TTI Commercial Truck Platooning
TxDOT Project 0-6836

2nd Annual TAMU Transportation Technology Conference

Mike Lukuc
Program Manager, Connected and Automated Transportation
Texas A&M Transportation Institute
What is Truck Platooning?

• Extension of cooperative adaptive cruise control
• *Automated lateral and longitudinal vehicle control.*
• Tight formation with short following distances
• Lead truck: manually driven
• Following truck(s): driver disengaged
Levels of Automation: Simplified

- Level 0: hands, feet, eyes and eyes/brain ON
- Level 1: hands or feet OFF and eyes/brain ON
- Level 2: hands and feet OFF, eyes/brain ON
- Level 3: hands, feet, eyes OFF, brain ON
- Level 4: hands, feet, eyes, brain OFF
 - constrained environments
- Level 5: hands, feet, eyes, brain OFF
 - unconstrained
Why Truck Platooning?

• Fuels savings
• Emission reductions
• Vehicle safety benefit
• Increased highway throughput
• Other benefits
The Project Goal

Position TxDOT as a leader in this research area and the overall TSM&O and CV/AV initiatives.

– Comprehensive truck platooning demonstration in Texas.

– Proactive effort in assessing innovative operational strategies.
Project Focus

• Assess the feasibility of deploying 2-vehicle truck platoons on specific corridors in Texas in 5 to 10 years

• Bring together major public and private sector partners who have committed in-kind resources
 – Equipment
 – Engineering services, and
 – Intellectual property.
Project Structure

Phase-1: Concept Feasibility
- Feasibility Studies
- Proof-of-Concept Build

Decision Gate – Aug 2016

Phase-2: Preparation for Implementation
- Systems Engineering
- Implementation Guidance

Decision Gate – April 2019

Phase-3: Implementation
- Field deployment in Texas
- Evaluation
Phase I

<table>
<thead>
<tr>
<th>Foundational Studies</th>
<th>Platooning</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Literature Review</td>
<td>• Develop alternative scenarios and corridors</td>
</tr>
<tr>
<td>• Legislative Impacts</td>
<td>• Validate scenarios</td>
</tr>
<tr>
<td>• Liability Issues</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System Development</th>
<th>Demonstration</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Operational requirements</td>
<td>• Design and Implementation</td>
</tr>
<tr>
<td>• Safety analyses</td>
<td>• Integration</td>
</tr>
<tr>
<td>• Specifications</td>
<td>• Demonstration</td>
</tr>
</tbody>
</table>

Additional Information
- **System Development**:
 - Operational requirements
 - Safety analyses
 - Specifications

- **Demonstration**:
 - Design and Implementation
 - Integration
 - Demonstration
Vehicle Build
Project Partners

<table>
<thead>
<tr>
<th>Project Partners</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ricardo</td>
<td>Software Engineering + Integration</td>
</tr>
<tr>
<td>Navistar</td>
<td>2x Sleeper cab trucks + Maintenance + Engineering + Graphic Design</td>
</tr>
<tr>
<td>TRW</td>
<td>2x ColumnDrive + Engineering</td>
</tr>
<tr>
<td>Denso</td>
<td>2x DSRC Radios/Antennas + Engineering</td>
</tr>
<tr>
<td>Bendix</td>
<td>2x Wingman Fusion + Engineering</td>
</tr>
<tr>
<td>GreatDane Trailer</td>
<td>2x 48ft Trailers + Maintenance + Engineering</td>
</tr>
<tr>
<td>Lytx</td>
<td>2x DriveCam Solutions + Engineering</td>
</tr>
<tr>
<td>Argonne National Lab</td>
<td>2x Fuel & Engine Temp Data Acquisition, Testing Support and Analysis</td>
</tr>
<tr>
<td>US Army TARDEC</td>
<td>Engineering consulting to the project</td>
</tr>
</tbody>
</table>
Project Summary Video

Commercial Truck Platooning

TxDOT Project 0-6836
Phase 1 Demonstration
Simulation: Fuel Consumption Results

- **Average fuel savings** in the range **to 12%**
 - High volume and high MPR produce more savings, but only in non-congested traffic condition.
 - In congested traffic condition, platoons are governed by stop-and-go condition leading to reduced effectiveness in fuel consumption performance.
With platooning, there is a noticeable increase in throughput observed in high volume condition at MPR > 30%. The maximum increase in throughput is in the range of 6-8% at 50% MPR, tight following gap, and quick formation time.
Final Questions
Contact Information

<table>
<thead>
<tr>
<th>Beverly Kuhn, Ph.D., P.E.</th>
<th>Mohammad Poorsartep</th>
</tr>
</thead>
</table>
| Texas A&M Transportation Institute
2929 Research Parkway
3135 TAMU
College Station, TX 77843-3135
Phone: 979-862-3558
Email: b-kuhn@tamu.edu | Texas A&M Transportation Institute
9441 LBJ Freeway, Suite 103
Dallas, TX 75243
Phone: 734-757-5878
Email: m-poorsartep@tti.tamu.edu |

<table>
<thead>
<tr>
<th>Mike Lukuc</th>
</tr>
</thead>
</table>
| Texas A&M Transportation Institute
2929 Research Parkway
3135 TAMU
College Station, TX 77843-3135
Phone: 979-845-5239
Email: m-lukuc@tti.tamu.edu |
Alternative Platooning Concepts

- Phase 1: Defined five alternative truck platooning concepts that could be deployed in TX in 5 -10 yrs.
 1. Ad Hoc “On-the-Fly” Platooning
 2. Guided Hoc “On-the-Fly” Platooning
 3. Scheduled Platooning
 4. Trip Platooning
 5. Platoon Service Provider
Deployment Site Characteristics

Phase 3 Requirements

• > 4-lane, rural interstate highways
• Low AADT
• High truck percentage \rightarrow least 15% of AADT.
• Relatively long stretches of highway between urban centers
• Posted speed limit \geq 65 mph
Potential Corridors