INTEGRATING WILDLIFE CROSSINGS into TxDOT’S PLANNING and DESIGN PROCESS

RTI 0-6971
Stirling Robertson, Ph.D. and John Young, Jr., Ph.D.
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Synthesis of Existing Literature and State of the Practice in Wildlife Crossing Structures</td>
<td>6-13</td>
</tr>
<tr>
<td>2</td>
<td>Texas Needs Assessment</td>
<td>14-18</td>
</tr>
<tr>
<td>3</td>
<td>Crash Data and Hot Spot Analysis</td>
<td>19-25</td>
</tr>
<tr>
<td>4</td>
<td>Benefit-Cost Analysis</td>
<td>26-30</td>
</tr>
<tr>
<td>5</td>
<td>Legal Issues</td>
<td>31</td>
</tr>
<tr>
<td>6</td>
<td>Recommended TxDOT Manual Modifications</td>
<td>32-34</td>
</tr>
<tr>
<td>7</td>
<td>New Guidelines</td>
<td>35-36</td>
</tr>
<tr>
<td>8</td>
<td>White Paper</td>
<td>37-39</td>
</tr>
</tbody>
</table>
Project Management Team

- **Project Manager:** Chris Glancy

- **PMC Members:**
 - Stirling Robertson, Ph.D.
 Environmental Specialist, ENV
 - Robin Gelston
 Environmental Coordinator, PHR
 - John Young Jr., Ph.D.
 Environmental Specialist, ENV
 - John Maresh
 Environmental Specialist, ENV
 - Greg Turco, P.E.
 Bridge Design Group Leader, BRG
 - Jane Lundquist, P.E.
 Transportation Engineer, DES
 - Ken Merritt
 Environmental Specialist, PHR
 - Edward Paradise Jr
 Environmental Specialist, PHR
 - Tom Pickering
 Environmental Specialist, BRY
 - Scott Cunningham, P.E.
 Lead Traffic Engineer-South, AUS
Research Team

- **Project Lead:** Nan Jiang, P.E., Ph.D.
 CTR Research Associate

- **Research Team:**
 - Patricia Cramer, Ph.D.
 Independent Wildlife and Transportation Researcher
 - Lisa Loftus Otway, Esq.
 CTR Research Scientist
 - Kara Kockelman, P.E., Ph.D.
 UT Professor
 - Mike Murphy, P.E., Ph.D.
 CTR Deputy Director
 - Noah Oaks
 (graduated)
 Graduate Research Assistant
 - Devin Wilkins
 Undergraduate Research Assistant
Challenge

• Every year on average 7,585 collisions involving animals
• Every year on average 160 human deaths
• Many more injuries and property damage
• Habitat fragmentation and animal mortality
• Wildlife crossing consideration not integrated into TxDOT planning/design process
1. Literature Synthesis and State of the Practice
State-of-Practice Review

- Commonalities among western states
- Recommendations for TxDOT to adopt progressive approach
Data

- Crash
- Carcass
- Traffic
- Animal location
- Habitat maps
- Known population locations
- Existing telemetry
- Standardized, transparent process
- Early in planning process
- Map wildlife linkages
- Planning and prioritization

Planning

- **Planning**
 - Baseline Data and Determination of Species (including monitoring plan)
 - Agency consultation
 - Program Funding

- **Programming**
 - Fund and complete environmental studies
 - Coordination with engineering
 - Complete conceptual engineering needs and costs

- **Assessments**
 - Completed crossing assessment
 - Consider design alternatives, avoidance, minimization, mitigations
 - Continue agency coordination

- **Final Design**
 - Design and coordinate with agencies
 - Determine if monitoring is required and develop plan, if needed
 - Identify maintenance needs

- **Monitoring**
 - Determine if post construction monitoring is needed
 - Perform monitoring

- **Maintenance**
 - Plan and conduct maintenance
 - Identify adaptive management or maintenance
 - Conduct adaptive management strategies
- Standardized designs
- Incorporate examples of designs, plans, and schematics from other states
- Standardized designs
- Adaptive management during construction
- Monitoring
Maintenance

- Maintenance staff need to be involved early
- Maintenance adaptive management
- Carcass collection
Literature Review

- Reviewed of 90 papers
 - Planning for wildlife mitigation.
 - Effectiveness of wildlife crossing structures and other mitigation.
 - State conservation plans and connectivity analyses.
 - Cost-effective designs and retrofits.
 - Guidelines to decide when to mitigate for wildlife.
2. Texas Needs Assessment
- Correlate
- Synthesize
- Gain insights
Approach

- TxDOT personnel interviews
 - In-person
 - By phone
 - By email
- Major findings from interviews
Survey Targets

- TxDOT District Environmental Coordinator Staff
- TxDOT District Landscape Architects
- TxDOT District Area Engineers/District Engineers/District Directors of Planning and Development/Transportation Planning and Programming Division Director/Director of Project Planning and Development/Director of District Operations
- TxDOT District Director of Maintenance
- TxDOT Headquarters Bridge Division
- TxDOT Headquarters Traffic Operations Division
- TxDOT Headquarters Roadway Design Section, Design Division
Major Findings from Survey

- Top-down
- Regular data collection
- Plan early
- Establish best practices
- Educate employees
- Partner with resource agencies
3. Crash Data and Hot Spot Analysis

- Descriptive Statistics
- Hot Spot Analysis
- Regression Analysis
Descriptive Statistics

Number of Crashes by Light Condition

- Dark, Lighted
- Dark, Not Lighted
- Dark, Unknown Lighting
- Dawn
- Daylight
- Dusk
- Other

Number of Fatal or Injurious Crash Reports by Vehicle Type

- Motorcycle
- Pickup
- SUV
- Truck
- Passenger Car
- Van
- Other
Regression Analysis

- Identify variables
- OLS regression all counties
- VMT/capita
- Lane miles
- Density
- Rural/urban
- Non-linearity
Heat Maps

Based on crash data 2010-2016

Wild

Domestic
Hot Spot Analysis

Legend
- Hot Spot - 90% Confidence
- Hot Spot - 95% Confidence
- Hot Spot - 99% Confidence
4. Benefit-Cost Analysis
Types of Mitigation Strategies

- Culverts
- Bridges
- Fencing
- Animal detection systems
Benefit-Cost Analysis Assumptions

- Only obvious monetary benefits and costs
- Analysis separate for each link
- 20 year lifetime
- 7% discount rate
Results

Benefit/Cost Ratios:

- Overpass with fencing: 1.32-2.82
- Underpass with fencing: 1.46-2.97
- Fencing with cattle guards and detection: 7.16-14.55
High B/CR Locations
5. Legal Review

- Case law
- NEPA Assignment
- State laws
6. Recommended Manual Language Modification
Other DOT's Manuals

- Utah
- Arizona
- Montana
- Idaho
- Nevada

- Florida
- California
- North Carolina
- Washington
<table>
<thead>
<tr>
<th>TxDOT Manuals</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Access Management Manual</td>
</tr>
<tr>
<td>- Bridge Design Manual</td>
</tr>
<tr>
<td>- Bridge Project Development Manual</td>
</tr>
<tr>
<td>- Construction Contract Administration Manual</td>
</tr>
<tr>
<td>- Highway Safety Improvement Program Manual</td>
</tr>
<tr>
<td>- Landscape and Aesthetics Manual</td>
</tr>
<tr>
<td>- Maintenance Management Manual</td>
</tr>
<tr>
<td>- Maintenance Operations Manual</td>
</tr>
<tr>
<td>- Plans, Specifications and Estimate Development Manual</td>
</tr>
<tr>
<td>- Procedure for Establishing Speed Zones Manual</td>
</tr>
<tr>
<td>- Project Development Process Manual</td>
</tr>
<tr>
<td>- Roadside Vegetation Management Manual</td>
</tr>
<tr>
<td>- Roadway Design Manual</td>
</tr>
<tr>
<td>- Transportation Planning</td>
</tr>
<tr>
<td>- Transportation Programming and Scheduling Manual</td>
</tr>
<tr>
<td>- Manual of Uniform Traffic Control Devices</td>
</tr>
</tbody>
</table>
7. Guidelines for Reducing Wildlife-Vehicle-Conflicts and Promoting Wildlife Connectivity
<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Collect & Map Data</td>
</tr>
<tr>
<td>2</td>
<td>Establish if There Is a Need for Mitigation</td>
</tr>
<tr>
<td>3</td>
<td>Choose Mitigation Options</td>
</tr>
<tr>
<td>4</td>
<td>Evaluate Retrofit Opportunities</td>
</tr>
<tr>
<td>5</td>
<td>Locate Placement of Wildlife Crossing Structures</td>
</tr>
<tr>
<td>6</td>
<td>Select Designs for Wildlife Crossing Structures</td>
</tr>
<tr>
<td>7</td>
<td>Select Fence & Other Mitigation Designs</td>
</tr>
<tr>
<td>8</td>
<td>Determine Maintenance Needs</td>
</tr>
<tr>
<td>9</td>
<td>Determine Monitoring, Adaptive Management, Performance Measures</td>
</tr>
<tr>
<td>10</td>
<td>Build Structures, Evaluate, Communicate</td>
</tr>
</tbody>
</table>
8. The White Paper

White Paper: The Incorporation of Wildlife Crossing Structures into TxDOT's Projects and Operations

Nan Jiang, Ph.D.
Patrice Cramer, Ph.D.
Lisa Loftus-Otway

February 2019; Published June 2019
Chapter 1. Introduction to Animal-Vehicle Conflict

Chapter 2. Why and When to Consider Wildlife Crossing Structures and Mitigation Strategies
 - 2.1 Data Analysis
 - 2.2 Economic Savings to Motorists

Chapter 3. How Can We Do This?
 - 3.1 TxDOT’s Recent Research
 - 3.2 TxDOT’s Inclusion of Animal-Vehicle Conflict Mitigation into the Planning Process
 - 3.2.1 Pharr District: Box Culverts for Ocelot
 - 3.2.2 Lufkin District: Bridge Replacement Leads to Longer Span
 - 3.3 Example Costs
 - 3.4 Choosing Options to Mitigate Animal-Vehicle Collisions
Chapter 4. Procedures for Developing Animal-Vehicle Conflict Mitigation with Examples

- 4.1 Data
 - 4.1.1 Crash, Carcass, and Wildlife Locational Data
 - 4.1.2 Data Mapping and Analysis
- 4.2 Planning
- 4.3 Design
- 4.4 Construction
- 4.5 Maintenance

Chapter 5. Conclusions
The Final Report

Available at:
http://ctr.utexas.edu/library/reports/
Conclusions

- WVC mitigation strategies can be cost-effective
- Mitigation can improve safety and habitat connectivity
- Demonstrated high benefit/cost ratios
- Developed standardized process
- Several districts are already demonstrating success
Take Home

- Stuff is hard, but if you work with others you can get amazing results.
- TxDOT has what it takes to be a leader in wildlife crossings.

Crossing on FM 106 at Ted Hunt Drainage Ditch

FM 106 Wildlife Crossing Box Culvert (with Ledges Increasing Access for Animals to Structure)

Ocelot looking into a crossing on SH 100
Contact Info

- Stirling Robertson, Ph.D.: Stirling.Robertson@TxDOT.gov, (806) 748-4433
- John Young, Jr., Ph.D.: John.Young@TxDOT.gov (512) 416-2554
TxDOT districts