Traffic Signals and Connected Vehicles

Nader Ayoub, PE
Current standards

Basic CV Messages - from SAE J2735 – broadcast to vehicle

- SPaT (Signal Phase and Timing)
 - current signal state
 - time until change

- MAP (Intersection Map)
 - geometry of the intersection
Traffic signal information display in vehicles

- Indicator on the instrument panel shows countdown timer with predicted time to green
- Data analysis company predicts the timings and sends SPaT and MAP messages to manufacturer which sends to vehicle
- Will be blank if it can’t be predicted
Early deployments: Las Vegas, NV and Frisco, TX

• Key to success – close working relationship

• Each partner plays a critical role:
 ▪ Agency
 o Infrastructure
 ▪ Controller Manufacturer
 o Data Source
 ▪ Analytics Providers
 o Models traffic and provides data to auto manufacturer
 ▪ Auto Manufacturers
 o Provides a mechanism to display information to the driver
Current Traffic Signal Data Uses

• Safety
 ▪ Reduce Red Light Running
 ▪ Collision Avoidance

• Efficiency
 ▪ Engine Management
 ▪ Energy recapture

• Driver Information
 ▪ Can reduce stress with knowledge
Role of Traffic Signals in Connected Vehicles

- Data collection hub
- Standards-based data provider to vehicles and services
 - SPaT (Signal Phase and Timing)
 - MAP (Intersection Map)
- Platform for connected vehicle applications
- Analysis, optimization, and timing/phasing adjustment based on data
Intersection controllers of the past

- Single purpose box
- Proprietary hardware/software
- No ability to add additional applications
- No interoperability

Modern ATC Controllers

- Standards-based
- Linux-based operating system
- Faster Processors
- Support to run multiple applications
- Provide access to shared controller resources
Connected Vehicle intersection requirements

- Modern ATC Controller
- NTCIP 1202 v3.05 for SAE J2735 messages
- Connected Vehicle Applications
 - Standalone box or integrated into controller
 - Some applications in DSRC radio
- Communication between controller and vehicle
 - DSRC radio
 - Cellular communication
- Communication to Traffic Management System
- Design/planning, installation, setup, training, maintenance, ongoing software license fees
AASHTO DSRC RSE Cost Estimates

- Roadside Equipment and deployment
 - $12K to $18K per intersection
- Backhaul communications
 - $4K to $40K (existing?)
- On-going operations and maintenance
 - $2K to 3K per year

Source: NCHRP 03-101 COSTS AND BENEFITS OF PUBLIC SECTOR CONNECTED VEHICLE DEPLOYMENT
CV Technology will change how signals think

• Control algorithms will have access to individual vehicle speeds, classification, positions, arrivals rates, acceleration / deceleration, queue lengths….

• Optimization will be based on a better understanding of all vehicles at the intersection and not just if a vehicle is passing over a detection point.
CV impact on the practice of Traffic Engineering

- Better data for adaptive control and performance measures because queues won’t pass upstream detection
- Performance measurements such as delay will be measured more accurately in real time instead of simulated off-line
- Priority and control algorithms based on origin – destination

Source: Next Generation Traffic Control with Connected and Automated Vehicles Henry Liu Department of Civil and Environmental Engineering University of Michigan Transportation Research Institute University of Michigan, Ann Arbor

Demonstration Projects

• New York City Pilot
 ▪ Improved safety for travelers and pedestrians
 ▪ Evaluate CV technology and applications in tightly spaced urban environments

• Wyoming Pilot
 ▪ Focuses on the needs of commercial vehicle operators

• Tampa Pilot
 ▪ Will deploy V2V and V2I applications to relieve congestion, reduce collisions, and prevent wrong way driving
 ▪ Will employ Dedicated Short Range Communications (DSRC)

• Mcity and MTC testbed in Ann Arbor
 ▪ Connected Vehicle
 ▪ Autonomous Vehicle
Early deployment applications of CV for traffic signals

Early deployments may include a limited subset of vehicles that would benefit from priority algorithms

- Transit Signal Priority
- Emergency Vehicle Preemption
- Heavy Trucks Signal Priority
The transition to Connected Vehicles

• Timeframe?

• Infrastructure enhancements

• Urban areas will lead the way

• Increase safety for all road users
 ▪ Must accommodate vulnerable road users

• Traffic Signals
 ▪ Allocation of Right of Way
 ▪ Advanced data usage in control strategies
Traffic Signals and Connected Vehicles

“Rumors of my demise have been greatly exaggerated”

Mark Twain