problems on Glory Rd., Randolph, Robinson, and Oregon
Agenda

- Introduction
- Conduct Literature Review
- Review Accident Locations
- Develop and Perform Faculty, Staff, and Student Surveys
- Characterize Current and Future Systems
- Identify Gaps and Develop Scenarios
- Analyze Transportation System Integration and Interactions
- Estimate Costs
- Case Study Conclusions and Recommendations
Estimate Costs (Task 8)

- Recommended Infrastructure Improvements
  - Traffic lights
    » Hawthorne St. and Schuster Ave.
    » Prospect St. and Schuster Ave.
    » Glory Rd. and Sun Bowl Dr.
  - Dynamic Radar Signs (mounted)
    » Sun Bowl Dr. next to Don Haskins Center
    » Sun Bowl Dr. next to Sun Bowl Stadium
    » Robinson Ave. and Mesa St.
    » Schuster Ave. next to parking lot P-4
  - High-Intensity Activated Crosswalks (HAWK) Signals
    » Mesa St. and Hague Rd.
    » Schuster Ave. between parking lots P-4 & S-2
  - Roundabout
    » Sun Bowl Dr. and University Ave.
Estimate Costs (Task 8)

- Recommended Infrastructure Improvements
  - Pedestrian Bridges
    » Sun Bowl Dr. connecting the S-3 parking lot with the new College of Health Sciences building, library and Undergraduate Learning Center
    » Mesa St. between Glory Rd. and Cincinnati Ave. connecting the entertainment district with the new proposed parking lot
  - Lighted in-ground crosswalks
    » Schuster Ave. between parking lot P-3 and the Academic Services Building
  - Variable signs
    » Approximately 10 “No Parking” signs
    » Approximately 20 “Bus Stop” signs (Miner Metro Shuttle)
    » Five “Drop-off” location signs
## Estimate Costs (Task 8)

Costs obtained from recommendations

<table>
<thead>
<tr>
<th>Item</th>
<th>Unit Price</th>
<th>Quantity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Light</td>
<td>$150,000</td>
<td>3</td>
<td>$450,000</td>
</tr>
<tr>
<td>Dynamic radar sign</td>
<td>$4,000</td>
<td>4</td>
<td>$16,000</td>
</tr>
<tr>
<td>No Parking sign</td>
<td>$20</td>
<td>10</td>
<td>$200</td>
</tr>
<tr>
<td>HAWK signal</td>
<td>$40,000</td>
<td>2</td>
<td>$80,000</td>
</tr>
<tr>
<td>Lighted in-ground crosswalk</td>
<td>$32,000</td>
<td>1</td>
<td>$32,000</td>
</tr>
<tr>
<td>Pedestrian bridge</td>
<td>$800,000</td>
<td>2</td>
<td>$1,600,000</td>
</tr>
<tr>
<td>Bus stop sign</td>
<td>$40</td>
<td>20</td>
<td>$800</td>
</tr>
<tr>
<td>Drop-off location sign</td>
<td>$40</td>
<td>5</td>
<td>$200</td>
</tr>
</tbody>
</table>

**Total - $2,179,200**
### Estimate Costs (Task 8)

- Estimated cost obtained for each priority

<table>
<thead>
<tr>
<th>Proposed Improvements</th>
<th>Unit Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Priority 1 – Sun Bowl Dr.</td>
<td>$225,000</td>
</tr>
<tr>
<td>Priority 2 – Pedestrian Bridge</td>
<td>$800,000</td>
</tr>
<tr>
<td>Priority 3 – W. Schuster Ave.</td>
<td>$2,291,500</td>
</tr>
<tr>
<td>Priority 4 – Glory Rd.</td>
<td>$2,362,000</td>
</tr>
<tr>
<td>Priority 5 – Robinson/Randolph Dr.</td>
<td>$1,837,500</td>
</tr>
<tr>
<td>Priority 6 – Sun Bowl Dr. (North of University Ave. to N. Mesa St.)</td>
<td>$9,107,000</td>
</tr>
<tr>
<td>Priority 7 – Signalize W. Schuster/Prospect St.</td>
<td>$210,000</td>
</tr>
<tr>
<td>Priority 8 – Transit Improvements</td>
<td>$420,000 per bus (Sun Metro) + $672,000 per semester (Miner Metro)</td>
</tr>
<tr>
<td>Priority 9 – W. University Ave./Hawthorne Realignment</td>
<td>$5,153,000</td>
</tr>
<tr>
<td>Priority 10 – Inner Campus Closure</td>
<td>$692,000</td>
</tr>
<tr>
<td>Priority 11 – ITS Improvements</td>
<td>$933,000 + $50,000 (annual maintenance)</td>
</tr>
</tbody>
</table>

**Total - $24,031,000**
Agenda

- Introduction
- Conduct Literature Review
- Review Accident Locations
- Develop and Perform Faculty, Staff, and Student Surveys
- Characterize Current and Future Systems
- Identify Gaps and Develop Scenarios
- Analyze Transportation System Integration and Interactions
- Estimate Costs
- Case Study Conclusions and Recommendations
Traffic Control

- Signalize Sun Bowl Dr. and Glory Rd. (coordinated)
- Signalize University Ave. and Schuster Ave.
- Signalize Schuster Ave. and Prospect (new parking garage)
- Roundabout Sun Bowl Dr. and University Ave.
Traffic Control

Provide Dynamic Radar Signs (mounted)
Traffic Control

Remove On-Street Parking
Pedestrian Crossings

Signalized Crosswalks

HAWK

Lighted Crosswalk

HAWK
Pedestrian Crossings

[Map of pedestrian crossings with labels: Mesa/Cincinnati, Pedestrian Bridges, Sun Bowl]
Transit
Transit
Transit
Transit
Walk/Bike Paths

Proposed Trail .85 Mile
Infrastructure Improvements

1 Lane each Direction
Infrastructure Improvements

Widen to 2 Lanes

P-5 (a)

P-5 (b)

P-4

Cardiac Hill 2-way
Infrastructure Improvements

No left-turns

1 Lane each Direction
Infrastructure Improvements

Drop-off Locations
Infrastructure Improvements

Do not Recommend Schuster Ave. Realignment to Paisano W.
Infrastructure Improvements

- Researchers ranked UTEP transportation improvement projects as follows:
  1. P1 + Signals on Sun Bowl
  2. P2 + P3
  3. P6 + P7
  4. P4 + P5

- Revised shuttle service should coincide with transportation loop system

- Crosswalks are essential to the overall safety of pedestrians in and around campus

- Walk and bike paths non-essential but do provide much needed aesthetics to the campus culture by promoting healthy habits

- Drop-off locations should have adequate signage and be promoted before and during semester to educate drivers

- Keep inner campus closure at grade level to allow for emergency vehicle access