Roadway Safety Design
An Engineer’s Guide to Evaluating the Safety of Design Alternatives

Course Notes
Product 0-4703-P8

SAFETY BY DESIGN

Multilane Highways and Freeways Workshop
Published: December 2008
INCORPORATING SAFETY INTO THE HIGHWAY DESIGN PROCESS:
MULTILANE HIGHWAYS AND FREEWAYS WORKSHOP

Date: __________________
Location: __________________
Contact: Jim Bonneson, (979) 845-9906, j-bonneson@tamu.edu

Agenda

9:30 Introduction

9:45 Session 1: Review of Highway Safety Issues

10:00 Session 2: Overview of Safety Evaluation

10:25 Break

10:40 Session 2: Overview of Safety Evaluation

11:00 Session 3: Procedure for Multilane Highway Segments

11:55 Lunch Break

1:10 Session 4: Procedure for Freeway Segments

1:40 Session 5: Procedure for Interchange Ramps

2:05 Break

2:20 Session 6: Multilane Highway Section Evaluation

2:55 Session 7: Alternatives Analysis

4:05 Wrap-Up, Complete Course Review Form

4:15 Adjourn

Course Materials: Course Workbook
Interim Roadway Safety Design Workbook
Texas Roadway Safety Design (TRSD) software

Web Site: http://tcd.tamu.edu/documents/rsd.htm
Incorporating Safety into the Highway Design Process

Part I. Introduction to Workshop Series

Welcome

- Introductory Session
 - Objectives, outcomes, scope, main points
 - Background
 - Agenda
- Instructor
 - Jim Bontrager
 - Researcher with TTI
 - College Station

Objectives & Outcomes

- Objectives
 - To inform participants about:
 - Safety impacts of design alternatives
 - Availability of tools for evaluating safety impact
 - To demonstrate how to apply these tools
- Outcomes
 - Participants should be able to:
 - Apply the evaluation tools to typical designs
 - Evaluate the safety associated with a design
Background

- Safety Information Development Process
 - Past TxDOT Research
 - National Research (FMWA, TII)
 - Synthesize
 - Roadway Safety Design Synthesis
 - Roadway Safety Design Workbook

More Information

- Safety Resources from Project 0-4703
 - Roadway Safety Design Synthesis
 - Procedures Guide
 - Texas Roadway Safety Design software

- Web Address
 - http://tdd.lamar.edu/documents/sd.htm
 - Also link from DES-PD site CROSSROADS
 - Check periodically for updates

Agenda

- Session 1:
 - Review of highway safety issues
- Session 2:
 - Overview of safety evaluation
- Session 3:
 - Procedure for multilane highway segments
- Lunch Break
1. Highway Safety Issues
 - Key Highway Design Elements
 - Safety-Conscious Design
 - Crash Data Variability

Key Design Elements
- Design Elements that Influence Safety
 - Design speed
 - Lane width
 - Shoulder width
 - Bridge width
 - Structural capacity
 - Horizontal alignment
 - Vertical curvature
 - Grade
 - Stopping sight distance

Safety-Conscious Design
- AASHTO Guidance
 - "Consistent adherence to minimum (design criteria) values is not advisable."
 - "Minimum design criteria may not ensure adequate levels of safety in all situations."
 - "The challenge to the designer is to achieve the highest level of safety within the physical and financial constraints of a project."
Overcoming Variability

- Summary
 - Large variability makes it difficult to observe a change in crash frequency due to change in geometry at one site
 - Large variability in crash data may frustrate attempts to confirm expected change
 - Large databases needed to overcome large variability in crash data
 - Statistics must be used to accurately quantify effect

Questions – Comments?

2. Safety Evaluation

- Safety Prediction Model
- Analysis Procedures
- Texas Roadway Safety Design Software
Analysis Procedures

- Safety Prediction Procedure
- Segmentation Process

Safety Prediction Procedure

- Overview
 - Six steps
 - Use base model and AMP's in Workbook
 - Evaluate a specific roadway segment or intersection (i.e., facility component)
- Output
 - Estimate of crash frequency for segment or intersection

Step 1

- Identify Roadway Section
 - Define limits of roadway section of interest
 - Limits of design project
 - Portion of highway with safety issue or concern
 - May include one or more components
Segmentation Process

- Overview
 -- Use to identify homogeneous roadway segments
 -- Intersections and interchange ramps are not segments

Homogeneous Segment

- Definition
 - A homogeneous segment has the same basic character for its full length
 - Lane width
 - Shoulder width
 - Number of lanes
 - Curvature
 - Median type
 - Median width

Segmentation Process

- Define Initial Segments
 - Begin new segment when:
 - ADT changes by 5% or more
 - Number of lanes changes
 - Horizontal curvature begins or ends
 - Two-way left-turn lane begins or ends
 - Median begins or ends
 - Intersections or ramp terminals are not necessarily segment end points
 - Curve length includes spirals if present
Questions – Comments?

TRSD Worksheet
• Texas Roadway Safety Design Worksheet
 - Overview
 - Navigation
 - Input
 - Output

TRSD Worksheet
• Welcome Screen
 - Tab for introduction (User's Guide)
 - Tabs for selecting specific worksheets

Texas Roadway Safety Design

Developed by James A. Bennett, Kurt Dowsmoor, and Mike Post

FORWARD
The software is designed to estimate the approach-safety influence on design components and roadway safety. It's a tool for engineers and safety professionals to evaluate the actual costs of various design alternatives and to improve the safety and efficiency of roadways. The software is a valuable resource for anyone involved in highway design and safety evaluation.

13
3. Highway Segments

- Overview
 - Safety prediction model
 - Accident modification factors
 - Exercises

Safety Prediction Model

- Components
 - Base model
 - \(C_b = \text{base crash rate} \times \text{volume} \times \text{length} \)
 - Accident modification factors

- Relationship

\[
C = C_b \times AMF_{tw} \times AMF_{dd} \ldots
\]

where:
- \(C \) = expected severe crash frequency, crashes/yr;
- \(C_b \) = expected severe base crash frequency, crashes/yr;
- \(AMF_{tw} \) = lane width accident modification factor; and
- \(AMF_{dd} \) = driveway density accident modification factor.

Base Model

- Base Model
 - Rates in Workbank
 - Based on typical conditions
 - Injury (plus fatal) crashes
 - All crash types

Page 3-6

\[
C_b = 0.000255 \text{ Base ADT L f}
\]

where:
- \(C_b \) = expected severe base crash frequency, crashes/yr;
- \(ADT \) = average daily traffic volume, veh/day;
- \(L \) = highway segment length, mi; and
- \(f \) = local calibration factor.

<table>
<thead>
<tr>
<th>Median Type</th>
<th>Attributes</th>
<th>Base Crash Rate, severe crash/hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Through Lanes</td>
<td>2</td>
</tr>
<tr>
<td>Unidentified or Undetected</td>
<td>0.20</td>
<td>0.30</td>
</tr>
<tr>
<td>Capped</td>
<td>0.21</td>
<td>0.23</td>
</tr>
</tbody>
</table>
Curve Radius

- **Base Condition**
 - No curvature
- **Limits**
 - Radius ≥ 500 ft
- **Notes**
 - If spirals present, include their length in curve length
 - If no spirals, measure PC to PF

Example

- **Questions**
 - What is the AADT for a 2100-ft radius curve?
 - Multilane highway
 - Deflection angle = 30°

Grade

- **Base Condition**
 - No grade
- **Limits**
 - Grade ≤ 3%?
- **Notes**
 - "Upgrade" and "Downgrade" have some effect on safety
Example

- Question
 - If a multilane rural highway's outside shoulders are widened from 2 to 4 ft, what would be the expected crash reduction?
 - Surfaced median, 4 lanes

Inside Shoulder Width

- Base Condition
 - 4-ft inside shoulder
- Limits
 - Shoulder widths between 0 and 10 ft
- Notes
 - If width > 10 ft, use AMF for 10 ft

Median Width

- Base Condition
 - 10 ft (surfaced)
 - 7.5 ft (depressed)
- Limits
 - Surfaced medians between 4 and 30 ft
 - Depressed medians between 30 and 80 ft
- Notes
 - Not for highways that have a TW/LT.
Driveway Density

- **Base Condition**
 - 5 driveways/mi

- **Notes**
 - Count driveways on both sides of roadway
 - Full-access driveways (all minima) count as 1.6 toward total
 - Partial-access driveways count as 0.3 toward total

Example

- **Question**
 - What is the AMF for the 0.25 mi road?

- **Answer**
 - Density = \((0.5 + 2.0 + 0.5)/0.25\) = 12 driveways/ft

Exercise 1: Rural Highway

- **Given**
 - Rural multilane highway segment
 - Length: 4 mi
 - Volume: 22,000 veh/ld
 - No curvature
 - No grade
 - Lane width: 11 ft
 - Shoulder width: 8 ft
 - 10 ft flush-paved median
 - No rumble strips
 - 3 driveways/mi
 - Horiz. clearance: 30 ft
 - Side slope: 1:6
 - 23 jobs/mi at 20 ft off
 - No bridges

- **Question**
 - What is the expected crash frequency?
Exercise 1: Rural Highway

- Additional Questions
 - What does the combined AMP say about this segment, relative to the typical segment?
 - Which attribute(s) tend to increase the crash rate of this segment, relative to the typical segment?

- Now it's your turn...

Exercise 2: Rural Highway

- Given
 - Rural midlame highway segment
 - Lanes: 4
 - Length: 2 mi
 - Volume: 17,000 ve/hd
 - No curvature
 - 1 percent grade
 - Lane width: 12 ft
 - Shoulder width: 6 ft outside, 2 ft inside
 - 30-ft depressed median
 - No rumble strips
 - 2 driveways/ni
 - Horiz. clearance: 30 ft
 - Side slope: 1:6
 - 25 poles/ni at 30 ft off
 - No bridges

- Question
 - What is the expected crash frequency?

Exercise 2

- Answer
4. Freeway Segments

- Overview
 - Safety prediction model
 - Accident modification factors
 - Exercises

Safety Prediction Model

- Components
 - Base model
 - \(C_b \) = base crash rate × volume × length
 - Accident modification factors

- Relationship

\[
C = C_b \times AMF_{lw} \times AMF_{mw}
\]

(2-3)

where:
\(C \) = expected severe crash frequency, crashes/yr;
\(C_b \) = expected severe base crash frequency, crashes/yr;
\(AMF_{lw} \) = lane width accident modification factor; and
\(AMF_{mw} \) = median width accident modification factor.
Accident Modification Factors

- Freeway
 - Grade
 - Lane width
 - Outside shoulder width
 - Inside shoulder width
 - Median width
 - Shoulder rumble strips
 - Utility pole offset

Exercise 3: Freeway

- **Given**
 - Freeway segment
 - Lanes: 6
 - Area type: Urban
 - Length: 1 mi
 - Volume: 82,000 vpd
 - No grade
 - Lane width: 11 ft
 - Shoulder width: 6 ft outside, 4 ft inside
 - No HOV lanes
 - Dugressed median
 - Median width: 50 ft
 - Rumble strips on outside and inside shoulders
 - 25 polesini at 15 ft off

- **Question**
 - What is the expected crash frequency?
Exercise 4: Freeway

- **Given**
 - Freeway segment
 - Lanes: 4
 - Area type: Rural
 - Length: 5 mi
 - Volume: 27,000 veh/d
 - Grade: 2 percent
 - Lane width: 12 ft
 - Shoulder width:
 - 10 ft outside, 4 ft inside
 - No HOV lanes
 - Depressed median
 - Median width: 40 ft
 - No rumble strips
 - 23 poles/mi at 15 ft off

- **Question**
 - What is the expected crash frequency?

Exercise 4: Freeway

- **Answer**

Exercise 4: Freeway

- **Question**
 - What is the expected crash frequency if the poles are relocated?
 - 23 poles/mi at 30 ft offset

- **Answer**

Ramp Types

- Non-Frontage Road Ramps

- Frontage Road Ramps

Base Model

- Ramp Proper
 - Exit arm rate
 - Ramp type
 - Ramp configuration
 - Crash definition
 - Injury (plus fatal) crashes
 - All crash types
 - Observations
 - Higher rates for exit ramps
 - Free-flow loops have low rates
Exercise 5: Ramp

<table>
<thead>
<tr>
<th>Output (all crashes)</th>
<th>Ramp crashes</th>
<th>Speed-change lane crashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected crash frequency for ramp and adjacent lanes (Rear + Q)</td>
<td>0.3%</td>
<td>0.2%</td>
</tr>
<tr>
<td>Expected speed change frequency (Rear)</td>
<td>0.5%</td>
<td>0.4%</td>
</tr>
<tr>
<td>Expected speed change frequency (Q)</td>
<td>0.3%</td>
<td>0.2%</td>
</tr>
<tr>
<td>Expected speed change frequency for speed change lane</td>
<td>0.1%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

Exercise 5: Ramp

- **Additional Question**
 - What is the crash frequency for an exit ramp with similar conditions?
 - Ramp type: Exit
 - All other data are unchanged
 - Now it’s your turn...
6. Section Evaluation

- Review Safety Prediction Procedure
- Road Section Evaluation
- Project Evaluation

Safety Prediction Procedure

- Six Steps
 1. Identify roadway section
 2. Divide section into facility components
 3. Gather data for subject component
 4. Compute expected crash frequency
 5. Repeat steps 3 and 4 for each additional component
 6. Add up results for roadway section

Exercise 7: Section Evaluation

- Given
 - Rural highway
 - Input data to follow
- Question
 - What is the expected crash frequency for the highway?
Exercise 7: Section Evaluation

• Given
 - Highway segment “a”
 - Lanes: 4
 - Length: 0.13 mi
 - Volume: 4000 veh/d
 - No curvature
 - No grade
 - Lane width: 12 ft
 - Shoulder width: 9 ft
 - TWILTL median
 - No rumble strips
 - 11 driveways/mi
 - Horiz. clearance: 30 ft
 - Sides slope: 1:4
 - 25 poles/mi at 20 ft off

• Question
 - What is the expected crash frequency?

Exercise 7: Section Evaluation

• Answers
 - Segment “a”
 - Segment “b”
 - Segment “c”
 - Entire highway section

Exercise 7: Section Evaluation

• Observations

39
Exercise 8: Project Evaluation

Answers
- North/south road (Ex. 2-a)
- East/west road (Ex. 7 "a")
- Intersection (given)
- Entire facility

Exercise 8: Project Evaluation

Additional Questions
- What is the best measure of safety benefit?
- Which facility component(s) may yield the most benefit through design change?

Answers
- Expected number of crashes reduced is the best measure of safety benefit.
- Segments or intersections with many crashes have more potential for a large safety benefit through a design change, so...

Exercise 8: Project Evaluation

Additional Questions
- What does the combined AMF tell us?
- What does it mean when the combined AMF is greater than 1.0?

Answers
- The combined AMF tells us about "relative risk".
- Values larger than 1.0 indicate the component is potentially less safe than the "typical" one.
- So...

41
Exercise 9: Alternatives Analysis

- **Current Design**
 - Two intersecting rural highways
 - Northsouth highway
 - 4-lane divided median
 - Eastwest highway
 - 4-lane TWTL
 - Intersection
 - Stop-controlled
 - 35-degree skew angle
 - *From Exercise 6*
 - Crash frequency = 6.63 crashes/yr

Exercise 9: Alternatives Analysis

- **Analysis Process**
 1) Identify components that have a combined AADT > 1.0
 - Northsouth road (Ex. 2-a): 1.27
 - Intersection (Ex-8): 1.19
 - Eastwest road (Ex. 7 "a"): 1.01
 2) Rank them in order of crash frequency
 - Northsouth road: 3.32 crashes/yr
 - Intersection: 2.79 crashes/yr
 - Eastwest road: 0.52 crashes/yr
 3) Identify potential design changes at those components with a larger crash frequency

Exercise 9a: Alternatives Analysis

- **Alternative A**
 - Treatment
 - Increase shoulder width for northsouth road
 - Repeat the analysis for Exercise 2, but
 - Outside shoulder: increase from 6 to 10 ft
 - Inside shoulder: increase from 2 to 6 ft
 - Side slope: decrease from 1:0 to 1:4
Exercise 9b: Alternatives Analysis

- **Alternative B**
 - **Treatment**
 - Realign east/west road to eliminate skew
 - Requires addition of two curves
 - Crash estimates from Exercises 2 and 7

Exercise 9b: Alternatives Analysis

- **Question**
 - Is this alternative safer than the current configuration?

- **Answer**
 - Expected crash frequencies:
 - North/south road (Ex. 2-a):
 - East/west road (Ex. 7 "b+...h"):
 - Intersection:
 - Facility:

Exercise 9b: Alternatives Analysis

- **Question**
 - Given:
 - $1,009,600 construction cost
 - 25-year life span
 - $100,000 benefit per crash prevented
 - Is this alternative viable?

- **Answer**
Exercise 9c: Alternatives Analysis

- Analysis
 - Northbound exit ramp
 - Area type: Rural
 - Ramp volume: 1000 veh/d
 - Adjacent mainline volume: 8500 veh/d
 - Ramp type: Exit
 - Ramp configuration: Diagonal
- Question
 - What is the expected crash frequency?
- Answer

Exercise 9c: Alternatives Analysis

- Analysis
 - Southbound entrance ramp
 - Area type: Rural
 - Ramp volume: 1000 veh/d
 - Adjacent mainline volume: 8500 veh/d
 - Ramp type: Entrance
 - Ramp configuration: Diagonal
- Question
 - What is the expected crash frequency?
- Answer

Exercise 9c: Alternatives Analysis

- Analysis

<table>
<thead>
<tr>
<th>Crashes/yr</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Ex. 6)</td>
<td></td>
</tr>
<tr>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>0.20 (given)</td>
<td></td>
</tr>
<tr>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>0.12 (given)</td>
<td></td>
</tr>
</tbody>
</table>
Exercise 9c: Alternatives Analysis

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Cost</td>
<td>$1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety benefit, $1000/yr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital cost, $1000/yr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benefit-cost ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net benefit, $1000/yr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Questions
 - Which alternative is best based on safety benefit and cost?
 - What if the net benefit for Alt. B was $34,000 and the B/C ratio = 1.75?

Exercise 9: Alternatives Analysis

- Alternative Selection Summary
 - Establish a goal of reducing total crash frequency by some amount
 - Exclude projects that do not provide minimum benefit
 - Exclude projects that exceed available funds
 - If funds are earmarked for this project:
 - Use net benefit to select project
 - If unspent funds can be used for other projects:
 - Use benefit-cost ratio to select projects

Exercise 9: Alternatives Analysis

- Observations
 - Our computations reflect only safety impact
 - Different conclusions may be reached if other impacts are considered
 - Final decision must consider all impacts
 - Safety
 - Environment
 - Traffic operations
 - Right-of-way
 - Construction costs
 - Choose the most cost-effective alternative
EXERCISE 1: RURAL MULTILANE HIGHWAY SEGMENT

INPUT DATA

Basic Roadway Data
 Number of through lanes: 4
 Segment length: 2 mi

Traffic Data
 Average daily traffic: 22,000 veh/d

Geometric Data
 Presence of horizontal curve: No
 Grade: 0 percent

Cross Section Data
 Lane width: 11 ft
 Outside shoulder width: 8 ft
 Median type: Flush paved
 Median width: 10 ft
 Presence of shoulder rumble strips: None

Access Control Data
 Driveway density: 3 driveways/mi

Roadside Data
 Horizontal clearance: 30 ft
 Side slope: 1:6
 Utility pole density: 25 poles/mi
 Utility pole offset: 20 ft

OUTPUT SUMMARY

What is the expected crash frequency? ..

What is the combined AMF? ...

What does the combined AMF say about this segment, relative to the typical segment? _____

Which attribute(s) tend to increase the crash rate of this segment, relative to the typical segment?
EXERCISE 3: FREEWAY SEGMENT

INPUT DATA

Basic Roadway Data
- Number of through lanes: 6
- Area type: Urban
- Segment length: 1 mi

Traffic Data
- Average daily traffic: 82,000 veh/d

Geometric Data
- Grade: 0 percent

Cross Section Data
- Lane width: 11 ft
- Outside shoulder width: 6 ft
- Inside shoulder width: 4 ft
- HOV lane presence: No HOV lane present
- Median type: Depressed
- Median width: 50 ft
- Presence of shoulder rumble strips: Both sides

Roadside Data
- Utility pole density: 25 poles/mi
- Utility pole offset: 15 ft

OUTPUT SUMMARY

What is the expected crash frequency? ..

What is the combined AMF?

If the cross section is changed to:
- Lane width: 12 ft
- Outside shoulder width: 10 ft
- Inside shoulder width: 6 ft
- Median width: 36 ft

What is the expected crash frequency? ..

What is the combined AMF?
EXERCISE 5: INTERCHANGE RAMP

INPUT DATA

Basic Roadway Data
Area type: Urban

Traffic Data
Average daily traffic on ramp: 2500 veh/d
Average one-way daily traffic on the adjacent mainlanes: 41,000 veh/d

Geometric Data
Ramp type: Entrance
Ramp configuration: Slip

OUTPUT SUMMARY

What is the expected crash frequency?

For an exit ramp with similar conditions:
Ramp type: Exit
All other input data are unchanged

What is the expected crash frequency? ...
EXERCISE 7: SECTION EVALUATION

Location: Rural multilane highway segment “a”

INPUT DATA

Basic Roadway Data
- Number of through lanes: 4
- Segment length: 1.18 mi

Traffic Data
- Average daily traffic: 4000 veh/d

Geometric Data
- Presence of horizontal curve: No
- Grade: 0 percent

Cross Section Data
- Lane width: 12 ft
- Outside shoulder width: 8 ft
- Median type: TWLTL
- Presence of shoulder rumble strips: None

Access Control Data
- Driveway density: 4 driveways/mi

Roadside Data
- Horizontal clearance: 30 ft
- Side slope: 1:4
- Utility pole density: 25 poles/mi
- Utility pole offset: 20 ft

OUTPUT SUMMARY

Record your results in the table on the last page for Exercise 7.
EXERCISE 7: SECTION EVALUATION

Location: Rural multilane highway segment “c”

INPUT DATA

Basic Roadway Data
 Number of through lanes: 4
 Segment length: 0.18 mi

Traffic Data
 Average daily traffic: 4000 veh/d

Geometric Data
 Presence of horizontal curve: No
 Grade: 0 percent

Cross Section Data
 Lane width: 12 ft
 Outside shoulder width: 8 ft
 Median type: TWLTL
 Presence of shoulder rumble strips: None

Access Control Data
 Driveway density: 11 driveways/mi

Roadside Data
 Horizontal clearance: 30 ft
 Side slope: 1:4
 Utility pole density: 25 poles/mi
 Utility pole offset: 20 ft

OUTPUT SUMMARY

Record all results for segments “a,” “b,” and “c” into this table.

<table>
<thead>
<tr>
<th>Facility Component</th>
<th>Expected Crash Frequency (crashes/yr)</th>
<th>Combined AMF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segment “a”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Segment “b”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Segment “c”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total for roadway section</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What is the expected crash frequency for segments “b” through “h”?
EXERCISE 9a: ALTERNATIVE A

Description: Widen the inside and outside shoulders on the north-south road. To provide the increased width while remaining within the right-of-way, it is necessary to reduce the side slope.

Please complete the table and answer the questions below.

<table>
<thead>
<tr>
<th>Facility Component</th>
<th>Exercise Number</th>
<th>Expected Crash Frequency (crashes/yr)</th>
<th>Combined AMF</th>
</tr>
</thead>
<tbody>
<tr>
<td>North-south road</td>
<td>2-b (after change)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>East-west road</td>
<td>7 “a”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intersection</td>
<td>Given</td>
<td>2.48</td>
<td>1.19</td>
</tr>
<tr>
<td>Total for facility</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Is this alternative safer than the current configuration (see Exercise 8)? ________________

How many crashes are reduced per year, relative to the current configuration? ________________

Given the following assumptions:
- $750,000 construction cost to widen the shoulders on the north-south road
- 25-year life span for the project
- $100,000 benefit per crash reduced

Benefit: ____________ crashes/yr reduced x $100,000/crash reduced = $ ____________ / yr

Cost: ____________ construction cost + ____________ yr life span = $ ____________ / yr

Is this alternative viable? ________________

What is the net benefit for Alternative A, relative to the current configuration? ________________
EXERCISE 9c: ALTERNATIVE C

Description: Grade-separate the roads. Use a diamond interchange with four diagonal ramps.

INPUT DATA

Basic Roadway Data
- Area type: Rural

Traffic Data
- Average daily traffic on ramp: 1000 veh/d
- Average one-way daily traffic on the adjacent mainlanes: 8500 veh/d

Geometric Data
- Ramp type: Exit
- Ramp configuration: Diagonal

OUTPUT SUMMARY

What is the expected crash frequency? ...

For an entrance ramp with similar conditions:
- Ramp type: Entrance
- All other input data are unchanged

What is the expected crash frequency? ...

63
INCORPORATING SAFETY INTO THE HIGHWAY DESIGN PROCESS:
MULTILANE HIGHWAYS AND FREEWAYS WORKSHOP

Date: ______________
Location: ______________

Your Agency: __
Your Position: __

Course Content (circle one)

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Did the course meet your expectations?</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Comments:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Was the material presented at the correct level of difficulty?</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Comments:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Was the topic of the course covered adequately (nothing left out, no one topic overemphasized)?</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Comments:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Was the software easy to use?</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Comments:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>