New York City’s Connected Vehicle Pilot Deployment Project

Highlights and a look at the complexities of an end-to-end CV system

Robert Rausch, P.E.
Before you start a *Connected Vehicle* project

Bob Rausch, P.E.

Lessons from the - The New York City Connected Vehicle Pilot Deployment Project

understand the whole picture!
Outlook

Traffic Controller → RSU → SPaT → Done? Not!

This presentation will examine [some of] the complexity of CV deployment

- Quick overview of the NY project
- Overview of the end-to-end systems to support CV
- A more detailed look at the issues:
 - Intersection “systems”
 - Vehicle “systems”
 - Back office “systems”
 - External “systems”
 - Backhaul considerations
- Data collection considerations
- Security Considerations
New York City’s
Connected Vehicle Pilot Deployment Project
Quick Overview

This is a **DEPLOYMENT** project [driven by R&D]!

“After more than a decade in trials, proof of concept, etc. the pilots will leverage and deal with the issues of practical deployment”

Big, ambitious plans:

- Large fleets to get many vehicle interactions
- Identify dense urban (canyon) environment solutions
- Assess CV technology’s application for Vision Zero
8,000 fleet vehicles with Aftermarket Safety Devices (ASDs/OBUs) *(Initially started at 10,000)*
- Taxis (Yellow Cabs)
- MTA Buses
- Sanitation & DOT vehicles
- DCAS vehicles

100 Pedestrian Information Devices (PIDs)
- Visually Impaired Navigation

400 Roadside Units (RSU)
- Manhattan Avenues
- Manhattan Cross Streets
- Flatbush Avenue
- FDR
- Support locations (where vehicle linger)
 - Airports,
 - River crossings
 - Terminal facilities
 - Additional to support location accuracy

Source: USDOT
Overall Deployment Concept

ASD – Aftermarket Safety Device (OBU)
RSU – Roadside Unit (includes DSRC radios)
NYCWiN – New York City’s Wireless Network
SCMS – Security Credential Management System
IE – Independent Evaluator
RDE – Research Data exchange
TMC – Traffic Management Center
NYC CV Safety Applications

Vehicle-to-Vehicle
- Vehicle Turning Right in Front of Bus Warning
- Forward Collision Warning
- Emergency Electronic Brake Light
- Blind Spot Warning
- Lane Change Warning/Assist
- Intersection Movement Assist

Vehicle-to-Infrastructure
- Red Light Violation Warning
- Speed Compliance
- Curve Speed Compliance
- Speed Compliance/Work Zone
- Oversize Vehicle Compliance
 - Prohibited Facilities (Parkways)
 - Over Height warning
- Emergency Communications and Evacuation Information

Pedestrian Applications
- Pedestrian in Crosswalk (RSU)
- Visually Impaired Crossing (PID)

Foundation of Operations, Maintenance, and Performance Analysis

Other Applications
- OTA Firmware Update
- OTA Uploading of Data Collected
- Application Parameter Modifications (Tuning)

Customized Applications

Data Collection:
- CV Data for Intelligent Traffic Signal System
- RF Monitoring
- Traffic data collection
- Event History Recording
- Privacy protection
V2V applications work **wherever** equipped vehicles encounter one another.

V2I applications work where **infrastructure is installed** (highlighted streets).

Additional Sites not Shown:
- FDR north to Triboro Bridge
- Queensboro (59th St) Bridge Intersections (4) in Queens
- Williamsburg Bridge Intersections (2) in Brooklyn
Connection Diagram for NYC CV Pilot System

- **NYCWIN**
- **Wired Network**
- **DSRC**
- **4G/LTE Carrier**

Icon Legend
- 0: TMC Pass Through (random as needed)
- 0: TMC Controlled Push or Pull (long periods)
- 0: E-mail or File Transfer (infrequent)
- 0: Planned for Future
- 0: TMC Pull (hourly)

Diagram Elements
- **Traffic Controller**
- **HUB**
- **POE Inserter**
- **Wireless Router**
- **Network Operations Center**
- **NWS**
- **SCMS**
- **16 HSM**
- **TMC**
- **SDC**
- **Stakeholder Systems**
- **RTCM Stations**
- **RSU Vendor**
- **ASD-1 Vendor**
- **ASD-2 Vendor**
- **Amazon Cloud**
- **NYU**
- **PID Vendor**
- **400**
- **100**
- **GPS**

Connections
- Connections are represented by lines with icons indicating the type of communication.

Note: The diagram illustrates the connectivity and flow of information within the NYC CV Pilot System, with various nodes and interconnections highlighting the system's infrastructure and data pathways.
The Roadside Infrastructure

- **ATC Software Upgrades**
 - Export SPaT information – to TMC/RSU
 - Configure PED information (SPaT)
 - NTCIP 1202v3 or Battelle 2009 “Blob”
- **Security**
 - TMC to ATC: (DTLS, TLS, VPN ...)
 - ATC to RSU: DTLS – SNMPv1? SNMPv3?
 - TMC to RSU: DTLS – SNMPv3
 - Manage the certificates X.509
 - **Where are messages “signed”**
 - RSU (SPaT), TMC (MAP, TIM)
- **OTA** software updates (RSU & ASD)
- OTA log files retrieval from ASD
- Managing WSA/PSID/Channel usage
- **Pedestrian Detection** for PED in crosswalk
- PoE for RSU and proper surge protection
 - Verify proper power grounding
- **Network interface**
 - Port mapping
 - IP address assignments/Subnetworks
 - Security management
- **MAP message** generation – *Pedestrian Info*
- Precision location of the RSU (X, Y, Z)

- **Data Collection** (Edge Computing)
 - Event data
 - RF Data
 - System log data
 - Scalability
- Privacy considerations
 - **Encryption**
- Spare parts and maintenance plan
- What specification? 4.1 modified?
 - Custom Developed – for NYCDOT
Other Roadside Infrastructure Considerations

- **Testing of the “revised” ATC software**
 - Timing relationship SPaT data and the actual timing (PCAP, Sniffer, Wireshark)
 - Check for timing disruption due to communications loading
 - Timing during transition, EVP, TSP, CIC, Adaptive control, clock changes, etc.

- **Network connectivity**
 - IPv4 or IPv6 – Proxy or Firewall Gateway – SCMS, AWS (MQTT)
 - Router and switches – Config. Security
 - Compatibility with other network traffic – Video, ETC readers, ...

- **Mounting Structures**
 - Line of Sight requirements – optimal for traingulation
 - Mast Arm – interference with signal heads etc.
 - Wind loading
 - Dead weight
 - Other co-hosted devices (signs, antenna, video)
 - In NYC – Parades move mast arms – indexing for proper orientation
 - Changes to the hardscape
 - Scaffolding for façade maintenance
 - Changes in Vegetation

- **Cross Intersection RSU wiring link**

- **Location Accuracy – Urban Canyon – placement of RSU**
 - RSU Triangulation – Time of Flight
 - Specific chip set
 - Affects WSA frequency of transmission

- **Installation Crews – Contract or Agency (NYCDOT)**
Vehicle Equipment Considerations

• **CAN Bus Interface**
 - Existing devices (e.g. Geotab)
 - Interference with CAN bus
 - Passive vs. Active interface
 - Manufacturer’s cooperation – *(Toyota helped us)*
 - What data is available – what do you need
 - Future Encryption – “right to repair”
• **Device calibration (Inertial Navigation Parameters)**
• **Antenna Installation**
 - Shark Fin - Drill vs. no drilling
 - Diversity (heavy vehicles)
 - Through the glass (Buses)
• Make sure the vehicle is OK **BEFORE** you start
 - Disconnect Battery **BEFORE** install
• **Professional Installation Companies?**
 - Consider mobilization complexity
• **Power considerations**
• **Connection to turn signals**
• **Professional Installation Companies?**
 - Consider mobilization complexity
• **HMI – Audio, Visual, (both), Mounting, Speakers**
 - Confirmation of alerts
 - Distraction issues – know your stakeholders
• **Privacy & liability issues**
 - Consent agreements
 - Public Agency Vehicles/Private Vehicles
 - 48 Hour self purge of log files (privacy)
• **Connection to turn signals**
• **Power considerations**
 - Ignition on/off
 - Quiescent Current Draw
 - **Finishing “work in process”**
 - Battery Disconnection
 - Inrush and fusing
 - Grounding
• **Supporting Smartphone Apps.**
 - **DSRC or Cellular Service**
• **Control Group vs. Active**
• **Maintenance Tracking**
• **Fail-safe OTA survival**
Central System Considerations

- **Message Generation and Signing**
 - MAP Message Management
 - TIM message Management
 - RTCM [not for NYC]

- **Data Collection**
 - Monitoring RSU health (RF)
 - Monitoring ASD health (RF)
 - Event Logs (performance measurement)
 - Travel Time (ISIG/MIM)
 - System Logs for troubleshooting
 - BSM – “breadcrumb” [not for NYC]

- **Performance Measurements/Analysis**
 - Project performance metrics
 - Report generation

- **OTA download management**
 - Configuration Management
 - ASD firmware upgrades
 - ASD Application Tuning
 - Application parameters

- **User Interface/Database Management**
 - RSU parameter management
 - ASD parameter management

- **Privacy Protection**
 - Obfuscated data
 - Aggregated data for export to SDC

- **Management of CV and ITS devices**
 - RSU – configuration files
 - RSU Firmware updates
 - Traffic Controller 1202v3 additions
 - Security enhancements (DTLS)

- **Security management**
 - Hardware Security Module
 - Security profiles for all messages
 - X.509 or TMC-RSU/ATC security
 - Firewall rules – external connections

- **Tools for operations management**
 - System logging
 - Operations alarms
 - Device status displays (visualization)
 - Security monitoring
External System Connections

- **Security Credential Management System SCMS**
 - RSU acquires certificates
 - ASD acquires certificates
 - Product enrollment
 - Maintenance - re-enrollment
 - Test or Production certificates
 - CRL distribution
 - Misbehavior export
 - Disabling crypto content - “lost” devices
 - IPv4 or IPv6 – proxy server or direct firewall

- **Secure Data Commons, RDE, etc. USDOT**
 - Privacy issues
 - Reliability of the data
 - Metadata required

- **Controlled Access (from vendors)**
 - City receives firmware updates
 - City manages distribution
 - Vehicles assigned into groups
 - Testing
 - Upgrade management / Fleets

- **Developed a Security Plan**
 - Security Management & Operations Concept (SMOC)
 - Certificates per week? NYC 60
 - Life of certificates – NYC 7 days
 - Certs loaded onto a Device – 2 weeks
 - Security profile for messages
 - Pilots developed Profiles for each:
 - SPaT, MAP, BSM, TIM
Communications Technology Considerations

- **Data Requirements**
 - Number of remotes
 - SCMS updates
 - Expected log file sizes
 - Number of vehicles
 - Frequency of encounters/alerts

- **Media available**
 - Wireless
 - Carrier
 - Trunk/microwave
 - Private network
 - 5G future
 - Fiber
 - Leased/Cable etc.
 - Mixed media

- **IPv4/IPv6**
 - ASD – IPv6

- **IPv4/IPv6**

- **“localized” communications**
 - V2V and V2I
 - 5G
 - Unproven in CAV
 - DSRC – 802.11p
 - 10 Years testing/trials

- **Role of local communications**
 - Smartphone apps
 - Pedestrian apps
 - In-Vehicle apps
 - ASD apps

NYC:
- DSRC: V2V & V2I
- 4G SPaT Data for PED apps
- 4G Backhaul to TMC
- IPv4 proxy to SCMS
- MQTT to AWS
Other considerations
Is this Deployment or R&D?

What Data to collect

• What could you collect?
• What is the raw data available

• What do you need?
 • What is the use of the data?
 • Resolution and frequency

• What should you collect?
 • Need to justify the costs
 • Protecting Personal Information
 • Focus on the Metrics

Consider the costs?

• Backhaul communications
• Storage (backup, recovery, etc.)
• Processing (using)
• Supporting FOIA requests
• Supporting Subpoenas

Privacy Issues

• Prohibition of keeping PII
• Combination with other sources
• Data Ownership
Other Challenges

• There is no **standard specification** for an OBU/ASD
 • There are no “standards” for the applications
 • NYC used – information from the Safety Pilot
 • Developed requirements and typical based on controller

• **Applications need tuning for your environment**
 • Speed at which they become active was >city speed limit

• **RSU standard specification (4.1) has issues**
 • Our needs for data collection – were not addressed
 • Central signing of MAP and TIM not supported

• **NTCIP 1202v3 did not work as needed**
 • Modified and created a block object

• **Time relationship line frequency vs. GPS time**
 • Environmental requirements for in-vehicle systems

• **Automotive antenna radiation patterns**

• **Quality control & consistency**

• **Procurement issues** for multiple vendors and “experimental” products involved
Where are we now - - - -

- Procurement – all under contract
 - Installing Production RSUs – about 100 so far
 - Installed about prototype 100 ASDs in a variety of vehicles
- **Solved CAN bus interface problems**
- Working through the backhaul issues
- MQTT Access to AWS
- SCMS Proxy Server
- Have 20 complete backhaul sites running
- **Achieved close to 1.5 M accuracy in Dense Urban Env**
 - RSU triangulation setup and tested Manhattan
- Preparing for end-to-end testing **(worked 4/29/2019)**
- Security is all in place (some bugs)
- OTA bench tested and verified
- Central software is operational
- Preparing for 400/week installation starting in July
- Preparing for 100/week starting middle of June
Summary

It takes more than installing an RSU & transmitting SPaT . . .

. . . to deploy a useful connected vehicle system.

Deploying CV without including security . . .

. . . is not interoperable with anyone else.

Determine your real [useful] data needs . . .

Is your system sustainable?

Can you continue operation?

Is there a business case for your system?

Thank you

Bob Rausch

Robert.Rausch@transcore.com
Join us for the *Ready to Design, Build, and Test Operational Systems* Series

- Discover more about the CV Pilot Sites
- Learn the Essential Steps to CV Deployment
- Engage in Technical Discussion

Visit the Pilot Site Websites for more Information:

- NYCDOT Pilot: https://www.cvp.nyc/
- Tampa (THEA): https://www.tampacvpilot.com/
- Wyoming DOT: https://wydotcvp.wyoroad.info/

Contact for CV Pilots Program:
Kate Hartman, Program Manager
Kate.hartman@dot.gov

Contact for Pilot Sites:

- Kate Hartman, WYDOT Site AOR
 Kate.Hartman@dot.gov
- Jonathan Walker, NYCDOT Site AOR
 Jonathan.b.Walker@dot.gov
- Govind Vadakpat, THEA Site AOR
 G.Vadakpat@dot.gov