Abstract
Performance-based maintenance contracts are becoming increasingly popular method of procuring maintenance work. This study presents a framework for specifying such contracts. This framework is based on developing a pavement reliability model that is able to account for the effects of rehabilitation actions. The developed reliability model is able to predict the pavement performance before as well as after rehabilitation actions. Numerical illustration for optimization model shows that the developed model can be used to obtain an optimal trade-off between cost and performance. Further, the model considers a tradeoff between economies of scale associated with managing longer pavement sections, and risk mitigation benefits with managing relatively smaller e.g. more homogeneous sections. The results indicate that the length of optimal management sections depends not only on risk premium costs, but also the ability of the contractor to explore economies of scale. The model is illustrated using typical data available to transportation agencies.
Developing Specifications for Performance-Based Maintenance Contracts

Ivan Damnjanovic (Ph.D)
Assistant Professor
Department of Civil Engineering
Texas A&M University System

Seok Kim and Vighnesh P. Deshpande
Graduate Student Assistant
Department of Civil Engineering
Texas A&M University System

Research Report SWUTC/08/167161-1

Southwest Region University Transportation Center
Texas Transportation Institute
Texas A&M University System
College Station, Texas 77843-3135

June 2008
ABSTRACT

Performance-based maintenance contracts (PBMC) are becoming increasingly popular method of outsourcing maintenance work. These contracts promise to reduce total maintenance costs by capitalizing on the efficiencies of private sector management, and at the same, allow the owner to transfer pavement performance risk to the contractor. Though such contractual setting seems attractive and advantageous, for optimally valuing PBMC contracts, it is essential to accurately predict pavement performance and determine optimal rehabilitation and maintenance policies. In this study pavement reliability model that is able to account for the effects of rehabilitation actions is developed. Further, to determine optimal rehabilitation decision policies, reliability-based optimization model is developed. The developed reliability model is able to predict the pavement performance before as well as after rehabilitation actions. Numerical illustration for optimization model shows that the developed model can be used to obtain optimal trade-off between cost and performance. Further, the results from this study indicate that the length of optimal management sections depends not only on risk premium costs, but also the ability of the contractor to explore economies of scale. The model is illustrated using typical data available to transportation agencies.
DISCLAIMER

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. This document is disseminated under the sponsorship of the Department of Transportation, University Transportation Centers Program, in the interest of information exchange. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.
ACKNOWLEDGMENT

The authors recognize that support for this research was provided by a grant from the U.S. Department of Transportation, University Transportation Centers Program to the Southwest Region University Transportation Center which is funded, in part, with general revenue funds from the State of Texas.
EXECUTIVE SUMMARY

Periodic maintenance and rehabilitation actions can abate the deterioration process, extend the service life, and prevent loss of life, costly failures, and traffic delays. Performance-based maintenance contracts (PBMC) are becoming increasingly popular method for delivering maintenance and rehabilitation work. These contracts promise to reduce total maintenance costs by capitalizing on the efficiencies of private sector management, and at the same, allow the owner to transfer pavement performance risk to the contractor.

For valuing the PBMC, it is crucial to evaluate pavement performance throughout its service life – before, as well as after the application of preventive maintenance and rehabilitation actions. Therefore, performance prediction models are essential. Since pavement structures are type of infrastructure facilities associated with large response and utilization uncertainties, it is important to explicitly account for them in developing pavement performance models. Over the years, a number of researchers have developed probabilistic pavement performance models for both project-and network-level applications. Typically network-level performance models take into account the effects of rehabilitation, but generally do not consider pavement characteristics and fatigue failure mechanics. Reliability models are probabilistic models that can take into account pavement characteristics and utilization patterns in the specification of propensity functions.

The developed pavement reliability model is able to take into account the effects of planned rehabilitation actions on the reliability of flexible pavements. The developed model considers multiple failure criteria (fatigue cracking and rutting). The model is based on the solution from a multilayer linear-elastic analysis to obtain pavement mechanistic responses (tensile and compressive strains) before and after the application of rehabilitation actions. In the linear elastic theory, directional stresses and strains are obtained by assuming a stress function that satisfies the differential equation for specified boundary conditions. Since the differential equation for the layered system cannot be solved analytically, it is solved numerically for specified boundary conditions. Hence the relation between pavement responses and input decision variables that controls responses are implicit and pavement response model can be termed as black-box model.

Conventionally, the reliability is evaluated using Monte Carlo simulation (MCS) technique. However, the MCS technique typically requires a relatively large number of simulations in order to obtain sufficiently accurate estimates of failure probabilities and it becomes impractical to simulate the black-box model thousands of times. In the research, an alternative approach of response surface methodology (RSM) is explored for evaluating the reliability. The objective of RSM in reliability analysis is to approximate the implicit responses into a closed-form function. The developed response model is computationally simple and can be easily simulated to obtain reliability estimates.
Typically in reliability analysis, the performance is modeled in terms of fragilities. The fragility in the simple words can be defined as the conditional probability of failure given the level of demand. However, the fragilities are the functions of decision variables (layer thickness, layer modulus of elasticity) in the sense that stronger the pavement lesser is the failure probability and vice versa. The fragilities that are expressed in terms of decision variables can be efficiently used in optimization formulations. In the research, a parametric regression model is developed to express pavement fragilities as the function of decision variables.

The developed model for determining the value of PBMC considers four important parts: 1) multidimensional clustering method, 2) reliability-based pavement performance model, 3) optimal maintenance model for determining the optimal rehabilitation action for a given section, and 4) optimal clustering for determining management sections in PBMC based on the total costs. The developed methodology is then demonstrated in the Case Study using real data. Case study shows that optimal management sections require the lowest maintenance cost.

The research presented methodology that can be used by the owners to determine the optimal length of management sections for PBMC. Further, the develop modeling process can be used to assist in pre-bid planning, as well as to reassess a strategy already in place as future uncertainties are realized. The developed model is based on four steps, a multi-dimensional clustering method for determining homogeneous sections, a pavement performance model, a model for finding the optimal timing and type of rehabilitation action, and a model for determining the management sections formulated as a set covering problem, and solved, in this paper, using enumeration procedure. The models are demonstrated using real road condition data obtained from TxDOT.
TABLE OF CONTENTS

ABSTRACT ... v
DISCLAIMER .. vi
ACKNOWLEDGMENT .. vii
EXECUTIVE SUMMARY .. ix
TABLE OF CONTENTS ... xi
LIST OF FIGURES ... xiii
LIST OF TABLES ... xiv

1. INTRODUCTION AND BACKGROUND .. 1
 1.1. INTRODUCTION ... 1
 1.2. BACKGROUND ... 3

2. Performance Modeling for Flexible Pavements: Accounting for the Effects of Rehabilitation Actions .. 7
 2.1. Pavement Reliability .. 8
 2.2. Model Formulation ... 8
 2.2.1. Modeling Component level Demand and Capacity .. 9
 2.2.3. Deterioration of the Asphalt Modulus .. 12
 2.2.4. Accounting for Correlation in the Basic Random Variables ... 13
 2.3. Solution Approach ... 14
 2.3.1. Sensitivity Analysis and Importance Measures .. 14
 2.3.1.1. Sensitivity Analysis ... 14
 2.3.1.2. Importance Measures ... 15
 2.4. Numerical Example ... 15

3. Use of Response Surface Methodology and Parametric Regression for Modeling the Pavement Fragilities .. 23
 3.1. Response Surface Modeling .. 23
 3.1.1. Response Surface Methodology (RSM) ... 23
 3.1.2. Least Square Estimation (LSE) ... 25
 3.1.3. Statistical Validation of Fitted Model ... 25
 3.1.4. Model Selection ... 25
 3.2. Modeling the pavement fragilities ... 27
 3.2.1. Parametric Regression Modeling .. 28
 3.2.2. Maximum Likelihood Estimation (MLE) ... 29
 3.2.3. Model Validation .. 29
 3.2.4. Model Selection ... 30
 3.3. Numerical Example ... 30
 3.3.1. Pavement Response Model for Critical Tensile Strain ... 31
3.3.2. Fragility Model for Fatigue Cracking Failure... 32
3.3.2.1. Before rehabilitation actions (Three-layer System)... 33
4. Reliability-based optimization of flexible pavements... 39
4.1. Decision Policies in Reliability-based Optimization ... 39
4.1.1. Problem Formulation .. 40
4.2. Genetic Algorithm (GA) .. 41
4.3. Multi Objective Genetic Algorithm (MOGA) ... 42
4.4. Numerical Example ... 42
4.4.1 Minimizing Rehabilitation Cost... 43
4.4.2. Maximizing the Reliability .. 45
4.4.3. Trade-off between performance and rehabilitation cost (Pareto)... 46
5. DETERMINING MANAGEMENT SECTIONS TO MINIMIZE COST OF
 PERFORMANCE-BASED MAINTENANCE CONTRACT ... 49
5.1. Model Formulation .. 49
5.1.1. Determining Homogeneous Sections... 49
5.1.2. Modeling Pavement Performance .. 50
5.1.3. Determining Optimal Rehabilitation Strategy ... 53
5.1.4. Determining Management Sections .. 53
5.2. Case Study ... 54
6. SUMMARY AND CONCLUSION ..59
REFERENCES ..61
APPENDIX ...67
Appendix A... 67
LIST OF FIGURES

Figure 1. Activities of Owner and Contractor in letting PBMC .. 1
Figure 2. Flexible Pavement Section .. 10
Figure 3. Typical System Reliability and Asphalt Modulus Behavior .. 12
Figure 4. Reliability estimates for pavement system and individual failure modes (fatigue cracking and rutting) obtained from the numerical study considering uncorrelated variables ... 16
Figure 5. Comparison of system reliability estimates obtained for correlated variables and uncorrelated variables .. 18
Figure 6. Sensitivities of the means of random variables for fatigue cracking estimates 19
Figure 7. Sensitivities of the means of random variables for rutting estimates 20
Figure 8. Importance measures of the random variables for fatigue cracking estimates 21
Figure 9. Importance measures of the random variables for rutting estimates 22
Figure 10. Computational Time for Reliability Analysis and Suitable Reliability Methods 23
Figure 11. Residual plots for developed response model .. 32
Figure 12. Model selection process for modeling fatigue fragilities for pavement system before rehabilitation actions .. 33
Figure 13. Plots used for validating fatigue cracking parametric regression model for pavement system before rehabilitation actions .. 34
Figure 14. Plots used for validating fatigue cracking parametric regression model for pavement system after rehabilitation actions .. 37
Figure 15. Fatigue cracking reliability estimates obtained using developed response surface model and parametric regression model for fragilities .. 38
Figure 16. Binary coding of chromosomes, crossover and mutation process in GA 41
Figure 17. Optimization results for minimizing cost where rehabilitation actions are delayed till the estimated reliability reaches the target reliability .. 44
Figure 18. Optimization results for minimizing cost when rehabilitation actions are applied in different years .. 45
Figure 19. Optimization results for maximizing reliability when rehabilitation actions are applied in different years .. 46
Figure 20. Pareto front obtained from numerical study .. 47
Figure 21. Results of Clustering Analysis .. 55
Figure 22. Surface Plot for Total Maintenance Cost ... 56
LIST OF TABLES

Table 1. Variables considered in the numerical study (Zhang and Damnjanovic [7]).................17
Table 2. Typical upper and lower limits values considered for modeling pavement response
 model ...31
Table 3. Results for developed response models for critical tensile strain..........................32
Table 4. Details about parameter estimates obtained from fragility modeling for pavement
 system before rehabilitation actions ..34
Table 5. Details about parameter estimates obtained from fragility modeling for four-layer
 system ..36
Table 6. Assumptions of Variables..54
Table 7. The RMSE values of L-method...55
Table 8. Results of Optimal Strategy and Time ..55
Table 9. Results of Sum of Total Maintenance Cost...56
1. INTRODUCTION AND BACKGROUND

1.1. INTRODUCTION
Timely application of preventive maintenance is an essential factor in keeping a nation’s transportation infrastructure economically sustainable and safe for users. Periodic maintenance and rehabilitation actions can abate the deterioration process, extend the service life, and prevent loss of life, costly failures, and traffic delays. Even though the effects of preventive actions are widely acknowledged by both practitioners and the academic community, due to many reasons including limited resources and increasing demand to repair aging structures and reconstruct severely cracked pavements, local and state agencies often miss the opportunity to exploit the efficiencies of acting proactively.

Pavement maintenance has been traditionally provided in-house or outsourced to contractors by means of job-specific contracts. Historically, in-house maintenance was the preferred method of delivering work at the very beginning of the roadway network development, while outsourcing maintenance contracts became an important method of delivery only with the expansion of the roadway network as agencies struggled to provide needed resources. Outsourcing maintenance contracts is currently a prevalent method of delivering maintenance work (Dlesk and Bell, 2006).

As previously mentioned, early maintenance outsourcing contracts were mostly job-specific and based on the procedures to be performed, materials to be used, or a combination of both (Ozbek, 2004). In such contractual settings, the contractor is limited by the prescribed procedures and material specifications. Once the project is accepted by the owner, the contractor is waived of any legal responsibility of the project’s future performance as long as they have followed the prescribed procedures and material specifications; hence, the risk associated with future pavement performance is fully retained by the agency.

An alternative approach to outsourcing maintenance services is through the application of performance-based maintenance contracts (PBMC). In contrast to the previously mentioned prescribed outsourcing contracts, PBMC allow contractors the freedom to select construction methods, material specifications, and timing of maintenance actions under the condition that managed sections meet the performance specifications over a period of time. Hence, in PBMC, it is the contractor that absorbs the performance risk, not the agency. Reported benefits of PBMC include flexibility of contractors to exploit advances in methods and materials without the need to renegotiate the contract terms; transfer of knowledge of innovative practices from the contractors to the agencies; and a decrease in construction time and, therefore, a decrease in the impact of maintenance actions on commuters and freight transport.

Since the 1980’s, PBMC have become a valuable part of pavement management plans in many agencies. In 1988, highway departments in Canada started implementing performance specifications in some of their road maintenance contracts. Currently, all of the provincial highways in British Columbia and Alberta are maintained through performance-based contracts or contracts that contain a combination of traditional and performance features. In Australia, after two successful implementations of short-term pilot contracts, Sydney highway officials let the first long-term contract in 1995. This contract had a 10-year duration period, covered 450
km of urban roads, and resulted in a significant reduction in cost of managing network (World Bank, 2006). Further, a significant increase in asset condition, reported with implementation of this contract, indicates that cost savings were not the result of cheaper designs, but due to more efficient designs and timely application of rehabilitation actions. In other words, the private sector was able to achieve savings and earn profit by managing pavements more efficiently. What the profit margins were - remains unknown.

Valuing PBMC is an important problem facing many agencies. While in prescribed outsourcing contracts, payments to the contractor are based on the amount and type of work specified by the agency (Zietlow, 2007), payments under performance-based contracts are contingent on the contractor maintaining the road to the specified service level. Since there is no schedule or quantity of work outlined at the onset of the contract, a difficulty arises in predicting the costs the contractor will incur in meeting this obligation, and consequently, the fair market value of the contract.

To address this concern,Damnjanovic (2006) proposed a model for estimating the expected value of PBMC (risk-neutral premium) based on a parametric assessment of the contractual terms. The parameters of the model included terms such as type of performance indicators, failure criteria and penalty costs, condition of the existing pavement, and others. The model indicated that the larger the variance in values of initial pavement condition indicators, the larger the risk premium contractors need to consider. Given pavement spatial characteristics, a logical question is how the length of pavement sections affects the risk premium? Hence, the objective of this report is to develop a model the agencies can use to specify the pavement management sections that can minimize the total payments.

Though the use of PBMC seems attractive and advantageous, valuing PBMC is an important problem faced my many agencies. For valuing the PBMC, it is crucial to evaluate pavement performance throughout its service life – before, as well as after the application of preventive maintenance and rehabilitation actions. Since pavement structures are type of infrastructure facilities associated with large response and utilization uncertainties, it is important to explicitly account for them in developing pavement performance models. Reliability models are probabilistic models that can take into account pavement characteristics and utilization patterns in the specification of propensity functions. Reliability models predict the probability that pavement will perform its intended function under a given set of conditions over a specified period of time.

In the research, the pavement reliability model that is able to take into account the effects of planned rehabilitation actions on the reliability of flexible pavements is developed. The developed model considers multiple failure criteria (fatigue cracking and rutting). The model is based on the solution from a multilayer linear-elastic analysis to obtain pavement mechanistic responses (tensile and compressive strains) before and after the application of rehabilitation actions. In the linear elastic theory, directional stresses and strains are obtained by assuming a stress function that satisfies the differential equation for specified boundary conditions. Since the differential equation for the layered system cannot be solved analytically, it is solved numerically for specified boundary conditions. Hence the relation between pavement responses and input decision variables that controls responses are implicit and pavement response model can be termed as black-box model.
Conventionally, the reliability is evaluated using Monte Carlo simulation (MCS) technique. However, the MCS technique typically requires a relatively large number of simulations in order to obtain sufficiently accurate estimates of failure probabilities and it becomes impractical to simulate the black-box model thousands of times. In the research, an alternative approach of response surface methodology (RSM) is explored for evaluating the reliability. The objective of RSM in reliability analysis is to approximate the implicit responses into a closed-form function. The developed response model is computationally simple and can be easily simulated to obtain reliability estimates.

Typically in reliability analysis, the performance is modeled in terms of fragilities. The fragility in the simple words can be defined as the conditional probability of failure given the level of demand. However, the fragilities are the functions of decision variables (layer thickness, layer modulus of elasticity) in the sense that stronger the pavement lesser is the failure probability and vice versa. The fragilities that are expressed in terms of decision variables can be efficiently used in optimization formulations. In the paper, a parametric regression model is developed to express pavement fragilities as the function of decision variables.

The primary objective in determining the optimal rehabilitation action is safety in performance and economy in design. In addition to balance between safety and economy, since the decision variables that control the performance of flexible pavements are uncertain, it is necessary to account for the uncertainty in performance. Therefore probabilistic optimization technique that accounts for uncertainties is necessary while optimizing the rehabilitation actions for flexible pavements. One of the probabilistic optimization techniques is reliability-based optimization (RBO). The RBO can be efficiently used in balancing the needs between safety in performance and economy in design. Though the use of RBO seems attractive and has advantages, the RBO problems are complex and require a robust optimization technique that can provide a global optimal solution. Traditional optimization techniques which include gradient projection algorithms are robust in finding a single local optimal solution. However, complex domain like in RBO can have more than one optimal solutions and therefore more robust technique is required that can find a near-global solution. In the research, the Genetic Algorithm (GA) is used because of its efficiency in finding a near-global solution. The GA performs a global and probabilistic search thus increasing the likelihood of obtaining a near-global solution.

1.2. BACKGROUND

In recent years, there has been a substantial effort by practitioners and researchers to study elements of performance-based maintenance contracts. In 2003, Austroroads, an association of Australian and New Zealand transportation authorities, published a report outlining industry experience and perception of performance based contracts in Australia, New Zealand, and other countries. The overall perception is that they provide a cost savings over other procurement methods, enable a greater transfer of risk from the agency, and promote innovation within the industry. However, a number of concerns were reported. Typical concerns with implementation of PBMC include inadequate specifications, the inability of small contractors to bid due to the scale of the contract, and a general lack of preparedness within the industry.

In a joint effort the Federal Highway Administration (FHWA), the American Association of State Highway and Transportation Officials (AASHTO) and other professional associations met
in December of 2001 to form the Performance Related Specification Technical Working Group (later renamed the Performance Specification Program), a movement to educate and encourage the use of performance specifications and warranties in highway construction in the United States. In 2004, the working group produced the Performance Specifications Strategic Road Map, a document available to the transportation industry to assist them in understanding the features of performance contracts and how to develop them. This document suggests factors that should be considered in the framing of performance specifications and warranties, such as the need for standard, non-destructive tests and the establishment of a mediation board for conflict resolution. The document is a work in progress that will be maintained on the FHWA website and updated as more research and experience is acquired (FHWA, 2004).

In addition to the previously mentioned regulatory and industry efforts to investigate the benefits of PBMC, in recent years, researchers initiated a number of studies to evaluate the effects of implementing outsourcing maintenance contracts. Following the completion of the first outsourced highway maintenance contract by the Virginia Department of Transportation, Ozbek (2004) suggested that the contract terms were allowing the contractor to maintain the network at the minimum service level required by applying less expensive measures with a shorter lifespan. As the contract was written, the contractor was not responsible for any failure or defects that may be discovered after the end of the contract term, even those that might occur immediately afterward. To better exploit the benefits of the contract and transfer more of the long-term risk to the contractor, the party with the most control over the network quality and performance, Ozbek (2004) proposed that the contract should include a warranty clause to guarantee the work of the contractor beyond the expiration of the contract. This would encourage the contractor to maintain the network to a higher than minimum standard and improve long-term conditions to avoid warranty claims later. Similarly, Damnjanovic (2006) suggested that PBMC should be long-term contracts with disincentive clauses and showed that if such contracts were considered, the contractor’s optimal maintenance strategy includes the actions that are more expensive and substantially add to the structural capacity of a pavement, such as thick overlays, rather than the actions that only cover surface distresses. On the other hand, PBMC were also studied from the perspective of social costs. Manion and Tighe (2007) examined the effects of maintenance contracts with performance specifications on improvements in user safety indicated by a reduction in the social costs of motor vehicle crashes. A comparison with the actual observed values showed the network maintained under performance specifications had a significant reduction in the social cost of crashes. It was suggested that several factors may have lead to this reduction, among them the identification of safety as something that could be measured and improved, as well as the strict response times within which the contractor must correct identified defects.

Figure 1 shows the activities of the contractual parties (owner and contractor) during the letting of PBMC. The owner, either a transportation agency or private concessioner, defines performance specifications based on its needs and operational requirements. As previously discussed, an important aspect of developing such specifications is determining management sections. For example, a consideration of longer management sections in performance contracts may increase the disincentive (failure or penalty) costs due to the inherent increase in spatial variability, but, at the same time, longer sections may provide an opportunity to explore economies of scale and decrease their per unit cost of providing maintenance work. This tradeoff is the key to determining the length of management sections. To assess this tradeoff, the
owner needs to estimate fair market premium payments (or the total costs) for managing sections with different pavement characteristics and utilization patterns. In other words, the owner needs to replicate the contractors bid estimating process and select the management sections such that for a set of performance specifications the total costs are minimized. In Figure 1 this is illustrated as interactions between performance specifications and cost estimation.

In addition to defining performance specifications and estimating bids, the typical letting process for PBMC involves bid evaluation, contract tenure, and contract monitoring. Typically, the owner together with hired a third-party monitoring company assesses if the performance specifications are met; if not, the contractor is obligated to pay a penalty.

As previously discussed, the model for determining management sections considers four different steps, with the first step being clustering analysis to determine homogeneous sections. Due to its simplicity, k-means algorithm is one of the most extensively utilized data clustering method. It has been used in diverse disciplines, from ecology to computer science (Carey et al., 1995; Kanungo et al., 2002; Saatchi and Hung, 2005). K-means is a cluster algorithm based on the concept of choosing a preliminary set of centroids and assigning points to the nearest centroid. Once the initial clusters are determined, new centroids are calculated and the points are reassigned to the nearest centroid. This process is repeated until optimal boundaries for each cluster are determined (MacQueen, 1967).

Estivill-Castro (1997) approached the clustering problem through a parametric view of non-hierarchical methods. In his study, four methods were contrasted: k-means, local hill climbing, global hill climbing, and randomized hill climbing. The k-means method was the most easily
implemented, however, it produced less reliable results than the other methods. Since the results of k-means are dependent on the initial points, its solutions are only locally optimal. Further, application of k-means is limited to sequence data set, such as a time-series. The difficulty arises from the need to establish an initial set of centroids without considering sequence.

Kalpakis et al. (2001) proposed a Linear Predictive Coding (LPC) method for clustering sequence data, such as Auto-Regressive Integrated Moving Average (ARIMA) time-series, using the Euclidean distance. The results indicated that LPC method is an effective method in detecting patterns between two time-series sequences. While this method allowed for capturing similar trends, it applicability does not extend to the problem of determining homogenous sections based on multiple series of condition sequence data set.

Mishalani and Koutsopoulos (2002) developed a clustering method to determine homogeneous pavement sections based on a spatial record of condition data. The developed methodology considered dynamic programming and nonparametric cluster analysis for individual series of condition data. Tibshirani et al (2001) suggested use of gap-statistics for determining the optimal number of clusters. Gap-statistics utilizes a reference null distribution to obtain expected values for comparison with observed data. The optimal number of clusters is determined when the difference between the expected and observed values exceed a threshold. As an alternative, Salvador and Chan (2004) introduced the ‘L-method’ to determine the optimal number of clusters. Salvador’s comparison of the L-method and gap-statistics showed the L-method is more accurate. Given its greater accuracy and ease of application, the L-method has been chosen as the stopping criteria in the study presented herein.
2. Performance Modeling for Flexible Pavements: Accounting for the Effects of Rehabilitation Actions

For valuing the PBMC, it is crucial to evaluate pavement performance throughout its service life – before, as well as after the application of preventive maintenance and rehabilitation actions. Therefore, performance prediction models are essential to the economical design of pavements. In general, performance prediction can be either deterministic, using sometimes conservative (biased) estimates that ignore the inherent uncertainties in the pavement performance and deterioration, or probabilistic. The probabilistic nature of pavement deterioration arises from two different sources of uncertainty: uncertainty in pavement utilization (random input) and uncertainty in pavement response (random output). Since pavement structures are type of infrastructure facilities associated with large response and utilization uncertainties, it is important to explicitly account for them in developing pavement performance models. Over the years, a number of researchers have developed probabilistic pavement performance models for both project-and network-level applications. Typically network-level performance models (Abaza, 2002; Wang, et. al., 1994; Li, et. al., 1996; Hong and Wang, 2003) take into account the effects of rehabilitation, but generally do not consider pavement characteristics and fatigue failure mechanics.

Reliability models are probabilistic models that can take into account pavement characteristics and utilization patterns in the specification of propensity functions. Reliability models predict the probability that pavement will perform its intended function under a given set of conditions over a specified period of time. If the failure event is well defined, reliability models can be effectively used to predict the performance of flexible pavement (Zhang and Damnjanovic, 2006). The concept of reliability has been implemented in modeling pavement performance. Zhang and Damnjanovic (2006) developed a model based on the Method of Moments technique (MOM) that has ability to express the reliability function as a closed-form function of basic random variables. The advantage of a closed-form function is its suitability for implementation in optimization models. Alsherri and George (1988) developed structural reliability model based on Monte Carlo simulation (MCS). Zhou and Nowak (1990) developed system and individual component reliability models based on special sampling technique. Chua et al. (1992) and Darter et al. (2005) developed models based on a mechanistic approach for predicting pavement distresses in terms of material behavior and structural responses. However, these models do not explicitly consider the effect of rehabilitation actions on pavement reliability, which is an important shortcoming for their effective implementation in PBMC valuation analysis.

In this chapter, a reliability model that is able to take into account the effects of planned rehabilitation actions is developed. The developed model considers multiple failure criteria (fatigue cracking and rutting). The model is based on the solution from a multilayer linear-elastic analysis to obtain pavement mechanistic responses (tensile and compressive strains) before and after the application of rehabilitation actions.
2.1. Pavement Reliability

Reliability models are probabilistic models that predict the probability that a component or system will perform its intended function under a given set of conditions at a particular instant or over a specified period of time. Limit state functions can be defined in a number of different ways to describe whether a specified level of performance is met or not. Examples of performance level include safety against collapse, and loss of serviceability. Based on design equations and practice, failure events for flexible pavements can be mathematically defined using transfer and traffic utilization functions. Hence structural limit state functions can be mathematically defined and used to develop pavement performance models.

Pavement reliability generally considers the remaining life expressed as a difference between the number of load applications, N_C (capacity), a pavement can withstand before failing to meet a specified performance measure, such as roughness or rutting, and the number of load applied, N_D (demand) (Alsherri and George, 1988). The failure of a pavement section occurs when $N_D \geq N_C$. The corresponding limit state function $g(x,t)$, where x denotes a vector of n basic variables and t is the time, can be defined as $g(x) = [N_C(x) - N_D(x,t)]$. The probability that $N_D \geq N_C$ also referred as the probability of failure P_f, can then be mathematically defined as

$$P_f = P[g(x,t) \leq 0]$$

(1)

where, $P[\cdot]$ represents probability that the event $g(x,t) \leq 0$ will occur. Conversely, the reliability Rel, which in this context is defined as a probability that the pavement will perform its intended function, can be defined as follows

$$Rel = 1 - P_f = P[g(x,t) > 0]$$

(2)

Standard reliability techniques including MCS and the first- and second-order reliability methods (FORM and SORM) (Bjerager, 1990; Ditlevsen and Madsen, 1996; Melchers,1987) can be used for the solution of Eq. 1 when a closed-form in not available.

2.2. Model Formulation

The performance of flexible pavements can be described as a series system, where the failure of the system occurs if any of its components fails. Determining the system reliability requires the mathematical formulation of the limit state functions for each component. Let g_f and g_r represent the limit state functions for the fatigue cracking and rutting failure criteria, respectively. The limit state function g_{sys} for the flexible pavement system can then be written such that

$$[g_{sys}(t) \leq 0] = [g_f(x,t) \leq 0 \cup g_r(x,t) \leq 0]$$

(3)
2.2.1. Modeling Component level Demand and Capacity

The capacity and demand in the limit state functions for each failure criterion can be modeled in terms of the load applications or yearly number of 18-kip equivalent single-axle load, ESAL and the corresponding accumulated ESAL. With specified yearly traffic growth rate, ω, and ESAL at $t = 0$, the accumulated ESAL (demand) at any time t, $N_D(x, t)$, can be obtained as

$$N_D(x, t) = N_D(x, t - 1) + ESAL(t) \quad t = 1, 2, 3, \ldots \quad (4)$$

where $ESAL(t) = (1 + \omega)^t \times ESAL(0)$ is the ESAL in year t.

2.2.1.1. Fatigue Cracking

In a mechanistic-empirical approach to pavement design, the maximum tensile strain, ε_f, at the bottom of the asphalt layer is considered to control the allowable number of repetitions for fatigue cracking. This critical strain is used in transfer functions to predict the performance of flexible pavement for fatigue cracking (Huang, 2004)

$$N_{C_f}(x) = f_1(\varepsilon_f)^{-f_2} (E)^{-f_3} \quad (5)$$

where, N_{C_f} is the allowable number of load repetitions (capacity) before the fatigue cracking occurs, E is the modulus of surface asphalt layer, and f_1, f_2, and f_3 are empirical coefficients determined from tests and modified to reflect in-situ performance. Once the allowable load repetitions are defined, the limit state function for fatigue cracking can be formulated as

$$g_f(x, t) = N_{C_f}(x) - N_D(x, t) \quad (6)$$

2.2.1.2. Rutting

The design methodology for flexible pavement commonly considers a maximum compressive strain ε_c at the top of a subgrade layer as the controlling response for rutting. Based on empirical equations developed using laboratory tests and field performance data, the allowable load repetitions for rutting can be expressed as (Huang, 2004)

$$N_{C_r}(x) = f_4(\varepsilon_c)^{-f_5} \quad (7)$$

where, N_{C_r} is the allowable number of load repetitions (capacity) for rutting, and f_4 and f_5 are coefficients determined from tests and modified to reflect in-situ performance. Finally the limit state function for rutting can be formulated as

$$g_r(x, t) = N_{C_r}(x) - N_D(x, t) \quad (8)$$

The quantities in Eq. 5 and 7 are random and are not readily available. They are functions of the basic variables x and can be computed using pavement response models that are based on the theory of linear elasticity.
2.2.2. Pavement Response Model

Figure 2 shows the typical flexible pavement section for which the critical responses are the functions of

\[x = \{h, E, v\} \]

where, \(h \), \(E \), \(v \) are the corresponding vectors of layer thicknesses, layer moduli and layer Poisson’s ratios, respectively, while, \(q \) and \(a \) represents the intensity and the radius of the applied circular load (e.g., single axle load).

![Flexible Pavement Section Diagram](image)

Figure 2. Flexible Pavement Section

Pavement responses can be determined with an assumption that the pavement structure behaves as linear elastic layered system. The linear elastic theory is based on the following assumptions (Huang, 2004): 1) each layer \(i \) is homogeneous, isotropic, and linearly elastic with modulus \(E_i \) and Poisson ratio \(v_i \), 2) each layer has a finite thickness \(h_i \), except the bottom layer that has no lower bound, 3) continuity conditions are satisfied at each layer interface in terms of vertical stresses, shear stresses, and vertical displacements.

Based on the assumptions of linear elastic theory, directional stresses can be obtained by assuming a stress function \(\phi \) for each layer that satisfies the following 4th order differential equation

\[
\left(\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{\partial^2}{\partial z^2} \right) \left(\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{\partial^2}{\partial z^2} \right) \phi = 0
\]

where, \(r \) and \(z \) represents cylindrical coordinates in radial and vertical directions respectively. Using the stress function, the directional stresses can be computed as
\[
\sigma_z = \frac{\partial}{\partial z} \left[(2-\nu)\nabla^2 \phi - \frac{\partial^2 \phi}{\partial z^2} \right] \tag{10}
\]

\[
\sigma_r = \frac{\partial}{\partial z} \left[(\nu)\nabla^2 \phi - \frac{\partial^2 \phi}{\partial r^2} \right] \tag{11}
\]

\[
\sigma_t = \frac{\partial}{\partial z} \left[(\nu)\nabla^2 \phi - \frac{1}{r} \frac{\partial \phi}{\partial r} \right] \tag{12}
\]

where, \(\sigma_z \), \(\sigma_r \), and \(\sigma_t \) are the stresses at the points under consideration in the vertical, radial and tangential directions, respectively.

Even though the differential equation, presented in Eq. 9, cannot be solved analytically, it can be solved numerically for specified boundary conditions. Appendix A describes the approach used in the research to solve Eq. 9, 10, 11, 12. Once the stresses are computed, the strains required for capacity modeling can be computed as

\[
\varepsilon_t = \frac{1}{E} \left[\sigma_t - \nu(\sigma_r + \sigma_z) \right] \tag{13}
\]

\[
\varepsilon_c = \frac{1}{E} \left[\sigma_c - \nu(\sigma_z + \sigma_r) \right] \tag{14}
\]

where, \(E \) is the modulus of the layer at which the strains are computed.

The effects of rehabilitation actions are incorporated in the capacity model by assuming that an overlay of certain thickness is to be constructed over the existing pavement at the time of rehabilitation. After the application of the overlay, the pavement structural system is changed. Therefore, the developed model recalculates the pavement responses to reflect its new structural specification, and determines the new level of allowable number of \(ESAL \) for each failure criteria, \(N_{c_t} \) and \(N_{c_c} \).

When recalculating pavement responses, two important assumptions are made: 1) after the application of an overlay, the tensile strain at the bottom of the overlay is considered to be the controlling response for determining the allowable repetitions for fatigue cracking, and 2) the modulus of the asphalt layer is updated to reflect its new value. The first assumption can be generalized to include any specification of the controlling tensile strain. The current assumption conforms to the case when thicker overlays are considered. The second assumption represents a reasonable assumption since with the utilization and aging the modulus of the asphalt layer decreases. Therefore, for the model to capture the true effects of rehabilitation actions, it is important to accurately predict the modulus of the asphalt layer before a rehabilitation action is undertaken.
2.2.3. Deterioration of the Asphalt Modulus

The modulus deterioration process of the asphalt material is regarded as a fatigue damage process caused by repetitive loading. Stiffness ratio (SR) is typically used to quantify the fatigue damage in the asphalt layer. Stiffness ratio is a normalized quantity that normalizes the stiffness value relative to its initial value. Figure 3 shows a change in asphalt modulus of a top layer with utilization over a period of time. As illustrated in Figure 3, in general, decrease in SR is nonlinear and similar to change in reliability over time/utilization. Since layers moduli, together with thicknesses of layers fully define behavior of a pavement system in term of its responses, to obtain pavement responses after application of rehabilitation actions, modulus of top layer at the time of application of rehabilitation actions needs to be estimated.

Researchers have developed a number of models to predict the deterioration of the modulus of asphalt layers. Attoh-Okine and Roddis (1994) developed a deterioration model based on data obtained from ground penetrating radar (GPR). Ullidtz (1999) developed an incremental-recursive model based on a mechanistic-empirical approach. This incremental-recursive model works in time increments and uses output from one season recursively as input for the next. Tsai et al. (2003) suggested the application of the Weibull theory for developing the incremental-recursive model.

![Figure 3. Typical System Reliability and Asphalt Modulus Behavior](image)

Without loss of generality, we adopted a Weibull approach to model nonlinear accumulation of damage. The function $SR(t)$ is used to indicate the change in the stiffness ratio with utilization and can be written as

$$SR(t) = \frac{E_2(t)}{E_2(t = 0)} = \exp\left[-\lambda[N_D(t)]^{\gamma}\right]$$

(15)
where, λ and ς are the scale and shape parameters, respectively.

With utilization, a crack initiates in an asphalt layer and propagates from micro scale to macro scale. When cracking reaches certain level, water may infiltrate the pavement system, further reducing the modulus. The effect of this excessive cracking and water infiltration can be accounted for by multiplying Eq. 15 by a constant (≤ 1) that depends on the anticipated condition of the damaged system at the time of rehabilitation. With an updated structural system and recalculated responses, the limit state functions for the rehabilitated system can be formulated. Once the limit state functions (g_f, g_r, and g_{sys}) are defined, the component and system reliability can be determined using standard structural reliability techniques.

2.2.4. Accounting for Correlation in the Basic Random Variables

Generally, the information on basic random variables is available in the form of marginal distributions and correlation coefficients. However, in addition to marginal distributions, reliability analysis requires evaluation of the joint probability density function (PDF) of the basic random variables. Most of the pavement reliability models assume independence between random variables and this reduces the joint PDF to the product of marginal distributions. To evaluate the joint PDF of non-negative (as those considered here) and hence non-normal basic random variables accounting for their correlation, a multivariate distribution model with known marginal distributions and correlation matrix needs to be constructed. This joint PDF can be constructed using either Rosenblatt (Hohenbichler and Rackwitz, 1981) or Nataf transformations (Liu and Kiureghian, 1986).

However, due to the limitation in the range of applicability of the Rosenblatt transformation, in the research, the Nataf transformation is used to evaluate joint probability. The Nataf transformation is applicable to a wider range of the correlation coefficients. With known marginal distributions of the basic random variables in x and correlation matrix $R = [\rho_{ij}]$, the joint PDF is written as

$$f(x) = f(x_1) \cdots f(x_n) \frac{\varphi(z, R_z)}{\varphi(z_1) \cdots \varphi(z_n)}$$

(16)

where $\varphi(\cdot)$ is the standard normal PDF, the transformation to the correlated standard normal variables z can be obtained as

$$z_i = \Phi^{-1}[F_{x_i}(x_i)]$$

(17)

where, $\Phi(\cdot)$ is the standard normal cumulative distribution function (CDF) and $R_z = [\rho_{oij}]$ is such that

$$\rho_{ij} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left(\frac{x_i - \mu_i}{\sigma_i} \right) \left(\frac{x_j - \mu_j}{\sigma_j} \right) \varphi_{x_i,z_j}(z_i,z_j,\rho_{oij}) dz_idz_j$$

(18)
where, \(\mu_i, \mu_j, \sigma_i, \) and \(\sigma_j \) are the means and standard deviations of \(x_i \) and \(x_j \), and \(\phi_2(\cdot) \) is the 2 dimensional normal PDF with zero means, unit standard deviations and correlation coefficient \(\rho_{\alpha, \beta} \).

Modified correlation coefficients \(\rho'_{ij} \) are obtained by solving Eq. 18 iteratively for each pair of marginal distributions and known \(\rho_{ij} \). Alternatively, \(\rho'_{ij} \) can be computed using following relation (Liu and Kiureghian, 1986)

\[
\rho'_{ij} = F \times \rho_{ij}
\]

where, \(F \) is a function of \(\rho_{ij} \) and the marginal distributions of \(x_i \) and \(x_j \) and variables and is available in Liu and Kiureghian (Liu and Kiureghian, 1986) for different combinations of marginal distributions.

2.3. Solution Approach

With the defined limit state function, the probability of failure for the system and each failure criteria can be obtained by solving the following multi-dimensional integral

\[
P_{F_k} = P[g_k(x) \leq 0] = \int \cdots \int f(x) \, dx
\]

where, \(k \) corresponds to the system, fatigue cracking and rutting limit states. In this research, the probability integral in the Eq. 20 is evaluated using MCS.

2.3.1. Sensitivity Analysis and Importance Measures

Sensitivity and importance measures can be computed to assess what the effects of changes in the parameters and the random variables are on the fatigue and rutting reliability.

2.3.1.1. Sensitivity Analysis

Sensitivity analysis is used to determine to which parameter(s) the reliability is most susceptible. Let \(f(x, \Theta_f) \) be the probability density function of the basic random variables in \(x \), where \(\Theta_f \) is a set of distribution parameters (e.g. mean, standard deviation, correlation coefficient or other parameters describing the distribution of variables in \(x \)). The sensitivity measure for each parameter is given by computing the gradient of the reliability index, \(\beta \), for each failure criteria with respect to each parameter and can be expressed as (Hohenbichler and Rackwitz, 1983)

\[
\mathbf{\nabla}_{\Theta, \beta} = J_{u, \Theta} \alpha
\]

where \(\alpha \) is the vector defined as
\[\alpha = \nabla u^* \beta = \text{sgn}(\beta) \frac{u^*}{||u^*||} \] (22)

where, \(u^* \) is the most likely failure point (design point) in standard normal space, \(\text{sgn}(\cdot) \) is the algebraic sign of \(\beta \), \(\nabla u^* \beta \) is the gradient vector of \(\beta \) with respect to \(u^* \), \(\cdot \cdot \cdot \) is the Euclidian norm of the given function, \(J_{u^*\Theta} \) is the Jacobian of the probability transformation from the original space \(x \) to the standard normal space \(u \) with respect to the parameters \(\Theta \) and computed at \(u^* \).

To make the elements in \(\nabla \Theta_j \beta \) comparable, \(\nabla \Theta_j \beta \) is multiplied by the diagonal matrix \(D \) of the standard deviations of the variables in \(x \) to obtain the sensitivity vector \(\delta \)

\[\delta = \sigma \nabla \Theta_j \beta \] (23)

The vector \(\delta \) is dimensionless and makes the parameter variations proportional to the corresponding standard deviations, which are measures of the underlying uncertainties.

2.3.1.2. Importance Measures

The limit state function is defined by the probabilistic capacity and demand models of ESAL’s. Each random variable in \(x \) has a different contribution to the variability of the fatigue and rutting limit state functions. Important random variables have a larger effect on the variability of the limit state function than less important random variables. Knowledge of the importance of the random variables can be helpful while optimizing the performance of pavement structures. In addition, a reliability problem can only consider the uncertainty of the important variables thus simplifying the process for engineering applications.

The importance vector \((\gamma) \) for the basic random variables in original space can be obtained as (Kiureghian and Ke, 1995)

\[\gamma^T = \frac{\alpha^T J_{u^*x^*} D'}{||\alpha^T J_{u^*x^*} D'||} \] (24)

where \(D' \) is the standard deviation diagonal matrix of the equivalent normal variables \(x' \), defined by the linearized inverse transformation \(x' = x^* + J_{x^*u^*}(u - u^*) \) at the design point. Each element in \(D' \) is the square root of the corresponding diagonal element of the covariance matrix \(\Sigma' = J_{x^*u^*} J_{x^*u^*}^T \) of the variables in \(x' \).

2.4. Numerical Example

To illustrate the developed model, a numerical study is conducted for a typical flexible pavement section. The flexible pavement section at the time of construction consists of three layers over which an overlay was constructed at the time of rehabilitation. A MCS technique was used to
estimate the failure probability of the pavement system, considering the basic random variables in the limit state functions. Table 1 lists all the basic variables \(\mathbf{x} \) that enter into the models described above, along with the values of the parameters \(\Theta \). Based on physical and geometrical constrains, all the variables are assumed to follow a lognormal distribution. The probability of failure, and the sensitivity and importance measures are estimated at each time \(t \) (\(1 \leq t \leq 11 \) years). To determine the effects of the correlation between the random variables on the performance of the pavement, estimates are obtained considering both correlated and uncorrelated variables. Being a more realistic scenario, the sensitivity and importance measures are estimated only for the case with correlated variables.

Figure 4 shows the reliability estimates for uncorrelated variables, before and after the rehabilitation obtained for the pavement system (solid line) and the two individual failure criteria (fatigue cracking, dotted line, and rutting, dashed line). It is observed that shortly after construction and the rehabilitation action, the reliability of pavement is more vulnerable to rutting, due to plastic deformations of the layers. Fatigue cracking becomes more prominent with time as the accumulated traffic increases. Figure 5 shows the comparison of the reliability estimates of the system failure for the correlated and uncorrelated variables. It is observed that the system reliability increases for the correlated variables indicating that accounting for the correlation between variables improves the performance of pavement. Given that the variables in real pavements are likely to be correlated, it is important to consider their correlations to accurately predict the performance of pavement and avoid underestimating the pavement reliability which might lead to an unnecessary early repair.

![Figure 4. Reliability estimates for pavement system and individual failure modes (fatigue cracking and rutting) obtained from the numerical study considering uncorrelated variables](image-url)
Table 1. Variables considered in the numerical study (Zhang and Damnjanovic, 2006)

<table>
<thead>
<tr>
<th>Variable Description</th>
<th>Distribution type</th>
<th>Mean</th>
<th>Coefficient of variation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overlay thickness (h_1)</td>
<td>Lognormal</td>
<td>2.2 inches</td>
<td>15 %</td>
</tr>
<tr>
<td>Overlay modulus (E_1)</td>
<td>Lognormal</td>
<td>400,000 psi</td>
<td>20 %</td>
</tr>
<tr>
<td>Asphalt layer thickness (h_2)</td>
<td>Lognormal</td>
<td>4.5 inches</td>
<td>15 %</td>
</tr>
<tr>
<td>Asphalt layer modulus (E_2)</td>
<td>Lognormal</td>
<td>400,000 psi</td>
<td>20 %</td>
</tr>
<tr>
<td>Base layer thickness (h_3)</td>
<td>Lognormal</td>
<td>8 inches</td>
<td>15 %</td>
</tr>
<tr>
<td>Base layer modulus (E_3)</td>
<td>Lognormal</td>
<td>20,000 psi</td>
<td>20 %</td>
</tr>
<tr>
<td>Subgrade layer modulus (E_4)</td>
<td>Lognormal</td>
<td>10,000 psi</td>
<td>20 %</td>
</tr>
<tr>
<td>Yearly ESAL growth rate (gr)</td>
<td>Lognormal</td>
<td>0.08</td>
<td>20 %</td>
</tr>
<tr>
<td>Initial ESAL ($ESAL_{i=0}$)</td>
<td>Lognormal</td>
<td>100,000 ESAL</td>
<td>20 %</td>
</tr>
<tr>
<td>Poisson’s ratio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overlay (v_1)</td>
<td>Deterministic</td>
<td>0.35*</td>
<td>-</td>
</tr>
<tr>
<td>Asphalt layer (v_2)</td>
<td>Deterministic</td>
<td>0.35*</td>
<td>-</td>
</tr>
<tr>
<td>Base layer (v_3)</td>
<td>Deterministic</td>
<td>0.3*</td>
<td>-</td>
</tr>
<tr>
<td>Subgrade layer (v_4)</td>
<td>Deterministic</td>
<td>0.4*</td>
<td>-</td>
</tr>
<tr>
<td>Limit state function parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_1</td>
<td>Deterministic</td>
<td>0.0796</td>
<td>-</td>
</tr>
<tr>
<td>f_2</td>
<td>Deterministic</td>
<td>3.291</td>
<td>-</td>
</tr>
<tr>
<td>f_3</td>
<td>Deterministic</td>
<td>0.854</td>
<td>-</td>
</tr>
<tr>
<td>f_4</td>
<td>Deterministic</td>
<td>1.365x10^-9</td>
<td>-</td>
</tr>
<tr>
<td>f_5</td>
<td>Deterministic</td>
<td>4.477</td>
<td>-</td>
</tr>
<tr>
<td>Loading</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loading radius (a)</td>
<td>Deterministic</td>
<td>3.78 inches</td>
<td>-</td>
</tr>
<tr>
<td>Tire pressure (q)</td>
<td>Deterministic</td>
<td>100 psi</td>
<td>-</td>
</tr>
</tbody>
</table>
The results of sensitivity analysis and importance measures are presented for the case of correlated variables. Figure 6 shows the sensitivity measures for the fatigue cracking to the means of the random variables used in this example. The positive value of a sensitivity measure indicates that the variable serves as a “resistance” (capacity) variable. Conversely, negative value indicates a “load” (demand) variable. Before rehabilitation actions, it is observed the means of thickness of asphalt layer, $\mu(h)$ and initial traffic, $\mu[ESAL(0)]$ are the variables to which the reliability is most sensitive (positively and negatively, respectively), where $\mu(\cdot)$ indicates the mean of the random variable. Whereas, after rehabilitation actions, it is observed that the fatigue cracking becomes most sensitive to the mean of modulus of asphalt layer, $\mu(E)$ than $\mu(h)$.

Thus, with respect to the fatigue cracking failure mode, it is desirable to keep asphalt layer as thick as possible in the initial design. Furthermore, because the post-reliability is most sensitive to $\mu(E)$, it is very important to evaluate the damaged condition of the modulus of the asphalt layer at the time of rehabilitation actions and any error in doing so can significantly affect accuracy of the estimated reliability of the system. In Figure 6, it is also observed that overlay layer modulus, E_1 act as a “load” variable. This is in conformance with behavior of flexible pavements with thin to moderate thickness asphalt layers where an increase in modulus of asphalt layer increases tensile strains; thus increases failure probability for fatigue cracking. It is also observed that the sensitivity to the mean of all the variables, except for $\mu(h)$, decreases
with time after initial load application and rehabilitation actions. The sensitivity of $\mu(h_2)$ increases with time following the application of rehabilitation action.

![Graph showing sensitivities](image)

Figure 6. Sensitivities of the means of random variables for fatigue cracking estimates

Thus, with respect to the fatigue cracking failure mode, it is desirable to keep asphalt layer as thick as possible in the initial design. Furthermore, because the post-reliability is most sensitive to $\mu(E_2)$, it is very important to evaluate the damaged condition of the modulus of the asphalt layer at the time of rehabilitation actions and any error in doing so can significantly affect accuracy of the estimated reliability of the system. In Figure 6, it is also observed that overlay layer modulus, E_1 act as a “load” variable. This is in conformance with behavior of flexible pavements with thin to moderate thickness asphalt layers where an increase in modulus of asphalt layer increases tensile strains; thus increases failure probability for fatigue cracking. It is also observed that the sensitivity to the mean of all the variables, except for $\mu(h_2)$, decreases with time after initial load application and rehabilitation actions. The sensitivity of $\mu(h_2)$ increases with time following the application of rehabilitation action.

Similarly, Figure 7 shows the sensitivity measures for rutting to the means of the random variables used in this example. Before the rehabilitation action, it is observed that the rutting is most sensitive to the means of the thickness of asphalt layer, $\mu(h_2)$ and the initial traffic, $\mu[ESAL(0)]$. Similar to the fatigue cracking, in the initial design it is desirable to keep the asphalt layer as thick as possible also for rutting. Furthermore, it is observed that the sensitivity
to the mean of the subgrade layer $\mu(E_4)$ is high indicating the importance of improving the stiffness of subgrade layer. After the rehabilitation, it is seen that the rutting is most sensitive to, $\mu(E_4)$. Thus improving stiffness of the subgrade layer can be helpful in the long run when considering the performance of the pavement against rutting.

![Graph 1](image1.png)

Figure 7. Sensitivities of the means of random variables for rutting estimates

Figure 8, shows the importance measures of the random variables for the fatigue cracking. For the importance measures, a negative value indicates a “resistance” variable and a positive value indicates a “load” variable. Before the rehabilitation action, it is observed that h_2 and $ESAL(0)$ are the most important “resistance” and “load” variables, respectively. Whereas, after the rehabilitation, the random variables E_2 and $ESAL(0)$ are the most important. This is in conformance with results from the sensitivity analysis. It can be said that the behavior of the asphalt layer is critical for the performance of the pavement against fatigue cracking.

![Graph 2](image2.png)
Similarly, Figure 9 shows the importance measures of the random variables for rutting. It is seen that before the rehabilitation, the thickness of the asphalt layer, \(h_1 \), is an important resistance variable. Whereas, after the rehabilitation, the thickness of the base layer, \(h_3 \), and the subgrade modulus, \(E_4 \) become equally important variables. For rutting, it is observed that along with the asphalt layer thickness, it is critical to improve the stiffness of the subgrade by means of proper compaction or any suitable practice to improve reliability. From the results obtained, it is seen that initial traffic, \(ESAL(0) \), is a critical “load” variable. It is observed that the sensitivity to the mean of and importance of \(ESAL(0) \) increase after the rehabilitation actions for both failure modes. Thus, decreasing the uncertainty in predicting the initial traffic can improve the accuracy of the estimated performance of pavements against fatigue cracking and rutting both before and after rehabilitation. Also it is observed that the sensitivity to the mean of and importance of \(ESAL(0) \) is high during the initial period of load application and immediately after rehabilitation but they diminish rapidly with time. This might be because of the fact that, as the accumulated traffic increases, the contribution of the initial traffic to the total demand becomes less significant.
Figure 9. Importance measures of the random variables for rutting estimates
3. Use of Response Surface Methodology and Parametric Regression for Modeling the Pavement Fragilities

3.1. Response Surface Modeling

The pavement responses required for capacity modeling can be computed using pavement response model that is based on the theory of linear elasticity. In the linear elastic theory, directional stresses and strains are obtained by solving the 4th order differential equation. The differential equation for the layered system cannot be solved analytically and is solved numerically for specified boundary conditions. Therefore, the relation between pavement responses and input decision variables that controls responses are implicit and pavement response model can be termed as black-box model.

Conventionally, the limit state function is evaluated using MCS technique. However, the MCS technique typically requires a relatively large number of simulations in order to obtain sufficiently accurate estimates of failure probabilities and it becomes impractical to simulate the black-box model thousands of times. Under these circumstances, variance reduction techniques can improve the efficiency of MCS and significantly reduce the number of simulations. But even after using the variance reduction techniques and availability of advanced computers, the computation time is very large, then the black-box model can be categorized as very complex. Figure 10 shows the general categorization of analytical models based on computational time and structural reliability methods that can be most suitably applied. Since the use of MCS technique becomes impractical for very complex models, use of alternative approaches that can provide accurate results seem to be justifiable. Based on the computational time, the pavement response model presented in the paper can be categorized as very complex. In the paper, an alternative approach of response surface methodology (RSM) is used to approximate the black-box model into a closed form function.

![Figure 10. Computational Time for Reliability Analysis and Suitable Reliability Methods](image)

3.1.1. Response Surface Methodology (RSM)

The Response surface methodology has already been widely used in the field of reliability analysis (Lee and Kwak, 2006; Yao and Wen, 1996; Wong, et. al., 2005; Faravelli, 1988; Rajashekar and Ellingwood, 1993; Bucher and Bourgund, 1990). The primary objective of
RSM in reliability analysis is to approximate the implicit responses into a closed-form function of decision variables. The approximated function will be computationally simple and can be easily simulated to obtain reliability estimates. Typically, the approximated response model can be expressed as

\[
y = \hat{y} + \pi
\]

\[
\hat{y} = f(x)
\]

where, \(y \) is the actual response, \(\hat{y} \) is the estimated response, \(x \) is the vector or matrix of decision variables, \(\pi \) is the model error or residual and function \(f \) can be a polynomial of any order. Since the pavement responses for are non-linear, initially it is assumed that second order (quadratic) polynomial will fit appropriately. The general form of the second order polynomial can be expressed as

\[
y = \eta_0 + \sum_{i=1}^{n} \eta_i x_i + \sum_{i=1}^{n} \eta_i x_i^2 + \sum_{i=1}^{n-j} \sum_{j=i+1}^{\min(i,j)} \eta_{ij} x_i x_j + \pi
\]

where, \(\eta_0, \eta_i, \eta_{ij}, \eta_{ij} \) are the unknown coefficients to be estimated, \(n \) is the number of decision variables. In the above polynomial, even though there are higher order terms, it is still a linear combination of variables in \(x \) and can be expressed as

\[
y = \eta_0 + \sum_{i=1}^{l} \eta_i z_i + \pi
\]

where, \(z \) represents variables, squares of variables and interactions between variables, \(l \) is the total number of parameters in the polynomial. For quadratic polynomial, for \(n \) variables there are \(l = (n+1)(n+2)/2 \) parameters. Suppose there are \(k \) observations, the Eq. 27 can be expressed in matrix notation as

\[
y = z\eta + \pi
\]

where,

\[
y = \begin{bmatrix}
y_1 \\
y_2 \\
\vdots \\
y_k
\end{bmatrix}, \quad z = \begin{bmatrix}
1 & z_{11} & z_{12} & \cdots & z_{1l} \\
1 & z_{21} & z_{22} & \cdots & z_{2l} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & z_{k1} & z_{k2} & \cdots & z_{kl}
\end{bmatrix}, \quad \eta = \begin{bmatrix}
\eta_0 \\
\eta_1 \\
\vdots \\
\eta_l
\end{bmatrix}, \quad \pi = \begin{bmatrix}
\pi_0 \\
\pi_1 \\
\vdots \\
\pi_l
\end{bmatrix}
\]
3.1.2. Least Square Estimation (LSE)

The estimates of unknown coefficients in η in the quadratic polynomial can be evaluated using the least squares estimation technique. In the least square method, unknown estimates are obtained by minimizing the sum of the square of errors, SS_E

$$SS_E = \sum_{i=1}^{k} \pi_i^2$$ \hfill (29)

Therefore, the estimators $\hat{\eta}$ of η can be obtained by solving following equation

$$\frac{\partial SS_E}{\partial \eta} = 0$$ \hfill (30)

The solution to the Eq. 30 in the matrix notation is

$$\hat{\eta} = (z'z)^{-1} z'y$$ \hfill (31)

Once the parameters are estimated, the fitted response surface model can be expressed as

$$\hat{y} = z\hat{\eta}$$ \hfill (32)

In least squares estimation, the estimates of coefficients are unbiased estimators under the assumption that the errors π_i are normally distributed and statistically independent with zero mean and constant variance ζ^2. The next step is to validate the fitted model.

3.1.3. Statistical Validation of Fitted Model

There are number of measures that can be used to statistically validate the model. Some of the very common measures that are used for statistical validation are discussed. One of the most common and simple measure to determine significance of the model is the coefficient of determination, R^2 which is obtained as (Montgomery, 2002)

$$R^2 = \frac{SS_R}{SS_T}$$ \hfill (33)

where, SS_R is the sum of the square due to regression and SS_T is the total sum of squares and can be computed as
\[
SS_R = \hat{\eta}' \mathbf{z}' \mathbf{y} - \frac{\left(\sum_{i=1}^{k} y_i \right)^2}{k}
\] \hspace{2cm} (34)

\[
SS_T = SS_R + SS_E
\] \hspace{2cm} (35)

where, \(SS_E \) is the sum of squares due to error defined in Eq. 29. Value of \(R^2 \) is between 0 and 1 where 1 represents the best fit. However, one of the problems with \(R^2 \) is that it increases with the addition of variables in the model without giving information about usefulness of the new variable in the model. Adjusted \(R_{adj}^2 \) is more preferable as it has the advantage that it only increases if the added variable reduces the mean square error in the model. The adjusted \(R_{adj}^2 \) can be computed as

\[
R_{adj}^2 = 1 - \frac{SS_E}{SS_T} \frac{(k - p)}{(k - 1)}
\] \hspace{2cm} (36)

Often root means square error (\%RMSE) is used to determine overall accuracy of the fitted model. The \%RMSE defined by prediction error sum of squares (PRESS) has advantage that it does not provide overly optimistic behavior of the model (Venter, et. al. 1997). The PRESS and \%RMSE statistics can be computed as

\[
PRESS = \sum_{i=1}^{k} \pi_i^2 = \sum_{i=1}^{k} (y_i - \hat{y}_{(i)})^2
\] \hspace{2cm} (37)

\[
%RMSE = 100 \sqrt{\frac{PRESS}{\frac{1}{k} \sum_{i=1}^{k} y_i}}
\] \hspace{2cm} (38)

In addition to the above discussed statistics, residual plots can be efficiently used to validate the accuracy of the model.

Coefficient of determination and \%RMSE can be used as the global statistics to validate the overall accuracy of the model. But in addition to overall accuracy, it is necessary to test whether linear relationship exists between response and design variables. This is usually tested using \(F_0 \) statistics that depend on sum of square of regression coefficients and error and degrees of freedom for the model and can be obtained as (Montgomery, 2002)

\[
F_0 = \frac{SS_R / n}{SS_E / (k-1)}
\] \hspace{2cm} (39)
If the F_0 statistic is greater than desired value, it signifies the linear relationship between response and decision variables is polynomial.

3.1.4. Model Selection

One of the challenges in multiple regression analysis is to select important variables to be used in the model. In the quadratic polynomial, for n variables there are $(n+1)(n+2)/2$ parameters and there is always the possibility that some of the parameters may not contribute significantly to the change in response. These parameters can be removed from the developed response model without affecting the accuracy of predicted response. Sometimes the presence of unwanted variables can also increase the error in the model. Therefore it is necessary to select a model that includes all the important parameters.

In the research, backward elimination process is used for model selection. In the backward elimination, model development starts with all the parameters i.e. l. The model with l parameters will have certain R_{adj}^2. Since the R_{adj}^2 only increases with addition of significant variable, the elimination of significant variable from the model will cause significant reduction in the value of R_{adj}^2. In multiple linear regression, t_0 is used to determine the significance of individual regression coefficient in the model and can be obtained as (Montgomery, 2002)

$$t_0 = \frac{\hat{\eta}_i}{\sqrt{\hat{\varsigma}^2 C_{ii}}}$$

(40)

where, $\hat{\varsigma}^2$ is the estimate of the variance in the error term in the model and is computed as $\hat{\varsigma}^2 = SS_E / (k - l)$ and C_{ii} is the variance of the ith coefficient obtained from covariance matrix $C = (\mathbf{z}' \mathbf{z})^{-1}$. Once the model with l parameters is developed and t_0 statistics is obtained, elimination process is started wherein the variable with t_0 statistics closest to 0 is removed and the reduced model is checked for R_{adj}^2. This process is continued till there is a significant decrease in the value of R_{adj}^2. Final model will be one of the best fitted model and can be validated for different tests as already discussed.

3.2. Modeling the pavement fragilities

Typically in performance based design, the performance is modeled in terms of fragilities. Advantage of expressing performance in terms of fragilities is that the fragilities can be easily defined for different performance requirements. For instance, fragilities can be developed for performance measures like fatigue cracking, rutting, thermal cracking and other performance measures. Even within each performance measure, the fragilities can be developed for different
performance indices like for instance, the fragilities for 10% and 45% cracking in fatigue. Developed fragilities then can be used as performance measures for different loading conditions like high traffic demand, low traffic demand, loading due to snow, etc. One of the most important uses of fragilities is that the fragilities expressed in terms of decision variables can be efficiently used in optimization formulations.

The fragility in the simple words can be defined as the conditional probability of failure given the level of demand and can be expressed as

\[P_{F/D} = P\left[g(x) \leq 0 / N_D \right] \] (41)

where, the form \(P\left[g(x) \leq 0 / N_D \right] \) is the conditional probability of event \(g(x) \leq 0 \) given the values of \(N_D \). From the definition of conditional probabilities, the fragilities can be obtained by evaluating the limit state function for the deterministic demand. The uncertainty in the event \(g(x) \leq 0 \) for given \(N_D \) arises from the inherent randomness in the capacity variables in \(x \). Once the fragility is obtained, it can be used to compute failure probability of the system by accounting for uncertainties in the demand as follows

\[P_f = \int_0^\infty P\left[g(x) \leq 0 / N_D \right] P[N_D] dN_D \] (42)

where, \(P\left[g(x) \leq 0 / N_D \right] \) is the fragility for given performance measure and \(P[N_D] \) is the distribution for the demand or hazard function. However, the fragilities are the functions of decision variables (layer thickness, layer modulus of elasticity) in the sense that stronger the pavement lesser is the failure probability and vice versa. To express fragilities in terms of decision variables, in the paper, a parametric regression model is developed for defining a closed-from function for fragilities.

3.2.1. Parametric Regression Modeling

Parametric modeling for failure probabilities is already a popular area in the field of lifetime data analysis (Lawless, 2003). The basic concept in parametric modeling for failure probabilities is to fit an appropriate model using the available failure data. The most common models used for parametric modeling are lognormal, extreme-type I, Weibull and logistic distribution models. Parametric modeling involves simply determining the distribution parameters that best fits the available failure data. However, the relation between decision variables and fragilities is of interest. The effect of decision variables can be incorporated in parametric model by specifying a relationship between distribution parameters and decision variables. Generally, for modeling the fragilities, use of two parameter lognormal distribution is very common [38] and parametric model for lognormal distribution can be expressed as
where, \(\psi \) and \(\xi \) are the lognormal distribution parameters i.e. mean and standard deviation respectively, \(\Phi \) is the standard normal cumulative distribution function. In the above equation, the mean of lognormal distribution is made a function of decision variables in \(\mathbf{x} \). A linear specification is assumed between distribution parameter and decision variables and can be expressed as

\[
\psi(\mathbf{x}) = \mathbf{c}' \mathbf{x}
\]

(44)

where, \(\mathbf{c} \) is the vector of regression parameters to be estimated. Estimation of regression parameters falls in the category of non-linear regression and can be estimated efficiently using maximum likelihood estimation technique.

3.2.2. Maximum Likelihood Estimation (MLE)

The basic behind MLE is to determine the parameters that maximize the likelihood of the available observations. For the fragilities evaluated using MCS technique, the limit state function is evaluated using binary numbers i.e. 1 for the failure event \(g \leq 0 \) and 0 otherwise and the likelihood function for fragilities can be expressed as (Shinozuka, et. al. 2000)

\[
L(\mathbf{c}, \xi) = \prod_{i=1}^{M} \left[F(N_{D_i}, \mathbf{x}_i) \right]^{e_i} \left[1 - F(N_{D_i}, \mathbf{x}_i) \right]^{1-e_i}
\]

(45)

where, \(F(\cdot) \) is the fragility curve, \(M \) is the total number of pavement sections simulated, \(N_{D_i} \) is the demand to which pavement \(i \) is subjected, \(e_i = 1 \) or 0 depends on the state of limit state. The likelihood function defined in Eq. 45 is maximized to obtain parameters estimates and can be computed easily using standard optimization algorithms. Once the parameters are estimated using MLE, the next step is to validate the developed model for its accuracy.

3.2.3. Model Validation

The parametric regression model is developed with the assumption of linear specification between model parameter \(\psi \) and decision variables in \(\mathbf{x} \). Therefore it is necessary to validate the developed model for its accuracy and assumptions. In the research, primarily the different kinds of plots are used to verify the model. To check the accuracy of the developed model, the actual probabilities are plotted against the predicted probabilities. If all the points in the plot are scattered over 1:1 line, then the model is validated for accuracy. Next the residual plots against predicted probabilities and decision variables can be used to validate the model. Any trend is
residual plot indicates that some transformation or higher order term might be needed in the model else it signifies that the included parameters are significant. In addition to the plots, mean absolute percentage error $MAPE$ can be used to validate the accuracy of the model. $MAPE$ can be obtained as

$$MAPE = \frac{1}{k} \sum_{i=1}^{k} \left| \frac{P_{\text{actual}} - P_{\text{predicted}}}{P_{\text{actual}}} \right|$$

(46)

3.2.4. Model Selection

In maximum likelihood estimation technique, each estimated regression parameters will be characterized by the corresponding standard deviation. Best fit model will have standard deviation of all the estimated regression parameters low as compared to their mean value i.e. coefficient of variation will be very low. Also, while specifying the relationship between distribution parameter and decision variables, there is always the possibility that some of the variables might not contribute to the model. Therefore it is necessary to remove the variables that are not significant in the model. In the paper, backward elimination is used for the model selection process. In backward elimination, selection process starts with developing a model with all the possible variables in the linear specification. The regression parameters for the model are estimated by maximizing the likelihood function. The process of elimination is started with the variable corresponding to regression parameter with highest coefficient of variation. As the removed variable is assumed to be insignificant in the model, elimination of the same will not significantly affect the maximum value of likelihood function of the reduced model. The process of elimination is continued till there is a significant decrease in the maximum likelihood function value. The model in the step previous to significant decrease in the maximum likelihood value can be chosen as the best possible combination of decision variables.

3.3. Numerical Example

To illustrate the proposed methodology, fatigue cracking failure for flexible pavement is considered. Typical three-layer flexible pavement system is considered for numerical study. For fatigue cracking, maximum tensile strain at the bottom of the asphalt layer controls the allowable number of repetitions and the response model is developed for the critical tensile strain. To account for the effects of rehabilitation actions, it is assumed that an overlay will be constructed at the time of rehabilitation actions and the system will behave as four layered system. After rehabilitation actions, tensile strain at the bottom of overlay is considered critical and another response model is developed to account for the pavement responses after rehabilitation actions. Using developed response models, the fragilities are computed for the pavement system before
and after rehabilitation actions. Once the fragilities are obtained, the reliability estimates are estimated by accounting for uncertainties in the demand variables.

Table 1 lists all the decision variables x that enter into the model. Based on physical and geometrical constrains, all the random variables are assumed to follow a Lognormal distribution. For developing the response model, decision variables are normalized to obtain dimensionless decision variables so that the developed response model can be used irrespective of the measuring units. Table 2 shows the typical upper and lower limits that are used to normalize the decision variables.

Table 2. Typical upper and lower limits values considered for modeling pavement response model

<table>
<thead>
<tr>
<th>Variable Description</th>
<th>Symbol</th>
<th>Unit</th>
<th>Lower Limit</th>
<th>Upper Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overlay thickness*</td>
<td>h_i</td>
<td>Inches</td>
<td>2.5</td>
<td>5.0</td>
</tr>
<tr>
<td>Overlay modulus*</td>
<td>E_1</td>
<td>Psi</td>
<td>300,000</td>
<td>600,000</td>
</tr>
<tr>
<td>Asphalt layer thickness</td>
<td>h_2</td>
<td>Inches</td>
<td>5.0</td>
<td>9.5</td>
</tr>
<tr>
<td>Asphalt layer modulus</td>
<td>E_2</td>
<td>Psi</td>
<td>300,000</td>
<td>600,000</td>
</tr>
<tr>
<td>Base layer thickness</td>
<td>h_3</td>
<td>Inches</td>
<td>9.5</td>
<td>14</td>
</tr>
<tr>
<td>Base layer modulus</td>
<td>E_3</td>
<td>Psi</td>
<td>10,000</td>
<td>30,000</td>
</tr>
<tr>
<td>Subgrade modulus</td>
<td>E_4</td>
<td>Psi</td>
<td>5,000</td>
<td>15,000</td>
</tr>
</tbody>
</table>

3.3.1. Pavement Response Model for Critical Tensile Strain
The set of observations for critical tensile strain at the bottom of asphalt layer before rehabilitation actions and at the bottom of overlay after rehabilitation actions are obtained from analytical pavement response model. Table 3 shows the final response models along with the statistical validation of the developed models. All the statistics show that the developed response models are able to describe the actual responses obtained from the analytical model. Residual plots are shown in Figure 11 and it is seen that the assumption of constant variance for residuals is validated and there is no trend in the residuals.
Table 3. Results for developed response models for critical tensile strain

<table>
<thead>
<tr>
<th>Description</th>
<th>Model</th>
<th>Model Validation Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before rehabilitation actions</td>
<td>$\varepsilon_i = 0.001 - 0.0011 \times h_2 - 0.0005 \times E_2 - 0.0002 \times E_3$ $+ 0.0004 \times h_2^2 + 0.0001 \times E_2^2 + 1.733e^{-5} \times E_3^2$ $+ 0.0002 \times h_2 \times E_2 + 0.0001 \times h_2 \times E_3 + 6.403e^{-5} \times E_2 \times E_3$</td>
<td>$R^2 = 0.9991$ $R_{adj}^2 = 0.9988$ $%RMSE = 4.22%$ $F_0 = 3740.36 \div 3.07$</td>
</tr>
<tr>
<td>After rehabilitation actions</td>
<td>$\varepsilon_i = 0.0008 - 0.0003 \times h_1 - 0.0002 \times E_1 - 5.095e^{-5} \times h_2 - 0.0038 \times E_2$ $- 5.299e^{-5} \times E_3 + 0.0037 \times E_2^2 - 3.503e^{-5} \times E_1 \times h_1 + 0.0015 \times E_2 \times h_1$ $+ 0.0009 \times E_1 \times E_1 + 3.163e^{-5} \times E_3 \times h_2 + 0.0001 \times E_3 \times E_2$</td>
<td>$R^2 = 0.9911$ $R_{adj}^2 = 0.9909$ $%RMSE = 3.88%$ $F_0 = 4112.39 \div 2.47$</td>
</tr>
</tbody>
</table>

Figure 11. Residual plots for developed response model

3.3.2. **Fragility Model for Fatigue Cracking Failure**

The response surface model for tensile strains before and after rehabilitation actions in conjunction with MCS is used to simulate the failure data for fatigue cracking. The parameters ϵ and ξ are estimated using MLE. Once the model is developed, it is validated for accuracy and made assumptions.
3.3.2.1. Before rehabilitation actions (Three-layer System)

Figure 12 shows the model selection process with maximum likelihood function value computed at each step of the backward elimination. In the Figure 12, it is seen that the maximum likelihood value decreases significantly after step 6 and therefore model at step 6 is chosen as the final model. The linear specification for the model in step 6 is of the form

$$\psi = c_0 + c_1 \times h_2 + c_2 \times E_2 + c_3 \times E_3 - c_4 \times h_2^2$$

(47)

Parameters are estimated using MLE and Table 4 gives the details about parameter estimates along with parameter standard deviations and corresponding correlation matrix. Figure 13 shows the plots used for model validation. All the plots in Figure 13 validate the developed model for accuracy and made assumptions. The mean absolute percentage error for the developed model is $MAPE = 5.36\%$ which is very low and further validates the model.
Table 4. Details about parameter estimates obtained from fragility modeling for pavement system before rehabilitation actions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Correlation Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td></td>
<td>c_0 c_1 c_2 c_3 c_4 ξ</td>
</tr>
<tr>
<td>c_0</td>
<td>6.47</td>
<td>0.99</td>
<td>1.00 -0.96 -0.22 -0.05 0.93 -0.11</td>
</tr>
<tr>
<td>c_1</td>
<td>12.74</td>
<td>2.68</td>
<td>-0.96 1.00 0.00 -0.11 -0.99 0.05</td>
</tr>
<tr>
<td>c_2</td>
<td>1.87</td>
<td>0.26</td>
<td>-0.22 0.00 1.00 0.07 0.02 0.15</td>
</tr>
<tr>
<td>c_3</td>
<td>1.02</td>
<td>0.19</td>
<td>-0.05 -0.11 0.07 1.00 0.14 0.11</td>
</tr>
<tr>
<td>c_4</td>
<td>-5.05</td>
<td>1.78</td>
<td>0.93 -0.99 0.02 0.14 1.00 -0.03</td>
</tr>
<tr>
<td>ξ</td>
<td>0.67</td>
<td>0.05</td>
<td>-0.11 0.05 0.15 0.11 -0.03 1.00</td>
</tr>
</tbody>
</table>

Figure 13. Plots used for validating fatigue cracking parametric regression model for pavement system before rehabilitation actions
3.3.2.2. After rehabilitation actions (Four-layer System)

Similarly for the pavement system after rehabilitation actions, the linear specification of the final model obtained through selection process is

\[
\psi = c_0 + c_1 \times h_1 + c_2 \times E_1 + c_3 \times h_2 + c_4 \times E_2 + c_5 \times E_3
\]

\[
+ c_6 \times h_1^2 + c_7 \times E_1^2 + c_8 \times E_2^2 + c_9 \times h_1 \times E_1 + c_{10} \times h_1 \times h_2
\]

\[
+ c_{11} \times h_1 \times E_2 + c_{12} \times E_1 \times h_2 + c_{13} \times E_1 \times E_2 + c_{14} \times h_2 \times E_2
\]

\[
+ c_{15} \times h_2 \times E_3 + c_{16} \times E_2 \times E_3
\]

(48)

Table 5 gives the details about parameter estimates along with parameter standard deviations and corresponding correlation matrix. Figure 14 shows the plots used for model validation. All the plots in Figure 14 validate the developed model for accuracy and made assumptions as there is no discrepancy found. The mean absolute percentage error for the developed model is \[MAPE = 9.36\% \] which is low and further validates the model.
Table 5. Details about parameter estimates obtained from fragility modeling for four-layer system

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Correlation Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>c_0</td>
</tr>
<tr>
<td>c_0</td>
<td>9.02</td>
<td>0.0018</td>
<td>1.00</td>
</tr>
<tr>
<td>c_1</td>
<td>1.71</td>
<td>0.0031</td>
<td>-0.71</td>
</tr>
<tr>
<td>c_2</td>
<td>-1.57</td>
<td>0.0027</td>
<td>-0.30</td>
</tr>
<tr>
<td>c_3</td>
<td>0.19</td>
<td>0.0029</td>
<td>0.69</td>
</tr>
<tr>
<td>c_4</td>
<td>47.84</td>
<td>0.0059</td>
<td>-0.64</td>
</tr>
<tr>
<td>c_5</td>
<td>0.88</td>
<td>4.4000E-14</td>
<td>0.00</td>
</tr>
<tr>
<td>c_6</td>
<td>1.13</td>
<td>0.0022</td>
<td>0.04</td>
</tr>
<tr>
<td>c_7</td>
<td>1.14</td>
<td>0.0068</td>
<td>0.48</td>
</tr>
<tr>
<td>c_8</td>
<td>-39.82</td>
<td>0.0017</td>
<td>0.27</td>
</tr>
<tr>
<td>c_9</td>
<td>1.92</td>
<td>0.0064</td>
<td>-0.53</td>
</tr>
<tr>
<td>c_{10}</td>
<td>0.44</td>
<td>0.0047</td>
<td>0.48</td>
</tr>
<tr>
<td>c_{11}</td>
<td>-18.32</td>
<td>0.0058</td>
<td>-0.51</td>
</tr>
<tr>
<td>c_{12}</td>
<td>0.22</td>
<td>0.0055</td>
<td>-0.56</td>
</tr>
<tr>
<td>c_{13}</td>
<td>-11.73</td>
<td>0.0037</td>
<td>-0.60</td>
</tr>
<tr>
<td>c_{14}</td>
<td>2.83</td>
<td>0.0039</td>
<td>-0.68</td>
</tr>
<tr>
<td>c_{15}</td>
<td>-0.64</td>
<td>0.0017</td>
<td>-0.42</td>
</tr>
<tr>
<td>c_{16}</td>
<td>-1.24</td>
<td>0.0040</td>
<td>-0.53</td>
</tr>
<tr>
<td>ξ</td>
<td>0.61</td>
<td>0.0015</td>
<td>-0.83</td>
</tr>
</tbody>
</table>
3.3.3. Pavement Performance

Using the developed response surface model and parametric regression model for fragilities, the reliability estimates were obtained for fatigue cracking failure by solving the integral in the Equation 42. The reliability estimates obtained from response model and fragilities are compared to the reliability estimates obtained by simulating analytical pavement response model. Figure 15 shows the reliability estimates for the flexible pavement system before as well as after rehabilitation actions. In the Figure 15, the rehabilitation actions are carried in the year 6 and an overlay is constructed at the time of rehabilitation actions. It is observed that the developed response surface and fragility models can be used efficiently to predict the performance before as well as after rehabilitation actions.

Figure 14. Plots used for validating fatigue cracking parametric regression model for pavement system after rehabilitation actions
Figure 15. Fatigue cracking reliability estimates obtained using developed response surface model and parametric regression model for fragilities
4. Reliability-based optimization of flexible pavements

The primary objectives in determining the optimal rehabilitation action is safety in performance and economy in design. In addition to balance between safety and economy, since the decision variables that control the performance of flexible pavements are uncertain, it is necessary to account for the uncertainty in performance. Therefore probabilistic optimization technique that accounts for uncertainties is necessary while optimizing the rehabilitation actions for flexible pavements. One of the probabilistic optimization techniques is reliability-based optimization (RBO). The RBO can be efficiently used in balancing the needs between safety in performance and economy in design. In RBO, pavement reliability which is the probability that pavement will perform its intended function under a given set of conditions over a specified period of time is used as a performance measure. One of the most important advantages of using reliability as a performance measure is that the reliability models can take into account pavement characteristics and utilization patterns in the specification of propensity functions. Though the use of RBO seems attractive and has advantages, the RBO problems are complex and require a robust optimization technique that can provide a global optimal solution. Traditional optimization techniques which include gradient projection algorithms are robust in finding a single local optimal solution. However, complex domain like in RBO can have more than one optimal solutions and therefore more robust technique is required that can find a near-global solution. In the research, the Genetic Algorithm (GA) is used because of its efficiency in finding a near-global solution. The GA performs a global and probabilistic search thus increasing the likelihood of obtaining a near-global solution.

Typically, RBO is a type of probabilistic optimization technique that accounts for uncertainties in the performance of the structure. The performance is measured in terms of probability of failure, P_f, or reliability, R_e, of the structure. In RBO, the cost function can be considered deterministic or probabilistic based on the needs of design strategies. The obtained performance measures and cost function can be formulated in optimization problem as an objective function or a constraint based on decision policies to be implemented.

4.1. Decision Policies in Reliability-based Optimization

One of the main advantages of RBO is that it balances the needs between safety against performance and economy in design. The decision policies in RBO that balances the need for flexible pavements can formulated as

1. Minimize rehabilitation cost by keeping reliability within desired limits
2. Maximize reliability by constraining the budget for rehabilitation actions
3. Trade-off between minimizing cost and maximizing reliability

Decision policy# 1 is best suited in the situation when desired performance requirements are known and there is no constraint on budget for rehabilitation actions. With the knowledge of desired performance, only option is to find minimum cost that can keep performance within desired limits. Whereas, decision policy# 2 is suited for the situation when there is constraint on
budget for the application of rehabilitation actions. In such situations, the quantity of interest will be the maximum reliability that can be obtained within budget constraints. However, generally there is always a conflict between cost and performance and trade-off between two is preferred as a possible solution. In such situation decision policy# 3 is preferred, wherein a trade-off decision strategy that can minimize cost and maximize performance is possible.

4.1.1. Problem Formulation

Based on the decision policies, the optimization problem formulation for each decision policy will be different. If \(RC(x) \) is the rehabilitation cost that is the function of decision variables, the optimization problem for decision policy# 1 can be formulated as

\[
\min \quad RC(x) \\
\text{s.t.} \quad \text{Rel}(x) \geq \text{Rel}_t \\
x_i^l \leq x_i \leq x_i^u
\]

where, \(\text{Rel}_t \) is the target reliability, \(l \) and \(u \) are the lower and upper limits of the decision variables respectively. The formulation in Eq. 49 can be used to minimize the rehabilitation cost by constraining the reliability within desired limit. Though the cost is minimized in the above formulation, the optimization search will have tendency to find the solution with active performance constraint i.e. estimated \(\text{Rel} \) will be equal or very close to \(\text{Rel}_t \).

Decision policy# 2 can be used in the situations where budget is constrained and performance is to be maximized. Optimization problem for such situation can be formulated as

\[
\max \quad \text{Rel}(x) \\
\text{s.t.} \quad RC(x) \leq RC_B \\
x_i^l \leq x_i \leq x_i^u
\]

where, \(RC_B \) is the budget constraint on rehabilitation actions. The formulation in the Eq. 50 can be used to obtain decision parameters that maximize the reliability of flexible pavement keeping the cost for rehabilitation actions within the budget. The trade-off between reliability and cost can be taken care by optimizing both the objective functions in Eq. 49 and 50 and the problem can be formulated as

\[
\min \quad RC(x) \quad \& \quad \max \quad \text{Rel}(x) \\
\text{s.t.} \quad x_i^l \leq x_i \leq x_i^u
\]

Reliability-based optimization formulations are complex and require a robust optimization technique that can provide a global optimal solution. Traditional optimization techniques which include gradient projection algorithms are robust in finding a single local optimal solution. However, complex domain like in RBO can have more than one optimal solutions and therefore more robust technique is required that can find a near-global solution. In the paper, the Genetic Algorithm (GA) is used because of its efficiency in finding a near-global solution. The GA performs a global and probabilistic search thus increasing the likelihood of obtaining a near-global solution.
4.2. Genetic Algorithm (GA)
A GA is a stochastic optimization tool that is based on mechanics of natural evolution and genetics (Chatterjee, et. al., 1996). In GA, the search algorithm reproduces and creates new population of chromosomes at each generation and competes for survival to stay in the next generation. Beginning with randomly generated population of chromosomes from the solution space, the process of evolution and survival is controlled by operators such as selection, crossover, and mutation.

As already discussed, the selection operator is based on the mechanics of natural selection and survival. At every generation, the population that shows the improvement in fitness of the objective function has better chance to survive and reproduce. Common methods used for the selection process are tournament selection, proportionate selection, and ranking selection (Deb, 1999). The survived population of chromosomes is termed as parent solution. During each generation, total population of chromosomes is maintained same and to fill the space created by eliminated chromosomes, a crossover operator merges two parent solutions to generate offspring. On the other hand, a mutation operator randomly modifies the parent or offspring solutions and helps in speeding up the convergence towards global optima. Typically, the chromosomes in population are encoded in the form of bit strings using binary integers 0 and 1. Figure 16 shows the representation of chromosomes in binary form and process of crossover and mutation that are typically used in GA.

![Figure 16. Binary coding of chromosomes, crossover and mutation process in GA](image-url)
In GA, the process is initiated by randomly encoding a solution. Once a solution is encoded in the form of bit string, the selection operator identifies the parent solutions that improve fitness of objective function and survive for the next generation. After identifying the parent solutions, the crossover and mutation operators are used to reproduce offspring from parent solutions as shown in Figure 16. The process is continued through continuous improvement in fitness of objective function until a global or near-global solution is reached.

4.3. Multi Objective Genetic Algorithm (MOGA)

The optimization problem formulation in Eq. 51 involves two objective functions and the Multi Objective Genetic Algorithm (MOGA) is required for evaluating such formulations. The MOGA primarily involves finding a set of solutions each of which satisfies the objectives and are non-dominant with respect to each other (Konak, et. al., 2006). For minimization problem, the feasible solution \(\mathbf{x}^* \) is said to be non-dominant if there exists no feasible solution \(\mathbf{x} \) such that (Mathakari, et. al., 2007)

\[
\begin{align*}
 f_o(x) &\leq f_o(x^*) & \text{for all } o \in \{1, 2, \ldots\} \quad (52) \\
 f_o(x) &< f_o(x^*) & \text{for at least one } o \in \{1, 2, \ldots\} \quad (53)
\end{align*}
\]

where, \(f_o \) is the objective function, \(o \) represents the set of number of objective functions. The optimal solution that satisfies the conditions in Eq. 52 and 53 is termed as Pareto optimal. The set of all non-dominant solutions that satisfies objectives is termed as Pareto optimal solution set and the corresponding set of objective values is termed as Pareto front.

The Pareto optimal set is determined in MOGA using the ranking approach in conjunction with GA operators [41]. In ranking approach, the population of chromosomes is ranked based on the dominance criteria and are assigned a fitness value based on the rank in population. For instance, if all the objectives are minimized, lower rank corresponds to better solution. The process of ranking is continued till all the chromosomes in the population are categorized into different ranks. Once the entire population is ranked, tournament selection is performed to identify the chromosomes with lowest rank. Crossover and mutation is performed over the identified chromosomes to create new population for next generation. The process is continued till the convergence is obtained.

4.4. Numerical Example

Typical three-layer flexible pavement system is considered for numerical study. To account for the effects of rehabilitation actions, it is assumed that an overlay will be constructed at the time of rehabilitation actions and the system will behave as four-layered system. To illustrate the proposed models, fatigue cracking failure for flexible pavement is considered. For fatigue cracking, maximum tensile strain at the bottom of the asphalt layer controls the allowable number of repetitions before rehabilitation actions, whereas, after rehabilitation actions, tensile strain at the bottom of overlay is considered critical. The critical strains are computed using theory of linear elasticity. Once the critical strains are computed, limit state function is evaluated.
using Monte Carlo simulation to obtain fragility data before and after rehabilitation actions. Using the obtained fragility data, the parametric regression model that expresses fragilities in terms of decision variable is developed. Then the reliability estimates that are required in optimization formulations can be estimated by solving the integral shown in Eq. 42.

Though the developed fragilities are functions of all the variables in \(\mathbf{x} \), to simplify the understanding and since fatigue cracking is considered, only the overlay thickness, \(h_1 \) is considered as a decision variable in \(\mathbf{x} \). The study can be easily extended to include other decision variables in \(\mathbf{x} \). It is assumed that the initial design is fixed and optimal decision policies for only rehabilitation actions are determined. Deterioration of asphalt modulus is accounted while determining the performance after rehabilitation actions. Typical lower and upper limits of \(h_1 \) that used to normalize the quantity are 2.5 inches and 5.0 inches respectively. The formulations in Eq. 49 and 50 are evaluated using GA and Eq. 51 using MOGA for determining the near-global optimum solution. The objective function for rehabilitation cost considered for the study is

\[
RC(\mathbf{x}) = \frac{100 \times x_i}{(1 + i)^t}
\]

where, \(x_i \) is the normalized quantity of the overlay thickness \(h_1 \), \(i \) is the interest rate at which the cost is discounted to present value, \(t \) is the time at which rehabilitation actions are applied.

4.4.1 Minimizing Rehabilitation Cost

For minimizing the rehabilitation costs, the formulation in Eq. 49 is evaluated using GA. The target reliability \(\text{Rel}_t \) is considered to be 75% and it is assumed that rehabilitation actions are planned in such a manner that the estimated reliability is always greater than the target reliability. Figure 17 shows the result of decision policy where the application of rehabilitation actions is delayed till the estimated reliability before rehabilitation actions reaches the target reliability.
Figure 17. Optimization results for minimizing cost where rehabilitation actions are delayed till the estimated reliability reaches the target reliability

In the Figure 17, the optimal solution shown by solid line corresponds to optimal overlay thickness of 3.73 inches. It is observed that decreasing thickness makes reliability cross target reliability thus making solution not feasible. On the other side, though increasing thickness beyond optimal value improves reliability, the rehabilitation cost increases thereby making it a non optimal solution. In the Figure 17, the application of rehabilitation actions is delayed till the reliability before rehabilitation actions reaches the target reliability i.e. 10 years. Delaying the rehabilitation actions can increase the deterioration of asphalt layer thus making the system weak and thereby requiring stronger overlay to satisfy the desired performance over the design life. There is always the possibility that the early application rehabilitation actions when deterioration of asphalt layer is comparatively less can further reduce the rehabilitation costs. Therefore it is necessary to determine the value of early application of rehabilitation actions. Figure 18 shows the optimal rehabilitation costs for early application of rehabilitation actions between years 1 to 10. It is observed in the Figure 18 that the early application of rehabilitation actions reduces the cost thereby adding the value. Also it is seen that the interest rate i also plays a significant role while making decision policies.
4.4.2. Maximizing the Reliability

To maximize the reliability, the formulation in Eq. 50 is evaluated using GA. To validate the optimization formulations, the results from cost minimization are used to obtain optimal actions while maximizing the reliability. For instance, the minimum rehabilitation cost at the year 10 is used as budget constraint. At the design life, the maximum reliability obtained by constraining rehabilitation budget is 0.75 which is same as the target reliability for the cost minimization problem. The optimum overlay thickness for both the cases is 3.73 inches. This validates both the formulations and any formulation can be used based on the requirements. Further, to determine the value of early application of rehabilitation actions, the maximum reliability is evaluated for the rehabilitation actions applied from years 1 to 10. Figure 19 shows the optimal reliability for early application of rehabilitation actions between years 1 to 10. The budget for rehabilitation actions is constrained to 70 units. It is observed in the Figure 19 that the early application of rehabilitation actions maximizes the reliability thereby adding the value. Both the formulations i.e. maximizing reliability and minimizing cost indicates that early application of rehabilitation actions can be more beneficial and there is an optimal time that can optimize the overall design strategy.
4.4.3. Trade-off between performance and rehabilitation cost (Pareto)

In the Eq. 51, there are two objective functions i.e. minimize cost and maximize reliability and the trade-off between two objectives is necessary for avoiding the conflict between two decision policies. As already discussed, the trade-off between two objectives can obtained in the form of Pareto optimal solution set. Using MOGA, the formulation in Eq. 51 that has two objective functions is evaluated to obtain Pareto optimal set and Pareto front. Figure 20 shows the Pareto front for the rehabilitation actions applied at the year 10 and for different interest rate. It is observed that if the reliability is increased the rehabilitation cost increases and vice versa. The behavior of Pareto front seems reasonable and can be used while making decision policies that require trade-off between cost and performance.
Figure 20. Pareto front obtained from numerical study
5. DETERMINING MANAGEMENT SECTIONS TO MINIMIZE COST OF PERFORMANCE-BASED MAINTENANCE CONTRACT

5.1. Model Formulation

The developed model for determining pavement management sections for PBMC considers four important parts. The following sections discuss each part individually.

5.1.1. Determining Homogeneous Sections

The model for determining the number of sections consists of two stages. In first stage, cluster borders are determined based on minimizing the total standardized variance for a given number of clusters; while in the second stage, the optimal number of clusters is determined using a stopping criterion. Because of the nature of pavement condition data, multiple records of different condition indicators can exist at the same spatial location and must be evaluated simultaneously. This makes general clustering methods, such as k-Means, expectation-maximization algorithm, and hierarchical methods, difficult to apply.

Prior to the deciding homogeneous sections, the data set of condition indicators should be standardized. Using mean and standard deviation of the condition indicator α, standardized value of condition indicator α, $x_{\alpha(i)}$, can be obtained as

$$x'_{\alpha(i)} = \frac{x_{\alpha(i)} - \mu_\alpha}{\sigma_\alpha}$$ \hspace{1cm} (55)

Minimizing the sum of variances, Q_m, for a predefined number of sections - m, the homogeneous sections can be defined. The minimum sum of variances can be obtained by controlling the ordinal number of the last point in the sections $(a_1, ..., a_k)$ for condition indicator α in a section k (μ'_{a_k}) as well as other condition indicators, such as β, \ldots, η

$$Q_m = \min_{a_1, \ldots, a_k} \sum_{k=1}^{m} \sum_{i=a_0+1}^{a_k} \sqrt{(x'_{\alpha_k(i)} - \mu'_{\alpha_k})^2 + (x'_{\beta_k(i)} - \mu'_{\beta_k})^2 + \ldots + (x'_{\eta_k(i)} - \mu'_{\eta_k})^2}$$ \hspace{1cm} (56)

such that

$$a_k \in \{1, \ldots, n\} \hspace{1cm} a_0 = 0$$

$$\mu'_{\alpha_k} = \frac{\sum_{i=1}^{n} x'_{\alpha_k(i)}}{n_k} \hspace{1cm} \forall k = 1, \ldots, m.$$ \hspace{1cm} (57)

where, n is the number of points in all sections, n_k is the number of points in a section k, and $\alpha_k(i)$ is the i-th point of a variable α in a section k.

49
As we increase number of considered clusters \((m)\), pavement sections are divided into an increasingly larger number of clusters. Hence, the model requires a stopping criterion to determine the number of clusters. The number of clusters is determined by a contribution ratio and the L-method. The contribution ratio, \(Y(m)\), indicates that the incremental contribution of an additional boundary reduces the total variation (Mishalani and Koutsopoulos, 2002):

\[
Y(m) = \frac{Q_{m-1} - Q_m}{Q_1}
\]

(58)

The L-method provides the criteria for determining the number of sections - clusters. The L-method finds the knee of the curve using linear regression models on \(Y(m)\). First, the number of clusters \(m\)', is selected. Then, two regression linear models, \(LR_{L_m}\) and \(LR_{R_m}\), to the left and right of \(m\)', respectively, are obtained. Using the two linear regression models, the values of the root mean square errors, \(RMSE(L_{m'})\) and \(RMSE(R_{m'})\), are defined as

\[
RMSE(L_{m'}) = \sqrt{\sum_{m=2}^{m'} (Y(m) - LR_{L_m}(m))^2}
\]

(59)

\[
RMSE(R_{m'}) = \sqrt{\sum_{m=m'+1}^{m''} (Y(m) - LR_{R_m}(m))^2}
\]

(60)

where, \(m''\) is the last number of clusters, \(L_{m'}\) is the area less than or equal to \(m\)' and \(R_{m'}\) is the area greater than \(m\)'.

By summing the root mean square errors \((RMSE(L_{m'})\) and \(RMSE(R_{m'})\), each with its respective weight, the root mean square error for \(m\)' clusters can be found as

\[
RMSE_{m'} = \frac{m'-1}{m''-1} \times RMSE(L_{m'}) + \frac{m''-m'}{m''-1} \times RMSE(R_{m'})
\]

(61)

By controlling the parameter \(m\)' , the optimal number of clusters - \(\hat{m}'\) can be determined as

\[
\hat{m}' = \arg \min_{m \in [2,m'']} RMSE_{m'}
\]

(62)

5.1.2. Modeling Pavement Performance

Pavement performance model considered is a variant of structural reliability model that can account for the effects of rehabilitation actions. Pavement reliability generally considers a difference between the number of load applications, \(N_C\) (strength), a pavement can withstand before failing to meet a specified performance criteria, and the number of load applications, \(N_D\) (stress). The failure occurs when \(N_D \geq N_C\). The corresponding limit state function \(g(x)\), where
x denotes a vector of n basic variables, can be defined as \(g(x) = (N_C - N_D) \). The probability that \(N_D \geq N_C \) also referred as the probability of failure \(P_F \), can then be mathematically expressed as:

\[
P_F = P[g(x) \leq 0]
\]

(63)

where, \(P[\cdot] \) represents probability that the event \(g(x) \leq 0 \) will occur. In terms of reliability indices, probability of failure at time \(t \), can be expressed as follows.

\[
F(x,t) = P[g(x,t) \leq 0] = \Phi(-\beta(x,t))
\]

(64)

where, \(\Phi(.) \) is the standard cumulative normal probability, and \(\beta(x,t) \) is the reliability index.

Using the specified cumulative failure function using the method of moments, the reliability function \(R(x,t) \) and the hazard rate function \(h(x,t) \) are defined as:

\[
R(x,t) = 1 - F(x,t) = 1 - \Phi(-\beta(x,t))
\]

(65)

\[
h(x,t) = -\frac{\partial}{\partial t} \ln[1 - \Phi(-\beta(x,t))]
\]

(66)

In this report, the method of moments (Zhang and Damnjanovic, 2006) is used to determine \(\beta(x,t) \)

\[
\beta(x,t)_{4M} = \frac{3(\alpha_{4G}(x,t)-1)\beta(x,t)_{2M} + \alpha_{5G}(x,t)(\beta(x,t)_{2M}^2 - 1)}{\sqrt{(9\alpha_{4G}(x,t)-5\alpha_{5G}(x,t)-9)(\alpha_{4G}(x,t)-1)}}
\]

(67)

where \(\mu_{G} \) and \(\alpha_{iG} \) represent the mean and r-th dimensionless central moments of limit state function \(G \).

The non-homogeneous Poisson process (NHPP) is extensively used to describe a system where emergency repair actions are considered. A stochastic counting process \([N(t), t \geq 0] \) is the NHPP with the rate of occurrence of failure (ROCOF) function \(\lambda(t) \) for \(t \geq 0 \). Mathematically, the ROCOF function \(\lambda(t) \) can be defined as shown in Equation 68. From Equation 69, the relation between the expected number of failures \(E[N(t)] \) and the cumulative intensity of the process \(\Lambda(t) \) is defined as
\[\lambda(t) = \frac{d}{dt} E[N(t)] \]
\[E[N(t)] = \Lambda(t) = \int_0^t \lambda(u) du \]

Considering the relationship between the time to first failure in NHPP and the hazard rate function from reliability theory, the expected number of failures \(E[N(x, T)] \), can be evaluated using the reliability function as follows

\[E[N(x, T)] = \Lambda(x, T) = \int_0^T \lambda(x, t) dt = -\ln R(x, T) \]

Pavement performance model needs to account for the effects of rehabilitations for performance-based maintenance contracts (PBMC). Effects of rehabilitation can be accounted by considering the structural parameter defining the strength function in the limit state function. This structural parameter can be also referred as design variable \(x_d \). With aging and utilization its value reduces. Examples of such design variables are pavement structural number, modulus of asphalt layer, and others. To predict the level of design variable at time \(t \), a recursive function can be defined as follows

\[x_d(t) = w(t, x_d(t-1)) + \Delta x_d(t-1) \]

where, \(\Delta x_d \) is the effect of rehabilitation, and \(w(\cdot) \) is a specified deterioration function. With this change in the value of design variable from \(w(t, x_d(t-1)) \) to \(x_d(t) \), the limit state function requires an update.

Hence, the ROCOF function is determined by the initial level of the design variable \(x_d \). If rehabilitation work is conducted at time \(T \) and the level of design variable is increased to \(X_2 \), the expected number of failure during \(2T \), \(E[N(2T)] \), can be expressed as (Damnjanovic, 2006)

\[E[N(2T)] = -\ln R(x_d = X_1, x, T) - \ln R(x_d = X_2, x, T) \]

It is important to note that some of the random variables in the limit state function might be correlated. In engineering applications, the Nataf model (Kiureghian and Liu, 1986) is usually used for finding joint probability density function by marginal probability and correlation coefficient. In the methodology presented in this report, the Nataf model is used to transform correlated variables into uncorrelated variables. The Nataf model specifies a joint probability density function (PDF) of \(X \). The relationship between correlation coefficients \(\rho_{ij} \) and \(\rho'_{ij} \) can be defined as follows
\[f_x(x) = \frac{\phi_n(z, R_0)}{\phi(z_1) \phi(z_2) \ldots \phi(z_n)} \] (73)

\[\rho_{ij} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left(\frac{x_i - \mu_i}{\sigma_i} \right) \left(\frac{x_j - \mu_j}{\sigma_j} \right) f_{x_i}(x_i) f_{x_j}(x_j) \frac{\phi(z_i, z_j, \rho_{ij})}{\phi(z_i) \phi(z_j)} \, dx_i \, dx_j \] (74)

where \(f_{x_i}(x_i) \) is the marginal probability density function of \(x_i \) and \(\rho_{ij} \) is the coefficient of correlation of \(x_i \) and \(x_j \), and \(\phi_n(z, R) \) is the \(n \)-dimensional normal PDF with a mean of zero, standard deviation of one, and correlation coefficient \(R \).

5.1.3. Determining Optimal Rehabilitation Strategy
The total maintenance cost for a section \(k \) consists of two components: expected penalty cost (EPC) and maintenance cost (MC). The penalty cost represents a penalty payment charged to the contractor if the pavement fails. The model for determining the optimal rehabilitation strategy for a section given its spatial variability characteristics can be expressed as

\[
\min_{\Delta x, t} TMC_k = \left[EPC_k(x_k, \Delta x, T) + MC_k(\Delta x, t) \right]
\] (75)

\[
s.t. EPC_k(x_k, \Delta x, T) = W_p \times (l_k / l) \times E_k \left(N(x_k, \Delta x, T) \right) \quad \forall k = 1, \ldots, m
\] (76)

\[
MC_k(\Delta x, t) = \frac{(\Delta x \times W_x) \times n_l \times l_k}{(1+i)^t} \quad \forall \Delta x = 0, \ldots, x_{\text{max}}, \quad \forall t = 1, \ldots, T
\] (77)

where \(TMC_k \) is the total maintenance cost in the \(k \) section and is defined as the sum of \(EPC \) and \(MC \), \(W_p \) is the penalty cost, \(W_x \) is the unit cost of rehabilitation action, \(T \) is the duration of the contract, \(t \) is the time of rehabilitation action, \(\Delta x \) is a variable that represents the magnitude of increase in the design variable \(x \), \(i \) is the interest rate; \(l_k \) is the length of pavement in the \(k \)th section, and \(n_l \) is the number of lanes. \(EPC \) is the penalty cost multiplied by the expected number of failures that will occur during the specified period, where the penalty cost, \(W_p \), is proportional to the length of the section is applied. The maintenance cost is the net present value of the cost of a rehabilitation action to be performed in the future.

5.1.4. Determining Management Sections
With determined homogeneous sections and the total cost associated with managing each section independently, the question is whether some sections can be bundled together to explore economies for scale and minimize risk. In essence, this is a minimum set covering problem, an NP-hard combinational problem that can be approached via enumeration or approximation algorithms. The problem can be formulated as
\[
STMC_{C_n} = \sum_{i=1}^{n_{C_n}} TMC_{C_n(i)}
\]

\[
\hat{S} = \arg \min_S STMC_S \quad S \in \left\{ C_1, \ldots, C_{\binom{m^2+m}{2}} \right\}
\]

where, \(STMC \) is the sum of total maintenance cost and \(S \) is the set of combinations. \(C_n \) is the combination that can be made from the \(m \) sections, and \(n_{C_n} \) is the number of all combinations of \(C_n \).

5.2. Case Study

The methodology presented in the previous sections is demonstrated using structural condition data collected in June 2002 by the Texas Department of Transportation (TxDOT) during pavement evaluation of a two lane farm-to-market road in Fort Bend County. The section of road is approximately 3.7 miles long and, at the time of testing, had an average daily traffic of 16,300 vehicles per day, with 8.9\% of that comprised of trucks. Falling Weight Deflectometer (FWD) data was collected and used to back-calculate the resilient modulus (\(r_M \)) and structural number (\(SN \)) at thirty-nine locations along the 3.7 mile stretch.

For the development of the limit state function for flexible pavement, American Association of State Highway Officials (AASHTO) pavement design equations are used. The structural number \(SN \) and effective resilient modulus of roadbed soil \(r_M \) contribute to the strength function in the limit state (Zhang and Damnjanovic, 2006), while traffic growth rate and initial yearly equal standard axle loads (ESAL) contribute to the strength function. The parameters of PBMC used in this case study are summarized in Table 6. Economies for scale were considered through a piecewise linear function.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Assumed Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>$1,000,000</td>
</tr>
<tr>
<td>T</td>
<td>10 years</td>
</tr>
</tbody>
</table>
| WSN | \[W_{SN}(l_i) = 35,000 - 2,500 \times l_i \quad (l_i \leq 4) \]
| | \[W_{SN}(l_i) = 25,000 \quad (l_i > 4) \] |

Using the data provided by TxDOT, the multi-dimensional clustering method for standardized sequence of data for resilient modulus and the structural number is conducted. Figure 21 illustrates the clustered homogeneous sections when pre-defined number of section was fixed at
two, three, four, and five clusters. To determine the number of clusters, L-method was employed as a stopping criterion.

(a) Number of clusters = 2

(b) Number of clusters = 3

(c) Number of clusters = 4

(d) Number of clusters = 5

Figure 21. Results of Clustering Analysis

The RMSE values from L-methods are summarized in Table 7. The summation of $RMSE(L_{m})$ and $RMSE(R_{m})$, each with its respective weight, gives the $RMSE_{m'}$ for each number of clusters. The minimum $RMSE_{m'}$ value is obtained for three clusters.

Table 7. The RMSE values of L-method

<table>
<thead>
<tr>
<th>m'</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$RMSE(L_{m})$</td>
<td>0.0000</td>
<td>5.5E-17</td>
<td>0.0270</td>
<td>0.0329</td>
<td>0.0909</td>
<td>0.0375</td>
<td>0.0377</td>
</tr>
<tr>
<td>$RMSE(R_{m})$</td>
<td>0.0094</td>
<td>0.0062</td>
<td>0.0051</td>
<td>0.0047</td>
<td>0.0024</td>
<td>0.0022</td>
<td>0.0014</td>
</tr>
<tr>
<td>$RMSE_{m'}$</td>
<td>0.0086</td>
<td>0.0052</td>
<td>0.0106</td>
<td>0.0141</td>
<td>0.0393</td>
<td>0.0199</td>
<td>0.0226</td>
</tr>
</tbody>
</table>
Figure 22 shows the total maintenance cost (TMC) for the whole section based on when and what type of rehabilitation action is applied. The intensity of rehabilitation action is modeled using the structural number of an overlay ΔSN.

Figure 22. Surface Plot for Total Maintenance Cost

As ΔSN is increased, the total maintenance cost decreases. Figure 22 shows how varying the year in which rehabilitation is performed affects the total maintenance cost. Generally, the total maintenance cost decreases slightly as the year increases from one to three and increases more noticeably as the year increases from four to ten.

Table 8. Results of Optimal Strategy and Time

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Section</th>
<th>Mean of SN</th>
<th>Mean of Mr</th>
<th>Year*</th>
<th>ΔSN*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>5.5</td>
<td>4,436.2</td>
<td>7</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>6.1</td>
<td>5,660.5</td>
<td>9</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>3.1</td>
<td>4,066.4</td>
<td>3</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>I & II</td>
<td>5.6</td>
<td>4,603.1</td>
<td>7</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>3.1</td>
<td>4,066.4</td>
<td>3</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>5.5</td>
<td>4,436.2</td>
<td>7</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>II & III</td>
<td>3.6</td>
<td>4,332.0</td>
<td>8</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>I, II & III</td>
<td>4.6</td>
<td>4,385.5</td>
<td>3</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Based on the results from the clustering analysis, where 3 homogeneous sections were indentified, four possible combinations of bundling sections are outlined in Table 8. Each section
in each combination has a unique mean of ΔSV and M_r, that represent variables in the expected penalty cost. The optimal rehabilitation time, Year*, varies for different combination, however, the optimal rehabilitation strategy, ΔSV, is 3.0, or the considered upper bound for all combinations. This is due to the large difference between the penalty cost and the cost of unit SV cost. As ΔSV increases, the expected penalty cost, dependent on the expected number of failures decreases. Because the penalty cost is set the high level of $1,000,000$, the total maintenance cost is dominated by the penalty costs. Hence, ΔSV takes on the maximum value in the range.

Table 9. Results of Sum of Total Maintenance Cost

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Section</th>
<th>Penalty cost ($)</th>
<th>Maintenance cost ($)</th>
<th>TMC ($)</th>
<th>STMC ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I I I I I I I I</td>
<td>I</td>
<td>177,241.9</td>
<td>83,747.3</td>
<td>260,989.2</td>
<td>1,558,736.4</td>
</tr>
<tr>
<td>I I I I I I I I</td>
<td>II</td>
<td>1,984.8</td>
<td>8,939.4</td>
<td>10,924.2</td>
<td></td>
</tr>
<tr>
<td>I I I I I I I I</td>
<td>III</td>
<td>1,212,721.0</td>
<td>74,102.0</td>
<td>1,286,823.0</td>
<td></td>
</tr>
<tr>
<td>I I I I I I I I</td>
<td>I & II</td>
<td>168,188.8</td>
<td>95,655.6</td>
<td>263,844.4</td>
<td>1,550,667.4</td>
</tr>
<tr>
<td>I I I I I I I I</td>
<td>III</td>
<td>1,212,721.0</td>
<td>74,102.0</td>
<td>1,286,823.0</td>
<td></td>
</tr>
<tr>
<td>I I I I I I I I</td>
<td>I & III</td>
<td>177,241.9</td>
<td>83,747.3</td>
<td>260,989.2</td>
<td>968,300.0</td>
</tr>
<tr>
<td>I I I I I I I I</td>
<td>II & III</td>
<td>638,096.0</td>
<td>69,214.8</td>
<td>707,310.8</td>
<td></td>
</tr>
<tr>
<td>I I I I I I I I</td>
<td>I, II & III</td>
<td>834,148.1</td>
<td>166,214.9</td>
<td>1,000,363.0</td>
<td>1,000,363.0</td>
</tr>
</tbody>
</table>

The total maintenance cost (TMC), showed in Table 9, is the sum of the penalty cost and maintenance cost. The sum of total maintenance cost (STMC) is obtained by summing the total maintenance costs for each section in the combination. Comparing the STMC for each combination, the third combination, in which the second and third sections are merged, has the minimum STMC. Therefore, the minimum cost of managing the considered farm-to-market section is obtained by separately managing section I, and bundling sections II and III.
6. SUMMARY AND CONCLUSIONS

The research presented a methodology that can be used by the owners to evaluate performance specifications and determine the optimal length of management sections for PBMC. The developed model is based on four steps, a multi-dimensional clustering method for determining homogeneous sections, a pavement performance model, a model for finding the optimal timing and type of rehabilitation action, and a model for determining the management sections formulated as a set covering problem, and solved, in this paper, using enumeration procedure. The models are demonstrated using real road condition data obtained from TxDOT.

As the performance model is one of the most important steps in the adopted four step methodology, special emphasis was given to developing probabilistic performance models, in particular, to a reliability model that is able to account for the effects of rehabilitation actions on the reliability of flexible pavements. A mechanistic-empirical approach is used to define limit state functions based on the pavement responses (tensile and compressive strains) before and after the application of rehabilitation actions. Two failure criteria are considered (fatigue cracking and rutting). A numerical example is presented to illustrate the developed model, and sensitivity and importance measures are computed for the parameters and the random variables included in the limit state functions. The results obtained from the numerical study describe the behavior of new and rehabilitated flexible pavement systems.

The sensitivity measures suggest that the reliability of flexible pavements before as well as after rehabilitation actions can effectively be improved by providing asphalt layer as thick as possible in the initial design, improving the stiffness for subgrade and reducing the error in predicting the asphalt modulus at the time of rehabilitation actions. The importance measures suggest that the asphalt layer modulus at the time of rehabilitation actions represent the principal uncertainty for the performance after rehabilitation actions. The results from the sensitivity analysis and importance measures can be used as directive device to plan optimal decision policies. The application of mechanistic-empirical approach and inclusion of correlations has added flexibility to the model.

Conventionally, the limit state function is evaluated using MCS technique. However, the MCS technique typically requires a relatively large number of simulations in order to obtain sufficiently accurate estimates of failure probabilities and it becomes impractical to simulate the pavement response black-box model thousands of times. In the research, an alternative approach of Response Surface Methodology is explored for obtaining reliability estimates. Statistical validation of pavement response model shows that the developed response models are good fit to the responses obtained from analytical model and can be used efficiently for predicting pavement responses. In reliability analysis, often fragilities are used to express the performance of the system. In the research, the parametric regression model is developed to express the fragilities in terms of decision variables. Maximum likelihood estimation technique is used to obtain parameter estimates. The statistical validation of parametric regression model developed in numerical study shows the accuracy of the developed model.
The developed performance models for flexible pavements that accounts for rehabilitation actions are further explored for their applications in determining optimal rehabilitation policies based on pre-specified reliability levels. To account for the uncertainties in performance and maintain a balance between performance and cost, the reliability-based optimization technique is used in the research. For reliability-based optimization, three decision policies are defined along with the optimization problem formulation for each policy. Because of its efficiency in obtaining a near-global solution, the genetic algorithm is used to evaluate the optimization formulations. For two objective functions, MOGA is used to obtain Pareto optimal solution set that provides a trade-off between cost and reliability. Using the developed parametric regression models for fragilities, a numerical study is presented to illustrate the developed optimization formulations.

The results from numerical study for optimization shows that the cost minimization and reliability maximization formulations are efficiently used in determining optimal rehabilitation policies. It is also seen that there can be added value for providing rehabilitation actions early rather than waiting until failure. Also the effect of interest rate that discounts cost to present value is significant. Pareto optimal solution obtained from MOGA shows that as the reliability increases the rehabilitation cost increases and vice versa. This behavior seems reasonable and obtained Pareto solutions can be efficiently used to obtain trade-off between cost and performance and avoid possible conflict between two decision policies.

The developed pavement reliability model in conjunction with response surface methodology and parametric regression modeling for fragilities can be effectively implemented in all the applications that require the estimation of the performance of flexible pavement systems before and/or after rehabilitation actions. Expressing fragilities in terms of decision variables has added flexibility in using them as performance measures in optimization models. Developed performance model that accounts for rehabilitation actions are efficiently used in optimizing the rehabilitation policies for flexible pavements. Different formulations for optimization problem provide flexibility in making decision policies and obtaining optimal trade-off between the pavement performance and cost.

Further, the presented model for determining management sections indicate that both the ability to explore economies of scale and the ability to manage risk should be considered in determining the management sections. Optimization model shows that a critical contract parameter is a penalty term, if the managed pavement section fails the performance specifications. A possible avenue for further study includes algorithmic solution to the presented set covering problem, testing the model sensitivity, and consideration of other pavement performance models that consider the effects of rehabilitation actions and preventive maintenance.
REFERENCES

Report card for America’s Infrastructure. ASCE.

APPENDIX A

Appendix A
Responses in the layered system can be evaluated based on linear elastic theory by assuming a stress function, \(\phi \) for each layer that satisfies the 4th differential equation shown in Eq. 2.7. Solution to the 4th order differential equation will comprise of four constants of integration that can be determined from the boundary and continuity conditions. In the Figure 1, considering \(\theta = \frac{r}{H} \) and \(\varepsilon = \frac{z}{H} \), the stress function satisfying Eq. 2.7 can be obtained as [21]

\[
\phi = \frac{H^3 Y_0(m\theta)}{m^2} \left[A_i e^{-m(\varepsilon_i - \varepsilon)} - B_i e^{-m(\varepsilon_i - \varepsilon_{i+1})} + C_i m \varepsilon e^{-m(\varepsilon_i - \varepsilon)} - D_i m \varepsilon e^{-m(\varepsilon_i - \varepsilon_{i+1})} \right] \tag{A.1}
\]

where \(H \) is the distance from the surface to the upper boundary of the lowest layer as shown in the Figure 1, \(Y_0 \) is a Bessel function of the first kind and order 0, \(m \) is a parameter, \(A, B, C, D \) are constants to be determined from the boundary and continuity conditions, \(i \) corresponds to the number of the layer at which the stress function is evaluated. Substituting Eq. A.1 in the Eq. 2.8, 2.9, and 2.10 gives

\[
(\sigma'_i)_r = -mY_0(m\theta) \left\{ \left[A_i - C_i (1 - 2v_i - m\varepsilon) \right] e^{-m(\varepsilon_i - \varepsilon)} + \left[B_i + D_i (1 - 2v_i + m\varepsilon) \right] e^{-m(\varepsilon_i - \varepsilon_{i+1})} \right\} \tag{A.2}
\]

\[
(\sigma'_{\theta})_i = \left[mY_0(m\theta) - \frac{Y_1(m\theta)}{\theta} \right] \left\{ \left[A_i + C_i (1 + m\varepsilon) \right] e^{-m(\varepsilon_i - \varepsilon)} + \left[B_i - D_i (1 - m\varepsilon) \right] e^{-m(\varepsilon_i - \varepsilon_{i+1})} \right\} + 2v_i mY_0(m\theta) \left[C_i e^{-m(\varepsilon_i - \varepsilon)} - D_i e^{-m(\varepsilon_i - \varepsilon_{i+1})} \right] \tag{A.3}
\]

\[
(\sigma'_{\varepsilon})_i = \frac{Y_1(m\theta)}{\theta} \left\{ \left[A_i + C_i (1 + m\varepsilon) \right] e^{-m(\varepsilon_i - \varepsilon)} + \left[B_i - D_i (1 - m\varepsilon) \right] e^{-m(\varepsilon_i - \varepsilon_{i+1})} \right\} + 2v_i mY_0(m\theta) \left[C_i e^{-m(\varepsilon_i - \varepsilon)} - D_i e^{-m(\varepsilon_i - \varepsilon_{i+1})} \right] \tag{A.4}
\]

where, \(Y_i \) is the Bessel function of the first kind and order one, superscript ' for the stresses indicates that stresses are computed for the load of \(-mY_0(m\theta) \). Actual stresses, \(\sigma \) due to load, \(q \) over a circular area of radius, \(a \) can be obtained from the following transformation

\[
\sigma = q \tau \int_0^\infty \frac{\sigma'}{m} Y_i(m\tau) dm \tag{A.5}
\]

where, \(\tau = \frac{a}{H} \).
Above system of equations can be solved by assigning values to m from 0 to some large positive number until the stresses in Eq. A.2, A.3, A.4 converges. For each value of m, constant of integrations can be determined from the boundary and continuity conditions. These constant of integrations can be used in Eq. A.2, A.3, A.4 to compute stresses (σ') due to load $-mY_0(m\theta)$. Finally, using these stresses, Eq. A.5 can be solved numerically to obtain actual stresses.