LOADGAGE USER’S GUIDE

by

Emmanuel G. Fernando
Research Engineer
Texas Transportation Institute

Jeongho Oh
Associate Transportation Researcher
Texas Transportation Institute

and

Wenting Liu
Assistant Research Engineer
Texas Transportation Institute

Product 0-4519-P3
Project 0-4519
Project Title: Verification of the Modified Triaxial Design Procedure

Performed in cooperation with the
Texas Department of Transportation
and the
Federal Highway Administration

November 2006
Resubmitted: August 2007
Published: November 2007

TEXAS TRANSPORTATION INSTITUTE
The Texas A&M University System
College Station, Texas 77843-3135
DISCLAIMER

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented. The contents do not necessarily reflect the official views or policies of the Texas Department of Transportation (TxDOT) or the Federal Highway Administration (FHWA). This report does not constitute a standard, specification, or regulation, nor is it intended for construction, bidding, or permit purposes. The United States Government and the State of Texas do not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report. The engineer in charge of the project was Dr. Emmanuel G. Fernando, P.E. # 69614.
ACKNOWLEDGMENTS

The work reported herein was conducted as part of a research project sponsored by TxDOT and FHWA. The analysis program, LoadGage, resulted from efforts made by researchers to improve the existing Texas modified triaxial design method. The authors gratefully acknowledge the support and guidance of the project director, Mr. Mark McDaniel, of the Materials and Pavements Section of TxDOT. Mr. McDaniel provided a compilation of Texas triaxial classifications for soils found across the state that researchers incorporated into the soils database of the LoadGage program. In addition, the authors give thanks to members of the Project Monitoring Committee for their support of this research project. A special note of thanks is extended to Ms. Darlene Goehl and Mr. Billy Pigg of the Bryan and Waco Districts, respectively, for their assistance in identifying and testing materials used in field sections to verify TxDOT's modified triaxial design method. Mr. Miguel Arellano of the Austin District also compiled information on the statewide use of various base materials that was helpful in developing the field test plan for this project, and conducted seismic tests on the sections built to verify the modified triaxial design method. The findings from the field tests were critical to the development of the LoadGage program that is described in this user's guide. The assistance provided by TxDOT engineers in this regard is sincerely appreciated.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>LIST OF FIGURES</th>
<th>vi</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF TABLES</td>
<td>vii</td>
</tr>
</tbody>
</table>

CHAPTER

I INTRODUCTION

- INTRODUCTION ... 1

II USING THE LOADGAGE TRIAXIAL DESIGN CHECK PROGRAM

- Main Menu ... 5
- Running an Evaluation and Viewing Output 11
- Defining the Subgrade Failure Envelope 17
- Nonlinear Analysis Option 28
- Example Program Application 29

REFERENCES

- REFERENCES ... 37

APPENDIX

- CALCULATION OF MOHR-COULOMB YIELD FUNCTION 39
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LoadGage Opening Screen</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Main Menu of LoadGage Program</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>Dialog Box to Load an Input Data File into LoadGage</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>Main Menu Displaying Data Read from an Existing Input File</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>Display of Load Characteristics for a Single Axle Configuration</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>Display of Load Characteristics for a Tandem Axle Configuration</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>Saving the Input Data in LoadGage</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>Run Time Screen Displayed during an Analysis</td>
<td>14</td>
</tr>
<tr>
<td>9</td>
<td>Message Displayed when Pavement Design Passes</td>
<td>14</td>
</tr>
<tr>
<td>10</td>
<td>Run Time Screen during Search for Minimum Required Base Thickness</td>
<td>15</td>
</tr>
<tr>
<td>11</td>
<td>Message Displayed when Pavement Design Fails</td>
<td>15</td>
</tr>
<tr>
<td>12</td>
<td>Output Screen of Computed Mohr-Coulomb Yield Function Values</td>
<td>16</td>
</tr>
<tr>
<td>13</td>
<td>Example Printout of Analysis Results from LoadGage</td>
<td>18</td>
</tr>
<tr>
<td>14</td>
<td>Screen for Viewing LoadGage Soils Database</td>
<td>19</td>
</tr>
<tr>
<td>15</td>
<td>Viewing the County List in the Soils Database</td>
<td>20</td>
</tr>
<tr>
<td>16</td>
<td>Viewing the List of Soil Types for a Given County</td>
<td>21</td>
</tr>
<tr>
<td>17</td>
<td>Default Material Properties Displayed for Selected Soil</td>
<td>22</td>
</tr>
<tr>
<td>18</td>
<td>Linearized Texas Triaxial Class Failure Envelopes</td>
<td>24</td>
</tr>
<tr>
<td>19</td>
<td>Example Illustration of Input Data with Moisture Correction Applied</td>
<td>25</td>
</tr>
<tr>
<td>20</td>
<td>Viewing the Soil Suction Curve in LoadGage</td>
<td>27</td>
</tr>
</tbody>
</table>
LIST OF FIGURES (cont.)

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Specifying K_1, K_2, and K_3 Coefficients for Nonlinear Analysis in LoadGage.</td>
</tr>
<tr>
<td>22</td>
<td>Input Data for Example Design Problem</td>
</tr>
<tr>
<td>23</td>
<td>Analysis Result for Example Design Problem</td>
</tr>
<tr>
<td>24</td>
<td>LoadGage Result for Pavement Design with 3-inch Asphalt Surface Layer</td>
</tr>
<tr>
<td>25</td>
<td>LoadGage Result for Pavement Design with Stiffer Base Material</td>
</tr>
<tr>
<td>A1</td>
<td>Graphical Illustration of Mohr-Coulomb Yield Criterion</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Format of LoadGage Input File</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>Pavement Structure for LoadGage Design Check Example.</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>Summary of Pavement Design Alternatives Evaluated in LoadGage Example</td>
<td>35</td>
</tr>
</tbody>
</table>
CHAPTER I
INTRODUCTION

LoadGage is a computer program for checking flexible pavement designs that incorporates improvements to the modified triaxial design method currently implemented by the Texas Department of Transportation (TxDOT). These improvements are based on the findings from Project 0-4519, during which researchers verified the triaxial design method and characterized the variations of climatic and soil conditions between the different counties of the state. The research and development efforts conducted in that project are documented in two companion reports by Fernando, Oh, Estakhri, and Nazarian (2007) and by Fernando, Oh, Ryu, and Nazarian (2007). The interested reader is referred to these reports for details on the work conducted during the project to review and understand the original development of the load-thickness design curves, to verify these curves from laboratory and field test data, and to improve the existing design method based on the project findings. This document provides a user’s guide to the _LoadGage_ program. Among the enhancements implemented in _LoadGage_ are:

- a stress-based analysis procedure that provides users with greater versatility in modeling flexible pavement systems compared to the limited range of approximate layered elastic solutions represented in the existing modified triaxial thickness design curves;
- more realistic modeling of pavement wheel loads, in lieu of the current practice of using a correction factor of 1.3, which was found to be overly conservative from the verification efforts conducted in Project 0-4519;
- an extensive database of soil properties covering each of the 254 Texas counties for evaluating the effects of moisture changes on soil strength properties; and
- a moisture correction procedure (to account for differences between wet and dry regions of the state) that provides users the option of adjusting strength properties determined from laboratory triaxial tests (such as TxDOT Test Method Tex-117E) to the expected in-service moisture conditions.

The moisture correction procedure considers the contribution of soil suction to the shear strength of unsaturated soils. As the soil dries, the soil suction component increases
with an accompanying increase in shear strength. The relationship between soil moisture content and soil suction is given by the soil-water characteristic curve. The moisture correction procedure in LoadGage uses this relationship to adjust failure envelope parameters determined from triaxial tests performed on samples prepared at a particular moisture content to corresponding values representative of the expected in-service moisture conditions. This adjustment is performed using equations derived from relationships determined by Glover and Fernando (1995) who conducted triaxial tests on a range of base and subgrade soils, and developed relationships for predicting failure envelope parameters as a function of soil suction and other properties.

To implement the moisture correction procedure in LoadGage, researchers compiled a database of soil suction properties based on an extensive review of available data. This review covered county soil survey reports, available climatic data from weather stations in Texas, published data on soil suction parameters for different soils, and reports documenting the development of the enhanced integrated climatic model (EICM). EICM is a useful program for predicting moisture content, pavement temperature, frost and thaw depth, frost heave, and the elastic modulus of each pavement layer given the climatic and drainage conditions for a given pavement design. The model was originally developed by Lytton et al. (1990) in a research project funded by the Federal Highway Administration. Subsequently, Larson and Dempsey (1997) modified the program to provide a Windows-based graphical user interface in a project sponsored by the Minnesota Department of Transportation. More recently, EICM was incorporated into a computer program for mechanistic-empirical pavement design developed in National Cooperative Highway Research Program (NCHRP) Project 1-37A (Applied Research Associates, 2004).

For developing LoadGage, researchers used the EICM program to predict the expected in-service moisture contents for the range of climatic conditions and soil types found across Texas. The EICM analyses were conducted on flexible pavements representative of low-volume Farm-to-Market (FM) roads, where the pavement design is typically governed by the modified triaxial design method. Researchers used the results from these analyses to compile a database of expected in-service moisture contents covering each county in the state.
TxDOT engineers can use LoadGage to check the thickness design from the Department's flexible pavement system (FPS-19) program to verify whether adequate cover is provided to protect the subgrade against overstressing under a wheel load equal to the average of the ten heaviest wheel loads (ATHWLD) expected on the pavement. In current practice, the ATHWLD is usually the load carried by the dual tires at each end of the drive or trailer axles. However, it could also represent a single wheel load, such as the load on each tire of the steering axle, or the tire load on drive or trailer axles equipped with wide-base radials (not commonly observed on trucks in Texas). For the design check, the user inputs into LoadGage the layer moduli, Poisson's ratios, and thicknesses from the FPS-19 design program. When the FPS design is predicted to be inadequate, LoadGage estimates the base thickness required such that the predicted subgrade stresses for the specified ATHWLD are within the failure envelope of the material based on the Mohr-Coulomb strength criterion. Researchers note that this criterion also forms the basis for the existing Texas modified triaxial design procedure.

Conducting a triaxial design check using LoadGage will require the following information from the user:

- modulus, Poisson's ratio, and thickness of each pavement layer;
- average of the ten heaviest wheel loads; and
- data from Texas triaxial tests (Texas triaxial class of the subgrade or parameters of the subgrade failure envelope, and the moisture content at which laboratory triaxial tests were conducted).

The above data may be obtained from the flexible pavement design and represent the minimum that are required to run LoadGage. Note that running the program and getting good results are two different things. To do an adequate analysis, the engineer should know the properties of the materials to be placed and model the pavement realistically. Good engineering practice will require an effort to search published information, review past experience, and/or run tests to characterize the materials for a given problem.
CHAPTER II
USING THE LOADGAGE TRIAXIAL DESIGN CHECK PROGRAM

This chapter provides a user’s guide to LoadGage version 1.0, a computer program for evaluating the structural adequacy of pavement designs based on the Mohr-Coulomb yield criterion. The program requires a microcomputer operating under the Windows 2000, NT, or XP environment. To install LoadGage, run the setup file LoadGageSetup.exe provided with the program disk and follow the on-screen instructions. After installation, double click the LoadGage program icon on your desktop to run the program. LoadGage brings up the opening screen shown in Figure 1, followed by the main menu in Figure 2. From this menu, the user can specify the parameters characterizing the pavement and load for a given analysis, or retrieve an existing input file. Before going further, here are two simple guidelines for navigating through the different menus of LoadGage:

- To select a particular option on the screen, move the pointer to the option, and then click with the left mouse button.
- To enter data for a particular variable, move the cursor to the field or cell, click with the left mouse button on the input field, and type in the required data.

The options in the main menu permit the user to open an existing input file; specify material parameters (i.e., resilient and strength properties); save input data; run a triaxial design check; and view/print program output. The succeeding sections describe these functions.

MAIN MENU

Figure 2 illustrates the main menu of the LoadGage program. On this menu, the user defines the pavement for a given analysis by first specifying the number of layers above the rigid bottom. This variable is restricted to three or four in the computer program. By default, LoadGage initially assumes three pavement layers, as indicated in Figure 2. To specify four layers, simply click on 4 Layers at the top left portion of the menu to select it. The program will add another row in the menu for specifying the properties of the fourth pavement layer. While the minimum number of pavement layers is three, the user may
evaluate a pavement consisting of a stabilized layer over subgrade by specifying three layers and entering the same properties for the first and second layers.

For each layer, enter its modulus, Poisson’s ratio, and thickness. LoadGage uses English units, so enter the modulus in psi and the thickness in inches. The modulus, Poisson’s ratio, and thickness for each layer should correspond to the pavement design determined from FPS-19, on which the triaxial design check is made. In addition, LoadGage requires the cohesion (in psi) and friction angle (in degrees) that define the Mohr-Coulomb failure envelope of the subgrade. The program uses these properties to determine whether the existing depth of subgrade cover is adequate or not. The user determines these properties by running triaxial tests on molded samples of the subgrade material found on a given project. Alternatively, the engineer can specify the Texas triaxial class (TTC) of the material, which is then used to estimate the failure envelope parameters. To specify the TTC, check the box for this option in the main menu and enter its value in the space provided. LoadGage automatically estimates the cohesion and friction angle for the specified TTC. If the failure envelope parameters and the Texas triaxial class are not known,
LoadGage has a database of soil properties to evaluate subgrade strength properties for a given problem. This database is accessed by clicking the Retrieve Soils Data button of the main menu, which is described in the Defining the Subgrade Failure Envelope section.

LoadGage uses layered elastic theory to predict the stresses induced under load for the specified pavement. These stresses are then checked against the Mohr-Coulomb failure envelope to evaluate the potential for pavement damage resulting from one application of a heavy wheel load characterized by the average of the ten heaviest wheel loads used in pavement design. By default, the program runs a linear analysis to predict the stresses. However, for the advanced user, a nonlinear option is included to permit modeling of the stress-dependency. The nonlinear analysis option is described in “Nonlinear Analysis Option” later in this user’s guide. To select an analysis option, simply click on Linear or Nonlinear in the main menu (Figure 2).

LoadGage also permits modeling of single and tandem axle loads. Researchers incorporated this capability as a modification to the present practice of applying a correction
factor of 1.3 to the ATHWLD when the percent tandem axles is greater than 50. This correction factor was found to result in very conservative estimates of allowable wheel loads from the verification tests conducted during Project 0-4519. To analyze a tandem axle, click on **Tandem** in the main menu.

The user may load an existing data file by clicking on **Load data** in the main menu. This action brings up the dialog box shown in Figure 3 where one selects the particular file to load into the program. Simply highlight the file name in the dialog box. Then click on **Open** to read the data into **LoadGage**. The main menu displays the data as shown in Figure 4. To help users learn the program, two sample input files named **Example Data1.DAT** and **Example Data2.DAT** are copied into the **LoadGage** program directory during installation. Try loading **Example Data1.DAT** as an exercise on using the **Load data** function. The data in this file are displayed in Figure 4 where a three-layer pavement is characterized with the moduli, Poisson's ratios, and thicknesses shown. The subgrade failure envelope in this particular example is defined by a cohesion of 2 psi and a friction angle of 40.1°. Also note that a single axle load is specified. The load per wheel of the single axle is determined from the ATHWLD that is given as 12,000 lb in Figure 4. To show the load characteristics, click on **Show Load** in the main menu. The program then displays the wheel load, tire pressure, and tire spacing on the right side of the main menu as illustrated in Figure 5. Since the ATHWLD is transmitted to the pavement on dual tires, the wheel load is taken as half of the ATHWLD. Thus in Figure 5, the wheel load is displayed as 6000 lb ($\frac{1}{2} \times 12,000$) without the 1.3 correction factor. This wheel load is assumed for all tires of the axle or group of axles when tandems are selected. To close the window displaying the load characteristics, click on **Hide Load** in the main menu shown in Figure 5.

In addition to the tire load, the user also specifies the tire pressure and dual tire spacing to define the load geometry for single axle configurations. By default, **LoadGage** assumes 100 psi for the tire pressure and 14 inches for the dual tire spacing. For tandem axle assemblies, the axle spacing is also specified as illustrated in Figure 6. For this variable, a default value of 54 inches is used. The tire pressure specified in **LoadGage** represents the tire contact pressure. In current practice, this design variable is usually assumed equal to the tire inflation pressure. For most pavement designs where the program is expected to be used,
Figure 3. Dialog Box to Load an Input Data File into LoadGage.

Figure 4. Main Menu Displaying Data Read from an Existing Input File.
Figure 5. Display of Load Characteristics for a Single Axle Configuration.

Figure 6. Display of Load Characteristics for a Tandem Axle Configuration.
the authors are of the opinion that the magnitude of the wheel load will have a much greater
influence on the predicted subgrade stresses than the tire contact pressure distribution. This
opinion is based on the findings from TxDOT Project 0-4361 (Fernando, Musani, Park, and
Liu, 2006) as well as other studies that found tire contact pressures to significantly influence
the predicted pavement response primarily near the pavement surface. Thus, for a given
wheel load, tire pressure is not expected to be a critical factor in the LoadGage analysis, and
the user may simply input the tire inflation pressure.

After specifying the data for a given evaluation, the user may choose to save the
program inputs by clicking on Save data in the main menu. This action brings up the dialog
box shown in Figure 7, where the user can specify the name of the file to write the data to.
LoadGage writes the input data in the format shown in Table 1. The user may then run the
program using the specified data by clicking on Run LoadGage in the main menu. This
function is described in the next section.

RUNNING AN EVALUATION AND VIEWING OUTPUT

The run time screen shown in Figure 8 is displayed during the evaluation of a given
pavement design. If this evaluation shows that no overstressing is predicted in the subgrade,
LoadGage displays the message box shown in Figure 9, telling the user that the given
pavement passes the Texas triaxial design check. If the pavement design is inadequate, the
program will automatically search for the minimum base thickness required to prevent
overstressing at the top of the subgrade for the given load. During this time, the run time
screen will display each trial base thickness and the corresponding value of the Mohr-
Coulomb yield function (Figure 10). An adequate base thickness is indicated when the
value of the yield function becomes negative. At the end of the analysis, LoadGage will
display a message box that shows the current design base thickness and the minimum value
required to prevent overstressing the subgrade (corresponding to a predicted yield function
just below zero). Figure 11 illustrates the message box that is displayed when the design
base thickness is insufficient to prevent overstressing the subgrade.

The information that is displayed in the message box at the end of an analysis is
typically the only output necessary for most design applications. However, the program has
an output function that provides additional details of the analysis. Clicking on Output in the
main menu of the LoadGage program brings up the screen illustrated in Figure 12.
Figure 7. Saving the Input Data in *LoadGage*.
Table 1. Format of *LoadGage* Input File\(^1\).

<table>
<thead>
<tr>
<th>Record Number</th>
<th>Record Entries</th>
</tr>
</thead>
</table>
| 1 | Number of pavement layers, \(N\) (3 or 4)
Analysis option (1 = linear/2 = nonlinear) |
| 2 to \(N\) | Modulus (psi)
Poisson’s ratio
Thickness (in)
Parameters \(K_1, K_2,\) and \(K_3\) of Eq. (8). For linear analysis, \(K_2 = K_3 = 0,\) and \(K_1 = \text{Modulus}/14.5\) where 14.5 is the atmospheric pressure in psi. |
| \(N+1\) | Subgrade modulus (psi)
Subgrade Poisson’s ratio
Subgrade thickness (in)
Parameters \(K_1, K_2,\) and \(K_3\) of Eq. (8). For linear analysis, \(K_2 = K_3 = 0,\) and \(K_1 = \text{Subgrade modulus}/14.5\) where 14.5 is the atmospheric pressure in psi.
Cohesion (psi) and friction angle (°) of subgrade failure envelope |
| \(N+2\) | Axle configuration (1 = single/2 = tandem) |
| \(N+3\) | Wheel load (\(\frac{1}{2} \times \text{ATHWLD}, \text{lb}\))
Tire pressure (psi)
Dual tire spacing (in)
For tandem axle configuration, axle spacing (in) |

\(^1\)Entries in each record are read in free format (i.e., commas or spaces separate the data entries in a given record).
Figure 8. Run Time Screen Displayed during an Analysis.

Figure 9. Message Displayed when Pavement Design Passes Triaxial Design Check.
Figure 10. Run Time Screen during Search for Minimum Required Base Thickness.

Figure 11. Message Displayed when Pavement Design Fails Triaxial Design Check.
shown, the Mohr-Coulomb yield criterion is checked at a number of positions along the top of the subgrade corresponding to locations below the outside tire edge, middle of the tire, inside tire edge, and midway between tires. For tandem axle assemblies, the stresses at the same positions are evaluated midway between the axles, and the corresponding values of the Mohr-Coulomb yield function are displayed in another screen similar to Figure 12. The interested reader is referred to the Appendix for an explanation of the method used to calculate the Mohr-Coulomb yield function values. These values are used in *LoadGage* to determine whether the given pavement passes the triaxial design check or not. In the example given in Figure 12, the computed yield function values are -0.82, -0.71, -0.67, and -0.67. When the computed yield function values are all negative, such as illustrated in this figure, pavement damage from one application of the ATHWLD is deemed unlikely. However, when one or more points are predicted to be at yield, pavement damage may occur, so a thicker base is indicated.
The location of the critical point with the greatest value of the yield function is shown at the bottom of the output screen along with the principal stresses and yield function value computed at that point. Users may print the chart illustrated in Figure 12 by clicking on Print in the output screen. There is a field available to type in comments related to the analysis. Users, for example, may enter identifiers for the project just analyzed. Comments are also printed with the output.

Figure 13 shows an example printout of the results from an analysis. The printout shows the information displayed in the output screen (Figure 12), gives the date and time of the analysis, and specifies whether the pavement passes the modified triaxial design check. If the pavement fails the design check, the printout will also show the minimum required base thickness to prevent overstressing the subgrade for the given ATHWLD. After viewing the results, click on Back to Main in the output screen to return to the main menu.

DEFINING THE SUBGRADE FAILURE ENVELOPE

If the cohesion and friction angle for the subgrade are known, the user simply enters these parameters into the corresponding cells of the main menu shown in Figure 4 to specify the subgrade failure envelope. However, there may be instances when the failure envelope parameters and the Texas triaxial class of the subgrade are not readily available. For these instances, the engineer can use the soils database built into LoadGage to estimate failure envelope parameters for the given design problem. Included in the database are default triaxial class values for the different Texas counties, which researchers compiled from Texas triaxial data provided by TxDOT. Also included in the database are soil properties used in the program to adjust failure envelope parameters for moisture effects. To access the database, click on Retrieve Soils Data of the LoadGage main menu (Figure 4). The program displays the screen shown in Figure 14.

Soils data are organized by county. By clicking on the down arrow to the right of the county field shown in Figure 14, the user can view an alphabetical list of Texas counties, as illustrated in Figure 15. Scroll down this list to select the county for the given design problem, and click on the county name to view the available soils data for that county. For example, if the pavement design under consideration is in Anderson County (located in the Tyler District), click on Anderson in the list of counties shown in Figure 15.
Structural Adequacy Analysis Results

Comment: Output from LoadGage Analysis for Design Problem 1

Date: 10/25/2005 Time: 9:31:41 PM

Pavement design passes Modified Texas Triaxial design check.

![Diagram of pavement layers including AC, Base, Underneath an axle, and Subgrade with measurements and data points.]

Figure 13. Example Printout of Analysis Results from *LoadGage*.
Figure 14. Screen for Viewing *LoadGage* Soils Database.
Given the selected county, *LoadGage* displays a list of the predominant soils found in that county. Figure 14, for example, identifies the predominant soils in Anderson County as comprising silty sands (SM), clayey sands (SC), and lean clays (CL), where the abbreviations follow the soil designations used in the Unified Soil Classification System. By clicking on the down arrow to the right of the soil type field of the menu shown in Figure 14, the user can view a list of the soils found for the given county (Figure 16). To specify the soil type for a particular analysis, click on its label. *LoadGage* then displays the default properties for the selected soil that are stored in its database (Figure 17). For the case where no moisture
No Moisture Correction

<table>
<thead>
<tr>
<th>County</th>
<th>ANDERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Type</td>
<td>CL</td>
</tr>
<tr>
<td>Texas</td>
<td>CL, SC, SM, CH</td>
</tr>
</tbody>
</table>

Predominant soil type

- SM
- SC
- CL

Soil Water Characteristic Curve

![Soil Water Characteristic Curve Diagram]

Figure 16. Viewing the List of Soil Types for a Given County.
correction is specified (the default analysis option in LoadGage), the program displays the parameters defining the failure envelope for the selected soil and the corresponding Texas triaxial class. For example, Figure 17 shows 4.70 as the default Texas triaxial class for the lean clay in Anderson County. Likewise, the corresponding failure envelope parameters are displayed, specifically, the cohesion c (2.76 psi) and the friction angle ϕ (23.56 degrees). As appropriate, the user can override the default values that define the failure envelope by entering another TTC, or another set of c and ϕ values. If the user enters another TTC, the corresponding failure envelope parameters should be recalculated by clicking on Get c & ϕ.
from TTC in the screen shown in Figure 17. Failure envelope parameters are estimated from the specified TTC based on the linearized forms of the Texas triaxial class failure envelopes given in Figure 18. Linearized boundaries between soil classes were determined by fitting a line to each of the class boundaries in the standard Test Method Tex-117E classification chart.

LoadGage also has an option to adjust the given failure envelope parameters for moisture effects. Current TxDOT practice for characterizing the soil failure envelope is based on triaxial testing of capillary moisture conditioned specimens following Test Method Tex-117E. While the properties determined from this test might be applicable in wet areas of the state (such as east Texas), the test conditions are not necessarily representative of soil moisture contents in the drier areas of Texas, or in areas where the soils are not as moisture susceptible. For these cases, LoadGage provides the option to adjust soil strength properties determined from Test Method Tex-117E to values considered to be more representative of the in-service moisture conditions.

Note that by default, LoadGage does not apply moisture correction in the analysis. To use this option, uncheck the box for No Moisture Correction in the analysis screen illustrated in Figure 17. The program then displays additional parameters that are used to adjust the subgrade failure envelope for moisture effects. As illustrated in Figure 19, these parameters are the expected field moisture content and the corresponding parameters of the suction curve for the specified soil. In the example given in Figure 19, the expected field moisture content, \(w_{\text{expected}} \), for the specified soil (CL) is 15.20 percent. By default, the field moisture content, \(w_{\text{field}} \), for the given design problem is set equal to the expected field moisture content found in the database. The user may type in a different value, as appropriate. The initial moisture content, \(w_{\text{initial}} \), is the moisture content that corresponds to the specified soil failure envelope parameters. This variable may be the moisture content of capillary moisture conditioned specimens tested using Test Method Tex-117E, the optimum moisture content for soil specimens tested using other triaxial test methods, or the moisture content immediately after construction. In the example illustrated in Figure 19, the initial moisture content is 17 percent. The moisture contents specified in LoadGage are gravimetric moisture contents, which are the values typically reported from laboratory triaxial tests. To convert these values to the corresponding volumetric quantities used for
Figure 18. Linearized Texas Triaxial Class Failure Envelopes.
moisture correction, the user needs to specify the maximum dry density, \(\gamma_{d_{\text{max}}} \), in lb per ft\(^3\) (pcf) for the given soil.

As indicated previously, the moisture correction is based on the difference in soil suction values between the initial and field moisture contents specified by the user. In LoadGage, the soil suction at a given moisture content is determined from the soil water characteristic curve of the material. This curve is characterized by Gardner’s equation, given by the model (Gardner, 1958):

\[
\begin{align*}
\sigma & = \alpha \\
\gamma & = \gamma_{d_{\text{max}}} + \alpha \gamma_{w}
\end{align*}
\]
\[\theta_u = \frac{n}{A_w |h|^a + 1} \] \hspace{1cm} (1)

where,

\[\begin{align*}
\theta_u &= \text{unsaturated volumetric moisture content}, \\
n &= \text{porosity}, \\
A_w, a &= \text{model coefficients, and} \\
h &= \text{soil suction in cm of water head.}
\end{align*} \]

The user needs to specify the parameters of Gardner's equation in the corresponding input fields of the screen illustrated in Figure 19. For each soil in the database, the program provides representative values of these coefficients. The user may accept the default coefficients that are displayed for the specified soil, or enter other values, as appropriate.

The soil water characteristic curve for the prescribed Gardner's coefficients may be viewed by clicking on the green right arrow of the menu shown in Figure 19. This action brings up the soil suction curve illustrated in Figure 20. Plotted on the chart are the soil suction values (in pF) corresponding to the specified initial and field moisture contents (after converting from gravimetric to volumetric units). Note that pF is equivalent to \(\log_{10} |h| \). To close the chart window, click on the left green arrow of the menu illustrated in Figure 20.

For the prescribed inputs, click on \textit{Get Adjusted c & \phi} to perform the moisture correction. The program then corrects the soil failure envelope based on the change in soil suction from the initial to the field moisture content. From the soil suction curve illustrated in Figure 20, it is observed that the soil suction increases as the moisture content decreases. This positive change in soil suction generally results in a larger area under the failure envelope, and consequently higher allowable wheel load estimates. To do an analysis with no moisture correction, check the box with this label in the screen shown in Figure 19. For this case, \textit{LoadGage} assumes that the field moisture content is the same as the moisture content at which the specified failure envelope parameters for the soil were determined. Thus, the failure envelope is not adjusted.
No Moisture Correction

County: ANDERSON
Soil Type: CL

Get C & \(\phi \) from TTC
Get Adjusted \(C \) & \(\phi \)

Soil Water Characteristic Curve

<table>
<thead>
<tr>
<th>(\gamma_{k}) (psf)</th>
<th>96.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\omega) (initial)</td>
<td>17.5</td>
</tr>
<tr>
<td>(\omega) (final)</td>
<td>15.20</td>
</tr>
<tr>
<td>(\omega) (expected)</td>
<td>15.20</td>
</tr>
</tbody>
</table>

Texas Triaxial Class (TTC): 4.70

Failure Envelope Parameters:

<table>
<thead>
<tr>
<th>(C)</th>
<th>2.76</th>
<th>Adjusted (C)</th>
<th>6.7726</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi)</td>
<td>23.56</td>
<td>Adjusted (\phi)</td>
<td>20.7988</td>
</tr>
</tbody>
</table>

Gardner's Coefficients:

\(A_{\phi} \)

\(a \)

\(P_{o} \)

0.02360

0.3590

0.3410

Load Data and Return

Plot:

Volumetric Water Content

Weibull Distribution Parameters:

Load C & \(\phi \) from TTC

Load Adjusted \(C \) & \(\phi \)
Once the subgrade failure envelope is defined, click on **Load Data and Return** to accept the current parameter values and return to the main menu illustrated in Figure 4. Alternatively, click on **Cancel** to return to the main menu without changing the failure envelope parameters previously entered into the program.

NONLINEAR ANALYSIS OPTION

As mentioned earlier, *LoadGage* provides the option of modeling the nonlinear behavior observed in most pavement materials. This capability becomes particularly important for thin pavements, which comprise a big portion of the highway network in Texas. For these pavements, a nonlinear analysis is expected to provide a more realistic prediction of the stresses induced under loading (Jooste and Fernando, 1995). *LoadGage* uses the following equation by Uzan (1985) to model the stress-dependency:

\[
E = K_1 \frac{pa}{pa} \left(\frac{I_1}{pa} \right)^{K_2} \left(\frac{\tau_{oct}}{pa} \right)^{K_3}
\]

where,

- \(E \) = layer modulus,
- \(I_1 \) = first stress invariant determined,
- \(\tau_{oct} \) = octahedral shear stress,
- \(pa \) = atmospheric pressure (14.5 psi), and
- \(K_1, K_2, K_3 \) = material constants determined from resilient modulus testing.

The material constants of Eq. (2) may be characterized following AASHTO T-307 for untreated base, subbase, and subgrade materials, and ASTM D 3497 for asphalt-stabilized materials. \(K_2 \) is typically positive, indicating increased stiffness at higher confinement, while \(K_3 \) is typically negative, indicating a stiffness reduction with increased deviatoric stress. To use the nonlinear analysis option in *LoadGage*, these constants must be characterized. No approximate methods have been incorporated in this version of the analysis program, although Glover and Fernando (1995) present relationships for estimating these resilient properties based on Atterberg limits, gradation, and soil suction measurements made on unstabilized materials.
To use the nonlinear option for a particular design, click on *Nonlinear* in the main menu given in Figure 4. Cells for entering the K_1, K_2, and K_3 coefficients are then displayed in the menu as illustrated in Figure 21. By default, the K_2 and K_3 values are initially set to zero corresponding to linear behavior, i.e., the modulus is independent of stress as inferred from Eq. (2). In this case, K_1 is simply calculated by dividing the specified modulus of the material by the atmospheric pressure of 14.5 psi. The resulting value is displayed in the main menu as shown in Figure 21.

Enter the coefficients for the nonlinear pavement layer(s) in the main menu. To model a layer as linear, simply leave the initial values as they are, i.e., $K_2 = K_3 = 0$, and K_1 equal to the layer modulus divided by 14.5 psi. Continue entering other input data as described in this user’s guide or run an analysis as appropriate.

EXAMPLE PROGRAM APPLICATION

To illustrate the application of *LoadGage*, assume that the pavement design given in Table 2 was determined using TxDOT’s FPS-19 design program. Further, suppose that the ATHWLD and TTC are 12,000 lb and 4.7, respectively, for this problem. To perform a modified triaxial design check using *LoadGage*, input the pavement design parameters into the program as illustrated in Figure 22. For this problem, a three-layer system is specified. The steps to specify input data for this pavement design check are summarized as follows:

- Enter the modulus, Poisson’s ratio, and thickness of each layer into the appropriate fields of the main menu as shown in Figure 22, and select the default *Linear* analysis option.
- Specify 12,000 for the ATHWLD and *Single* for the axle configuration.
- Check the option box for input of the Texas triaxial class and type in the design value of 4.7 for the subgrade material. Note that *LoadGage* automatically estimates the cohesion and friction angle corresponding to this TTC.

To perform the analysis with the specified input data, click on *Run LoadGage* of the main menu illustrated in Figure 22. When the analysis is done, *LoadGage* displays the result as shown in Figure 23. For this particular example, the analysis indicates that the pavement design given in Table 2 is inadequate, and that a thicker base of 13.5 inches is needed to protect the subgrade. The engineer may then decide to specify this base thickness in the design plans or to explore other alternatives of keeping the stress level in the subgrade to
Figure 21. Specifying K_1, K_2, and K_3 Coefficients for Nonlinear Analysis in LoadGage.

Table 2. Pavement Structure for LoadGage Design Check Example.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Modulus (psi)</th>
<th>Poisson’s ratio</th>
<th>Thickness (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt surface</td>
<td>350,000</td>
<td>0.35</td>
<td>2</td>
</tr>
<tr>
<td>Flexible base</td>
<td>40,000</td>
<td>0.35</td>
<td>12</td>
</tr>
<tr>
<td>Subgrade</td>
<td>10,000</td>
<td>0.40</td>
<td>200</td>
</tr>
</tbody>
</table>
Figure 22. Input Data for Example Design Problem.
within its failure envelope. For this purpose, the engineer may use LoadGage to investigate other design alternatives, such as specifying a thicker hot-mix asphalt concrete layer, using a different base material with a higher modulus, or adding a subbase layer to reduce the stresses in the subgrade. For example, if the engineer runs the program with a 3-inch asphalt concrete layer instead of the 2-inch thickness specified previously, he/she would find that this change provides an acceptable pavement design (see Figure 24) where the subgrade stresses are predicted to be within the material's failure envelope. Alternatively, a pavement design with a stiffer base material may be analyzed. For example, if a different base material with a modulus of 55,000 psi is considered, an acceptable pavement design is also obtained (see Figure 25).

Table 3 summarizes the pavement design alternatives that are acceptable in terms of triaxial design criteria for this previous example. The important point to remember is that the program can assist the engineer in evaluating alternatives in case the original design from the
Figure 24. LoadGage Result for Pavement Design with 3-inch Asphalt Surface Layer.
<table>
<thead>
<tr>
<th>Modulus of layer (psi)</th>
<th>Poisson's ratio of layer</th>
<th>Layer thickness (inches)</th>
<th>Cohesion of layer (psi)</th>
<th>Friction angle of layer (degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>350000</td>
<td>0.35</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>550000</td>
<td>0.35</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10000</td>
<td>0.40</td>
<td>200</td>
<td>2.76</td>
<td>23.56</td>
</tr>
</tbody>
</table>

Figure 25. *LoadGage* Result for Pavement Design with Stiffer Base Material.
Table 3. Summary of Pavement Design Alternatives Evaluated in LoadGage Example.

<table>
<thead>
<tr>
<th>Pavement Design</th>
<th>Layer</th>
<th>Modulus (psi)</th>
<th>Poisson's ratio</th>
<th>Thickness (in)</th>
<th>Result from Triaxial Design Check</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>Asphalt surface</td>
<td>350,000</td>
<td>0.35</td>
<td>2</td>
<td>Fails</td>
</tr>
<tr>
<td></td>
<td>Flexible base</td>
<td>40,000</td>
<td>0.35</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subgrade</td>
<td>10,000</td>
<td>0.40</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Alternative 1: thicker base layer</td>
<td>Asphalt surface</td>
<td>350,000</td>
<td>0.35</td>
<td>2</td>
<td>Passes</td>
</tr>
<tr>
<td></td>
<td>Flexible base</td>
<td>40,000</td>
<td>0.35</td>
<td>13.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subgrade</td>
<td>10,000</td>
<td>0.40</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Alternative 2: thicker asphalt layer</td>
<td>Asphalt surface</td>
<td>350,000</td>
<td>0.35</td>
<td>3</td>
<td>Passes</td>
</tr>
<tr>
<td></td>
<td>Flexible base</td>
<td>40,000</td>
<td>0.35</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subgrade</td>
<td>10,000</td>
<td>0.40</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Alternative 3: stiffer base material</td>
<td>Asphalt surface</td>
<td>350,000</td>
<td>0.35</td>
<td>2</td>
<td>Passes</td>
</tr>
<tr>
<td></td>
<td>Flexible base</td>
<td>55,000</td>
<td>0.35</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subgrade</td>
<td>10,000</td>
<td>0.40</td>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>

* Numbers in bold and underlined show change between the original and alternative designs

FPS program fails the triaxial design check. The engineer would then have to decide which alternative is best for the particular problem considering cost, availability of materials, existing highway geometry, material specifications, and other factors.
REFERENCES

APPENDIX

CALCULATION OF MOHR-COULOMB YIELD FUNCTION

The *LoadGage* program calculates the Mohr-Coulomb yield function value at a number of positions along the top of the subgrade corresponding to locations below the outside tire edge, middle of the tire, inside tire edge, and midway between tires. For tandem axle assemblies, the stresses at the same positions are evaluated midway between the axles where the corresponding values of the Mohr-Coulomb yield function are also determined. At the evaluation positions, the stresses under load are predicted and used with the following equation from Chen and Baladi (1985) to calculate the values of the yield function:

\[
 f = \frac{I_1}{3} \sin(\phi) + \sqrt{J_2} \sin\left(\theta + \frac{\pi}{3}\right) + \frac{\sqrt{J_2}}{\sqrt{3}} \cos\left(\theta + \frac{\pi}{3}\right) \sin(\phi) - c \cos(\phi) \quad (A1)
\]

where,
- \(I_1\) = first stress invariant,
- \(J_2\) = second deviatoric stress invariant,
- \(c\) = cohesion,
- \(\phi\) = friction angle, and
- \(\theta\) = Lode angle.

Physically, the first stress invariant is associated with volume change in a material under loading, while the second deviatoric stress invariant is associated with distortion of the material. The Lode angle is calculated from the equation:

\[
 \theta = \frac{1}{3} \cos^{-1}\left(\frac{3\sqrt{3}}{2} \frac{J_3}{J_2^{3/2}}\right) \quad (A2)
\]

where \(J_3\) is the third deviatoric stress invariant. From mechanics, \(I_1, J_2,\) and \(J_3\) are computed from the principal stresses, \(\sigma_1, \sigma_2,\) and \(\sigma_3\) from the following equations:
The onset of yield or inelastic deformation is predicted when the value of the yield function is zero, i.e., \(f = 0 \) in Eq. (A1). When this condition is plotted for the Mohr-Coulomb yield function, the surface illustrated in Figure A1 is obtained. Stress states falling inside the yield surface correspond to elastic behavior, i.e., below yield. Mathematically, this is equivalent to a computed yield function value less than zero, i.e., \(f < 0 \), for the given pavement and load. It is observed from Figure A1 that the cross-sectional area of the Mohr-Coulomb yield surface increases as the hydrostatic stress component, represented by the mean stress, \(I_1/3 \), in Eq. (A1) increases. Physically, this means that a material subjected to higher confinement will sustain a higher level of stress before reaching the yield condition.

\[
I_1 = \sigma_1 + \sigma_2 + \sigma_3
\]

(A3)

\[
J_2 = \frac{1}{6} \left[\left(\sigma_1 - \sigma_2 \right)^2 + \left(\sigma_2 - \sigma_3 \right)^2 + \left(\sigma_3 - \sigma_1 \right)^2 \right]
\]

(A4)

\[
J_3 = \left(\sigma_1 - \frac{I_1}{3} \right) \left(\sigma_2 - \frac{I_1}{3} \right) \left(\sigma_3 - \frac{I_1}{3} \right)
\]

(A5)
Figure A1. Graphical Illustration of Mohr-Coulomb Yield Criterion.
DESIGN DETAIL STANDARD SHEETS FOR CONCRETE PAVEMENT TRANSITION AREA

by

Youn su Jung
Graduate Assistant Research
Texas Transportation Institute

and

Dan G. Zollinger
Associate Research Engineer
Texas Transportation Institute

Product 0-5320-P2
Project 0-5320
Project Title: Best Design and Construction Practices for Concrete Pavement Transition Area

Performed in cooperation with the
Texas Department of Transportation
and the
Federal Highway Administration

August 2006
Resubmitted: November 2006
Published: March 2007

TEXAS TRANSPORTATION INSTITUTE
The Texas A&M University System
College Station, Texas 77843-3135
DISCLAIMER

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official view or policies of the Federal Highway Administration (FHWA) or the Texas Department of Transportation (TxDOT). This report does not constitute a standard, specification, or regulation. Its contents are not intended for construction, bidding, or permit purposes. The use and names of specific products or manufacturers listed herein does not imply endorsement of those products or manufacturers. The engineer in charge of the project was Dan G. Zollinger, Texas P.E. #67129.
ACKNOWLEDGMENTS

This project was conducted in cooperation with TxDOT and FHWA. The authors wish to express their appreciation to the Federal Highway Administration and the Texas Department of Transportation personnel for their support throughout this project, as well as the project coordinator, Charles Gaskin, P.E.; project director, Hua Chen, P.E.; and members of the project monitoring committee: Sage Diller; Darlene Goehl, P.E.; John Holt, P.E.; Larry Buttler, P.E.; and Hal Stanford, P.E.
<table>
<thead>
<tr>
<th></th>
<th>TABLE OF CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CRC Pavement to CRC Pavement (Thickness Transition)</td>
</tr>
<tr>
<td>2</td>
<td>CRC Pavement to CRC Pavement (Header Joint - Option 1)</td>
</tr>
<tr>
<td>3</td>
<td>CRC Pavement to CRC Pavement (Header Joint - Option 2)</td>
</tr>
<tr>
<td>4</td>
<td>CRC Pavement to Jointed Concrete Pavement (Option 1)</td>
</tr>
<tr>
<td>5</td>
<td>CRC Pavement to Jointed Concrete Pavement (Option 2)</td>
</tr>
<tr>
<td>6</td>
<td>CRC Pavement to Jointed Concrete Pavement (Option 3)</td>
</tr>
<tr>
<td>7</td>
<td>CRC Pavement to Flexible Pavement (Option 1 - Sleeper Slab)</td>
</tr>
<tr>
<td>8</td>
<td>CRC Pavement to Flexible Pavement (Option 1 - Wide Flange)</td>
</tr>
<tr>
<td>9</td>
<td>CRC Pavement to Flexible Pavement (Option 2 - Sleeper Slab)</td>
</tr>
<tr>
<td>10</td>
<td>CRC Pavement to Flexible Pavement (Option 2 - Wide Flange)</td>
</tr>
<tr>
<td>11</td>
<td>JC Pavement to Flexible Pavement (Option 1)</td>
</tr>
<tr>
<td>12</td>
<td>JC Pavement to Flexible Pavement (Option 2)</td>
</tr>
<tr>
<td>13</td>
<td>JC Pavement to JC Pavement (Thickness Transition)</td>
</tr>
<tr>
<td>14</td>
<td>CRC Pavement to Bridge Approach Slab (Option 1)</td>
</tr>
<tr>
<td>15</td>
<td>CRC Pavement to Bridge Approach Slab (Option 2)</td>
</tr>
<tr>
<td>16</td>
<td>CRC Pavement to Bridge Approach Slab (Option 3)</td>
</tr>
<tr>
<td>17</td>
<td>JC Pavement to Bridge Approach Slab</td>
</tr>
<tr>
<td>18</td>
<td>Intersection (Option 1 - Joint Distance > 500 ft)</td>
</tr>
<tr>
<td>19</td>
<td>Intersection (Option 2 - Joint Distance < 500 ft)</td>
</tr>
<tr>
<td>20</td>
<td>Intersection (Option 3)</td>
</tr>
<tr>
<td>21</td>
<td>Overlay - Unbonded, Bonded, AC Overlays</td>
</tr>
<tr>
<td>22</td>
<td>CRC Bonded Overlay to Single-Layered Steel CRC Pavement</td>
</tr>
<tr>
<td>23</td>
<td>CRC Bonded Overlay to Double-Layered Steel CRC Pavement</td>
</tr>
<tr>
<td>24</td>
<td>Drop Inlet/Drainage Box</td>
</tr>
<tr>
<td>25</td>
<td>Ramp/Gore Area Transition</td>
</tr>
</tbody>
</table>
TRANSVERSE TYPE B (DB)

EXIST CRCP NEW CRCP

@ 25° LAP SPLICE

ALL STEEL IS IN SAME PLANE

9"MIN. DRILL & EPOXY

12.5" 12.5"

18" 18" WHEEL PATH ONLY

10' CENTER OF SPLICE

20' TRANSITION LENGTH

da1" STEEL FOR T1
da2" STEEL FOR T2

SUBBASE (REFER TO TYPICAL SECTION)

CLASIFICATION AND NOTATION OF JOINT

<table>
<thead>
<tr>
<th>TYPE</th>
<th>JOINT DESCRIPTION</th>
<th>MODIFICATION</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>CONSTRUCTION JOINT</td>
<td>WITH SMOOTH DOWEL</td>
<td>WET</td>
</tr>
<tr>
<td>B</td>
<td>ISOLATION JOINT</td>
<td>WITH DEFORMED BAR</td>
<td>DRY</td>
</tr>
<tr>
<td>T1</td>
<td></td>
<td>THICKENED EDGE</td>
<td>Tapered</td>
</tr>
<tr>
<td>T2</td>
<td></td>
<td>THICKENED PLANE</td>
<td>6</td>
</tr>
<tr>
<td>TO</td>
<td></td>
<td>Edge Flange</td>
<td>6</td>
</tr>
<tr>
<td>SLIM</td>
<td></td>
<td>SLEEVED SLAB</td>
<td>6</td>
</tr>
<tr>
<td>TAPERED</td>
<td></td>
<td>TAPERED</td>
<td>6</td>
</tr>
</tbody>
</table>

LONGITUDINAL STEEL SIZE AND SPACING

<table>
<thead>
<tr>
<th>THICKNESS</th>
<th>BAR SIZE</th>
<th>SPACING</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>#6 (.377)</td>
<td>6"</td>
</tr>
<tr>
<td>8</td>
<td>#8 (.377)</td>
<td>6"</td>
</tr>
<tr>
<td>10</td>
<td>#10 (.377)</td>
<td>6"</td>
</tr>
<tr>
<td>12</td>
<td>#12 (.377)</td>
<td>6"</td>
</tr>
<tr>
<td>14</td>
<td>#14 (.377)</td>
<td>6.5"</td>
</tr>
</tbody>
</table>

CRC PAVEMENT TO CRC PAVEMENT (THICKNESS TRANSITION)

© BASED ON #6 BAR FOR OTHER BAR SIZES LAB SPLICE = 336"

T1 = THICKNESS OF EXISTING CRC PAVEMENT
T2 = THICKNESS OF NEW CRC PAVEMENT

REV: 01 CUS: 01 LOC: 12 DC: 00 ED: 01
REVS: COUNTY SHEET REVISIONS
EXIST CRCP NEW CRCP

EDGE OF CRC PAVEMENT OR LONGITUDINAL JOINT

9"MIN.

27"MIN.

12" FROM THE EDGE

18" 18"

EDGE OF CRC PAVEMENT OR LONGITUDINAL JOINT

WHEEL PATH:
36" WIDTH

AS A MINIMUM, PLACE ADDITION DEFORMED BARS
(36" SAME DIA. & SPACING WITH LONGIT. STEEL)
IN EACH WHEEL PATH FOR LOAD TRANSFER

5'-6' (TYP)

25" LAP SPlice

REINFORCING STEEL

TRANVERSE TYPE B (DB)

CLASSIFICATION AND NOTION OF JOINT

<table>
<thead>
<tr>
<th>TYPE</th>
<th>JOINT DESCRIPTION</th>
<th>MODIFIER ABBREVIATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>CONSTRUCTION JOINT</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>ISOLATION JOINT</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>DEBUGGER JOINT</td>
<td>G</td>
</tr>
<tr>
<td>T</td>
<td>TIGHTEN</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>THICKENED EDGE</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>THICKENED</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>WIDE FLANGE</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>SLEEPER ELE</td>
<td>E</td>
</tr>
<tr>
<td>T</td>
<td>TAPERED</td>
<td></td>
</tr>
</tbody>
</table>

LONGITUDINAL STEEL SIZE AND SPACING

<table>
<thead>
<tr>
<th>THICKNESS Y, IN.</th>
<th>BAR SIZE</th>
<th>SPACING</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>(0.20")</td>
<td>6'</td>
</tr>
<tr>
<td>10</td>
<td>(0.25")</td>
<td>6'</td>
</tr>
<tr>
<td>11</td>
<td>(0.25")</td>
<td>6.5'</td>
</tr>
<tr>
<td>12</td>
<td>(0.25")</td>
<td>6.5'</td>
</tr>
<tr>
<td>13</td>
<td>(0.25")</td>
<td>6.5'</td>
</tr>
<tr>
<td>14</td>
<td>(0.25")</td>
<td>6.5'</td>
</tr>
<tr>
<td>15</td>
<td>(0.25")</td>
<td>6.5'</td>
</tr>
</tbody>
</table>

| (1) BASED ON #6 BAR FOR OTHER BAR SIZES LAP SPICE = 330" |

WHEEL PATH

TRAFFIC DIRECTION
12" FROM THE EDGE

EDGE OF CRC PAVEMENT OR LONGITUDINAL JOINT

18" 18"

WHEEL PATH:
36" WIDTH

AS A MINIMUM, PLACE ADDITION DEFORMED BARS
(36" SAME DIA. & SPACING WITH LONGIT. STEEL)
IN EACH WHEEL PATH FOR LOAD TRANSFER

TRANSVERSE TYPE B (DB)
ALL STEEL IS IN SAME PLANE

5'-6' (TYP)

25" LAP SPLICE

REINFORCING STEEL

CRC PAVEMENT TO CRC PAVEMENT
(HEADER JOINT - OPTION 2)
TRANSVERSE TYPE B (WF)

CRC PAVEMENT

JOINTED CONCRETE SLAB

REINFORCING STEEL

SUBBASE (REFER TO TYPICAL SECTION)

TRANSVERSE TYPE A (SD)

4"

3/4" DIA. X 8" STUDS Ø18" C.C.

2" POLY FOAM COMPRESSION SEAL

PROFILE VIEW

CRC PAVEMENT

JOINTED CONCRETE SLAB

TRANSVERSE TYPE A (SD)

JOINTED CONCRETE SLAB

JOINTED CONCRETE SLAB

DOWEL

TRANSVERSE TYPE B (WF)

DOWEL REQUIREMENTS

TML.

THICKNESS

DOWELS (SMOOTH BORED)

SIZE & LENGTH SPACING

1" X 16" 12"

11 1/4" X 1" 16" 12"

13 1/4" X 1/4" 16" 12"

14 1/4" X 1/4" 16" 12"

16 1/4" X 1/4" 16" 12"
TRANSVERSE TYPE A (DB) TRANSVERSE TYPE B (SD) TRANSVERSE TYPE A (SD)

CRCP 30% STEEL TRANSITION ZONE JOINTED CONCRETE SLAB

REINFORCING STEEL ① OPTIONAL DOWEL ① OPTIONAL DOWEL DOWEL STANDARD CAP DOWEL

SUBBASE (REFER TO TYPICAL SECTION)

PROFILE VIEW

SAW CUTS OR INDUCED DESIGN CRACK CRC PAVEMENT JC PAVEMENT

CRCP LONGITUDINAL STEEL

100% STEEL ZONE 60% STEEL TRANSITION ZONE 30% STEEL TRANSITION ZONE

120' PLAN VIEW

1) PLACE OPTIONAL DOWEL THROUGH 30% STEEL TRANSITION ZONE IF LOAD TRANSFER BY AGGREGATE INTERLOCKING ONLY IS INSUFFICIENT BASED ON CURRENT DESIGN SLAB LENGTH AND THICKNESS

CLASSIFICATION AND NOTATION OF JOINT

<table>
<thead>
<tr>
<th>TYPE</th>
<th>JOINT DESCRIPTION</th>
<th>MODIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>CONTRACTION JOINT</td>
<td>ABBR.</td>
</tr>
<tr>
<td>B</td>
<td>CONSTRUCTION JOINT</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>ISOLATION JOINT</td>
<td></td>
</tr>
</tbody>
</table>

LONGITUDINAL STEEL SIZE AND SPACING

<table>
<thead>
<tr>
<th>BAR SIZE</th>
<th>THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 8 (1/8")</td>
<td>5/8 " 16"</td>
</tr>
<tr>
<td>10 8 (1/8")</td>
<td>5/8 " 20"</td>
</tr>
<tr>
<td>11 8 (1/8")</td>
<td>5/8 " 24"</td>
</tr>
<tr>
<td>12 8 (1/8")</td>
<td>5/8 " 30"</td>
</tr>
<tr>
<td>13 8 (1/8")</td>
<td>5/8 " 36"</td>
</tr>
<tr>
<td>14 8 (1/8")</td>
<td>5/8 " 42"</td>
</tr>
<tr>
<td>16 8 (1/8")</td>
<td>5/8 " 60"</td>
</tr>
</tbody>
</table>

DOWEL REQUIREMENTS

<table>
<thead>
<tr>
<th>BAR SIZE</th>
<th>THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 1" X 18"</td>
<td>12"</td>
</tr>
<tr>
<td>10 1" X 18"</td>
<td>12"</td>
</tr>
<tr>
<td>12 1" X 18"</td>
<td>12"</td>
</tr>
<tr>
<td>14 1" X 18"</td>
<td>12"</td>
</tr>
<tr>
<td>16 1" X 18"</td>
<td>12"</td>
</tr>
</tbody>
</table>

CRC PAVEMENT TO JOINTED CONCRETE PAVEMENT (OPTION 3)
TRANSVERSE TYPE B (SS)

TRANSVERSE TYPE B (TAPERED)

CRC PAVEMENT

STEEL BEAM (AASHTO M183M)

REINFORCING STEEL

3/4" DIA. X 8" STUDS 18" C.C. T/4

FULL DEPTH HMA

BEVELED EDGE

REINFORCEMENT

BAR "A"

BAR "B"

10" SUBBASE (REFER TO TYPICAL SECTION)

MIN 1" AC BOND BREAKER

REFER TO TYPICAL SECTION

REFER TO TYPICAL SECTION

CRC PAVEMENT TO FLEXIBLE PAVEMENT (OPTION 1 - SLEEPER SLAB)

CLASSIFICATION AND NOTATION OF JOINT

<table>
<thead>
<tr>
<th>TYPE</th>
<th>JOINT DESCRIPTION</th>
<th>MODIFIER</th>
<th>ABBREVIATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>CONTRACTION JOINT</td>
<td>W</td>
<td>WIS</td>
</tr>
<tr>
<td>B</td>
<td>CONSTRUCTION JOINT</td>
<td>F</td>
<td>FLD</td>
</tr>
<tr>
<td>C</td>
<td>ISOLATION JOINT</td>
<td>T</td>
<td>TAP</td>
</tr>
</tbody>
</table>

STEEL BEAM DETAIL

BAR "B" - 4/6 BAR AT 12" C.C.

BAR "A" - 4/6 BAR AT 12" C.C.
TRANSVERSE TYPE B (WF) TRANSVERSE TYPE B (TAPERED)

10'

4'

CRC PAVEMENT

REINFORCING STEEL

2" POLY FOAM COMPRESSION SEAL

JOINTED SLAB

T/4

FULL DEPTH HMA

BEVELED EDGE

CRC PAVEMENT TO FLEXIBLE PAVEMENT (OPTION 1 - WIDE FLANGE)

STANDARD JOINTS

1. CONTRACT JOINT
2. CONSTRUCTION JOINT
3. ISOLATION JOINT

MODIFIER ABBREVIATION

A. SMOOTH DOWEL
B. DEFORMED DOWEL
C. THICKENED EDGE
D. WIDE FLANGE
E. FLAT TOPPED
F. DOWELED

DOWELS REQUIREMENTS

THICKNESS T, IN. SIDE D LENGTH SPACED
1 1.5 x 18 12
2 1.5 x 18 12
3 1.5 x 18 12
4 1.5 x 18 12
5 1.5 x 18 12
6 1.5 x 18 12
7 1.5 x 18 12
8 1.5 x 18 12
9 1.5 x 18 12
10 1.5 x 18 12
11 1.5 x 18 12
12 1.5 x 18 12
13 1.5 x 18 12
14 1.5 x 18 12
15 1.5 x 18 12

REFERENCES

COUNTY

PROJECT

SHEET
CRC Pavement to Flexible Pavement (Option 2 - Sleeper Slab)

Classification and Notation of Joint

<table>
<thead>
<tr>
<th>Type</th>
<th>Joint Description</th>
<th>Modifier</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Contraction Joint</td>
<td>W</td>
<td>Smooth Dowel</td>
</tr>
<tr>
<td>B</td>
<td>Construction Joint</td>
<td>W</td>
<td>Deformed Bar</td>
</tr>
<tr>
<td>C</td>
<td>Expansion Joint</td>
<td>T</td>
<td>Thicker Edge</td>
</tr>
<tr>
<td>S</td>
<td>Sleeper Slab</td>
<td>S</td>
<td>Tapered</td>
</tr>
</tbody>
</table>

Details:

- **Steel Beam Detail:**
 - 2" POLY FOAM COMPRESSION SEAL
 - MIN 1" AC BOND BREAKER

- **Typical Section Refer to:**
 - Min 1" AC Bond Breaker
 - Subbase (Refer to Typical Section)

- **Transverse Type C (1" Elastomeric Concrete):**
 - Jointed Slab
 - Flexible Pavement (Refer to Typical Section)

Dimensions:

- 5" STEEL BEAM (AASHTO M183M)
- 3/8" DIA. X 8" STUDS Ø18" C.C.
- BAR "A"
- BAR "B"
- 2" POLY FOAM COMPRESSION SEAL
- MIN 1" AC BOND BREAKER

Notes:

- Refer to Typical Section

Classifications:

- CRC Pavement
- Flexible Pavement

Dimensions:

- 30" • 30"
- 60" • 5"
TRANSVERSE TYPE B (SD)
TRANSVERSE TYPE B (TAPERED)

JC PAVEMENT
JOINTED SLAB
10'

T/4
FULL DEPTH HMA

STANDARD CAPPED END
Dowel

SUBBASE (REFER TO TYPICAL SECTION)

10'
5'

REFER TO TYPICAL SECTION

CLASSIFICATION AND NOTATION OF JOINT

<table>
<thead>
<tr>
<th>TYPE</th>
<th>JOINT DESCRIPTION</th>
<th>MODIFIER</th>
<th>NOTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>contraction joint</td>
<td></td>
<td>SD</td>
</tr>
<tr>
<td>B</td>
<td>construction joint</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>isolation joint</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DOWEL REQUIREMENTS

<table>
<thead>
<tr>
<th>THICKNESS</th>
<th>DOWELSE SMOOTH SMOOTHED</th>
</tr>
</thead>
<tbody>
<tr>
<td>T IN.</td>
<td>SIZE & LENGTH BENDING</td>
</tr>
<tr>
<td>8</td>
<td>1" X 18"</td>
</tr>
<tr>
<td>10</td>
<td>1.5" X 18"</td>
</tr>
<tr>
<td>11</td>
<td>1.5" X 18"</td>
</tr>
<tr>
<td>12</td>
<td>1.5" X 18"</td>
</tr>
<tr>
<td>13</td>
<td>1.5" X 18"</td>
</tr>
<tr>
<td>14</td>
<td>1.5" X 18"</td>
</tr>
<tr>
<td>15</td>
<td>1.5" X 18"</td>
</tr>
</tbody>
</table>

JC PAVEMENT TO FLEXIBLE PAVEMENT (OPTION 1)
TRANSVERSE TYPE A (SD)

JC PAVEMENT

DOWEL

STANDARD CAPPED END

9" 9"

FLEXIBLE PAVEMENT
(REFER TO TYPICAL
SECTION)

SUBBASE (REFER TO TYPICAL SECTION)

TRANSVERSE TYPE C
(1" ELASTOMERIC CONCRETE)

JC PAVEMENT TO FLEXIBLE
PAVEMENT (OPTION 2)
TRANSVERSE TYPE B (SD)

DOWEL

STANDARD CAPPED END

15' (LESS THAN MAXIMUM JOINT SPACING)

TRANSVERSE TYPE B (SD)

DOWEL

STANDARD CAPPED END

T_1

T_2

CLASSIFICATION AND NOTATION OF JOINT

<table>
<thead>
<tr>
<th>TYPE</th>
<th>JOINT DESCRIPTION</th>
<th>MODIFIER</th>
<th>ABBREVIATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>CONSTRUCTION JOINT</td>
<td></td>
<td>CD</td>
</tr>
<tr>
<td>B</td>
<td>ISOLATION JOINT</td>
<td></td>
<td>IS</td>
</tr>
</tbody>
</table>

DOWELS REQUIREMENTS

<table>
<thead>
<tr>
<th>THICKNESS</th>
<th>DOWELS (SMOOTH BASE)</th>
<th>SIZE & LENGTH SPACING</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1" X 1/8"</td>
<td>12"</td>
</tr>
<tr>
<td>9</td>
<td>1" X 1/8"</td>
<td>12"</td>
</tr>
<tr>
<td>10</td>
<td>1" X 1/8"</td>
<td>12"</td>
</tr>
<tr>
<td>11</td>
<td>1" X 1/8"</td>
<td>12"</td>
</tr>
<tr>
<td>12</td>
<td>1" X 1/8"</td>
<td>12"</td>
</tr>
<tr>
<td>13</td>
<td>1" X 1/8"</td>
<td>12"</td>
</tr>
<tr>
<td>14</td>
<td>1" X 1/8"</td>
<td>12"</td>
</tr>
<tr>
<td>15</td>
<td>1" X 1/8"</td>
<td>12"</td>
</tr>
</tbody>
</table>

JC PAVEMENT TO JC PAVEMENT (THICKNESS TRANSITION)
1. IF PCC PAVEMENT THICKNESS IS DIFFERENT WITH BRIDGE APPROACH SLAB, EMPLOY PAVEMENT THICKNESS TRANSITION BEFORE THE TRANSITION TO BRIDGE APPROACH SLAB.
1. If PCC pavement thickness is different with bridge approach slab, employ pavement thickness transition before the transition to bridge approach slab.
TRANSVERSE TYPE A (DB) TRANSVERSE TYPE B (SD)

CRCP 30% STEEL TRANSITION ZONE

BRIDGE APPROACH SLAB

OPTIONAL DOWEL

OPTIONAL DOWEL

STANDARD CAP

REINFORCING STEEL

SUBBASE (REFER TO TYPICAL SECTION)

PROFILE VIEW

SAW CUTS OR INDUCED DESIGN CRACK

CRC PAVEMENT

TRANSVERSE TYPE B (SD)

BRIDGE APPROACH SLAB

CRCP LONGITUDINAL STEEL

100% STEEL ZONE 60% STEEL TRANSITION ZONE 30% STEEL TRANSITION ZONE

PLAN VIEW

1) IF PCC PAVEMENT THICKNESS IS DIFFERENT WITH BRIDGE APPROACH SLAB, EMPLOY PAVEMENT THICKNESS TRANSITION BEFORE THE TRANSITION TO BRIDGE APPROACH SLAB

2) PLACE OPTIONAL DOWEL THROUGH 30% STEEL TRANSITION ZONE IF LOAD TRANSFER BY AGGREGATE INTERLOCKING ONLY IS INSUFFICIENT BASED ON CURRENT DESIGN SLAB LENGTH AND THICKNESS

CRC PAVEMENT TO BRIDGE APPROACH SLAB (OPTION 3)

CLASSIFICATION AND NOTATION OF JOINT

<table>
<thead>
<tr>
<th>TYPE</th>
<th>JOINT DESCRIPTION</th>
<th>MODIFIER</th>
<th>ILLUSTRATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>CONSTRUCTION JOINT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>CONSTRUCTION JOINT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>ISOLATION JOINT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

THICKNESS T, IN.

<table>
<thead>
<tr>
<th>THICKNESS T, IN.</th>
<th>LONGITUDINAL STEEL, SIDE & LENGTH, BRIDGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>6 x 12</td>
</tr>
<tr>
<td>10</td>
<td>9 x 12</td>
</tr>
<tr>
<td>11</td>
<td>12 x 12</td>
</tr>
<tr>
<td>12</td>
<td>6 x 12</td>
</tr>
<tr>
<td>13</td>
<td>9 x 12</td>
</tr>
<tr>
<td>14</td>
<td>6 x 12</td>
</tr>
<tr>
<td>15</td>
<td>9 x 12</td>
</tr>
<tr>
<td>16</td>
<td>6 x 12</td>
</tr>
</tbody>
</table>

LONGITUDINAL STEEL, SIDE & LENGTH, BRIDGES

<table>
<thead>
<tr>
<th>LONGITUDINAL STEEL, SIDE & LENGTH, BRIDGES</th>
<th>DOWELS (SMOOTH BAND)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 x 12</td>
<td>12 x 12</td>
</tr>
<tr>
<td>10 x 12</td>
<td>12 x 12</td>
</tr>
<tr>
<td>11 x 12</td>
<td>12 x 12</td>
</tr>
<tr>
<td>12 x 12</td>
<td>12 x 12</td>
</tr>
<tr>
<td>13 x 12</td>
<td>12 x 12</td>
</tr>
<tr>
<td>14 x 12</td>
<td>12 x 12</td>
</tr>
<tr>
<td>15 x 12</td>
<td>12 x 12</td>
</tr>
<tr>
<td>16 x 12</td>
<td>12 x 12</td>
</tr>
</tbody>
</table>
TRANSVERSE TYPE A (SD)
TRANSVERSE TYPE B (SD)

JC SLAB
STANDARD CAPPED END
DOWEL
STANDARD CAPPED END

SUBBASE (REFER TO TYPICAL SECTION)

1) IF PCC PAVEMENT THICKNESS IS DIFFERENT WITH BRIDGE APPROACH SLAB, EMPLOY PAVEMENT THICKNESS TRANSITION BEFORE THE TRANSITION TO BRIDGE APPROACH SLAB
The length between longitudinal joint is larger than 500 ft.

1. Employ longitudinal type C (1" elastomeric concrete) when cross road type is flexible pavement.

Classification and Notation of Joint

<table>
<thead>
<tr>
<th>Type</th>
<th>Joint Description</th>
<th>Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Construction Joint</td>
<td>C</td>
</tr>
<tr>
<td>B</td>
<td>Isolation Joint</td>
<td>I</td>
</tr>
</tbody>
</table>

Modifier: Isolation

- **W** With Smooth Dowel
- **D** With Doweled Bar
- **T** Tied
- **TE** Thickened Edge
- **WF** Wide Flange
- **S** Sleeper Slab
- **T** tapered

<table>
<thead>
<tr>
<th>Thickness</th>
<th>Dovels (Smooth Profile)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>1.5 x 15</td>
</tr>
<tr>
<td>3.0</td>
<td>1.5 x 15</td>
</tr>
<tr>
<td>3.5</td>
<td>1.5 x 15</td>
</tr>
<tr>
<td>4.0</td>
<td>1.5 x 15</td>
</tr>
<tr>
<td>4.5</td>
<td>1.5 x 15</td>
</tr>
<tr>
<td>5.0</td>
<td>1.5 x 15</td>
</tr>
<tr>
<td>6.0</td>
<td>1.5 x 15</td>
</tr>
<tr>
<td>7.0</td>
<td>1.5 x 15</td>
</tr>
<tr>
<td>8.0</td>
<td>1.5 x 15</td>
</tr>
</tbody>
</table>

Special Area: Route traffic to facilitate the jointing plan, but avoid additional transverse (i.e., header) joints in this region, if possible.
LONGITUDINAL TYPE C (TE)

LONGITUDINAL TYPE B (TIED)

FRONTAGE ROAD CRCP

SPECIAL AREA: ROUTE TRAFFIC TO FACILITATE THE JOINTING PLAN, BUT AVOID ADDITIONAL TRANSVERSE (I.E. HEADER) JOINTS IN THIS REGION, IF POSSIBLE.

FRONTAGE ROAD CRCP

CONTRACTION DESIGN: THE LENGTH BETWEEN LONGITUDINAL JOINT IS LESS THAN 500 FT.

CROSS ROAD CRCP

LONGITUDINAL TYPE C (WF OR SS OR TE)

LONGITUDINAL TYPE C (WF OR SS OR TE)

LONGITUDINAL TYPE C (WF OR SS OR TE)

LONGITUDINAL TYPE A OR TYPE B (TIED)

LONGITUDINAL TYPE A OR TYPE B (TIED)

JCP

EMPLOY LONGITUDINAL TYPE C (1" ELASTOMERIC CONCRETE) WHEN CROSS ROAD TYPE IS FLEXIBLE PAVEMENT

CROSS ROAD CRCP

PRESENTATION

THICKNESS

SIZE & LENGTH

SPACING

1.0

1.0 X 1.0

12"

9

10.0

1.5 X 1.5

12"

10

11.0

1.0 X 1.0

12"

11

12.0

1.0 X 1.0

12"

12

13.0

1.0 X 1.0

12"

13

14.0

1.0 X 1.0

12"

14

15.0

1.0 X 1.0

12"

15

16.0

1.0 X 1.0

12"

16

MODIFIER

ABBREVIATION

WITH SMOOTH DOWEL

SD

WITH DEFLECTED BUR

DB

TIED

TIED

THICKENED EDGE

TE

WIDE FLANGE

WF

BLISTER BLADE

BB

TAPERED

TAPERED

DOWELS REQUIREMENTS

THICKNESS

1.0

10.0

11.0

12.0

13.0

14.0

15.0

16.0

MODIFIER

WITH SMOOTH DOWEL

WITH DEFLECTED BUR

TIED

THICKENED EDGE

WIDE FLANGE

BLISTER BLADE

TAPERED

INTERSECTION (OPTION 2 - JOINT DISTANCE < 500 FT)
SPECIAL AREA: ROUTE TRAFFIC TO FACILITATE THE JOINTING PLAN, BUT AVOID ADDITIONAL TRANSVERSE (I.E. HEADER) JOINTS IN THIS REGION, IF POSSIBLE.

THE LENGTH BETWEEN TRANSVERSE JOINT IS LARGER THAN 500 FT.

EMPLOY LONGITUDINAL TYPE C (1" ELASTOMERIC CONCRETE) WHEN FRONTAGE ROAD TYPE IS FLEXIBLE PAVEMENT.
1. TACK COAT

2. PCC SLAB

3. TAPERED OVERLAY

4. CRACK RESISTANT LIFT OF HOT MIX OR HOT RUBBER SEAL COAT

5. BONDED AC OVERLAY GRADE TRANSITION

6. TRANSVERSE TYPE B

7. MIN. 3'

8. CRC PAVEMENT

9. MIN. 1" AC BOND BREAKER (UNBONDED)

10. JOINTED CONCRETE

THIS DETAIL ALSO APPLIES TO UNBONDED OVERLAYS

Classification and Notation of Joint

<table>
<thead>
<tr>
<th>Type</th>
<th>Joint Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Construction Joint</td>
</tr>
<tr>
<td>B</td>
<td>Construction Joint</td>
</tr>
<tr>
<td>C</td>
<td>ISOLATION JOINT</td>
</tr>
<tr>
<td>MTD</td>
<td>DEFORMATION</td>
</tr>
<tr>
<td>THCH</td>
<td>DEFORMATION</td>
</tr>
<tr>
<td>THCE</td>
<td>DEFORMATION</td>
</tr>
<tr>
<td>WID</td>
<td>DEFORMATION</td>
</tr>
<tr>
<td>SLCH</td>
<td>DEFORMATION</td>
</tr>
<tr>
<td>SLCE</td>
<td>DEFORMATION</td>
</tr>
<tr>
<td>TPCH</td>
<td>DEFORMATION</td>
</tr>
</tbody>
</table>

Tapered Overlay Length

<table>
<thead>
<tr>
<th>Overlay Thickness</th>
<th>Taper Minimum Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1"</td>
<td>50'</td>
</tr>
<tr>
<td>2"</td>
<td>100'</td>
</tr>
<tr>
<td>3"</td>
<td>150'</td>
</tr>
<tr>
<td>4"</td>
<td>200'</td>
</tr>
<tr>
<td>5"</td>
<td>250'</td>
</tr>
<tr>
<td>6"</td>
<td>300'</td>
</tr>
</tbody>
</table>

Overlay - Unbonded, Bonded, AC Overlays

Table:

<table>
<thead>
<tr>
<th>Flr.</th>
<th>50'</th>
<th>100'</th>
<th>150'</th>
<th>200'</th>
<th>250'</th>
<th>300'</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:

- AC: Asphalt Concrete
- PCC: Precast Concrete
- CRC: Cold-Resistant Coating
- TAP: Tapered
- MIN: Minimum
MINIMUM 33d" LAP SPlice
(25" BASED ON #6 BAR)

TRANSVERSE TYPE B (DB)

MAXIMUM 5'

STEEL BAR (DESIGN OPTION)

BONDED CONCRETE OVERLAY

LAP SPlice SHALL BE IN SAME PLANE

EXISTING CRC PAVEMENT

DRILL & EPOXY

BENT STEEL

CRC PAVEMENT

SUBBASE (REFER TO TYPICAL SECTION)
MINIMUM 33d" LAP SPlice
(25" BASED ON #6 BAR)

TRANSVERSE TYPE B (DB)

MAXIMUM 5'

STEEL BAR (DESIGN OPTION)

BONDed CONCRETE OvEryLaY

LAP SPlice SHALL BE IN SAME PLANE

DRILL & EPOXY

BENT STEEL

SUBBASE (REFER TO TYPICAL SECTION)