CEMENT TREATMENT
(ROAD-MIXED)

TxDOT Specification Item 275
Darlene C. Goehl, P.E.
TTI

2018 TxDOT Short Course
Table of Contents

<table>
<thead>
<tr>
<th></th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Basics of FDR process</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>TxDOT Specification</td>
<td>4-7</td>
</tr>
<tr>
<td>3</td>
<td>Basic Steps</td>
<td>8-15</td>
</tr>
<tr>
<td>4</td>
<td>Project – SH 47</td>
<td>16-21</td>
</tr>
<tr>
<td>5</td>
<td>Project – SH 288 Frontage Road</td>
<td>22-26</td>
</tr>
<tr>
<td>6</td>
<td>Project – SH 327</td>
<td>27-30</td>
</tr>
<tr>
<td>7</td>
<td>Questions</td>
<td>31</td>
</tr>
</tbody>
</table>
Basics of Full Depth Reclamation Process

- Assembling Background Information
- NDT Evaluation and Section Breakdown
 - GPR
 - FWD
- Verifying Pavement Structure and Sampling
 - Auger
 - Verification of problem location
 - DCP on shoulder for widening
- Laboratory Mix Design
 - Guidelines on selecting stabilizer type and amount
 - RAP content max 50%
- Pavement Design
 - Special Considerations
 - Need to Establish Foundation layer
 - Handling Variability
 - How to handle traffic
 - Need for widening
 - Avoid cutting into subgrade (add rock requirement)
 - FPS + Triaxial Design
- Special Considerations
 - Ensuring Surface bonding
 - Microcracking
- Construction Quality Assurance
 - Distribution of stabilizers
 - Immediate strength testing
 - Final Quality Assurance testing
- TxDOT Item 275, “Cement Treatment (Road-Mixed)"
 - Mix and compact cement, water, and subgrade or base (with or without asphalt concrete pavement) in the roadway.
 - Materials
 - Cement
 - Existing
 - Subgrade
 - Pavement
 » Maximum of 50% RAP
 - Flexible Base (furnish new base)
 - Water
 - Asphalt (may be permitted for curing purposes)
Mix Design

– Tex-120-E
 • Compressive Strength Test
 • 6x8 in mold
 • Tex-113-E to determine Optimum moisture and density

– Reference - TxDOT research 0-6271
 • Investigating small sample 2x4in
 • Moisture susceptibility test
TxDOT Specification, Item 275, “Cement Treatment – Road Mixed”

- **Equipment**
 - Cement distribution
 - Slurry equipment
 - Dry distribution equipment
 - Pulverization Equipment
 - Compaction Equipment
 - Finishing Equipment
 - Motor Grader
Microcracking

- TxDOT research project 0-4502
 - Minimum 12 ton vibratory roller
 - Typically the same roller used in compaction
 - Usual timing to perform microcracking 2-3 days after compacting
 - unless the average ambient temperature is <60°F, then increase to 4 days
 - 2 mph
 - 2 – 4 passes (down and back)
 - Can test with FWD before and after.
 Look for 50% reduction in
 Backcalculated modulus before stop rolling

Curing – 3 days

- Moist cure
- Asphalt cure
- Additional 2 days, after microcracking
Basic Steps – Preparing the Area
Basic Steps – Spreading Cement
Basic Steps – Adding Moisture
Basic Steps - Mixing
Basic Steps – Mixing and Compacting
Basic Steps - Compacting
Basic Steps – Compacting and Finishing
Basic Steps – Testing for Density
Original failure very wet subgrade
Lab design recommended 3% cement
FDR recycling top 14 1/2 inches
Microcracking between 1 and 3 days after treating
Seal Coat & 2 1/2 inch HMA surface
No cracks after 18 months
Minor Longitudinal

Condition 2006

No transverse Cracking
Northbound IRI – SH 47

Average IRI - Northbound

<table>
<thead>
<tr>
<th>Year</th>
<th>Average IRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>108</td>
</tr>
<tr>
<td>2004</td>
<td>56</td>
</tr>
<tr>
<td>2006</td>
<td>61</td>
</tr>
</tbody>
</table>
Many patches
New Failures
Poor Drainage
Existing HMA 2 – 4 inches
Existing Base 4 to 8 inches (low quality PI 15 to 18)
Moderate PI soils (23 to 33)
Low traffic
- Proposed to add 4 inches new base prior to FDR, either
 - Crushed Concrete, or
 - Grade 2 base
- Design based on blend 50% RAP + 50% new base
- Standard Lab Tests
 - 7 day Strength
 - Seismic Modulus
 - TST
 - Retained strength

7 day UCS and retained strength

<table>
<thead>
<tr>
<th></th>
<th>2%</th>
<th>3%</th>
<th>4%</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>271 (139%)</td>
<td>305 (183%)</td>
<td>427 (149%)</td>
</tr>
<tr>
<td>GR2</td>
<td>394 (141%)</td>
<td>429 (160%)</td>
<td>556 (183%)</td>
</tr>
</tbody>
</table>
SH 288 Pavement Design

Table A1 - Design Method A

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
<th>Usual Input FPS19w</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to 1st Overlay (years)</td>
<td>3.8 - 4.0</td>
<td>3.8</td>
<td>may be lower for maintenance projects</td>
</tr>
<tr>
<td>Initial Serviceability Index (SI)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Future Overlay – Initial SI</td>
<td>4.2 - 4.5</td>
<td>4.2</td>
<td>Future Overlays are not anticipated therefore use the conservative value</td>
</tr>
<tr>
<td>Minimum SI</td>
<td>2.0 - 2.5</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>Design Confidence Level</td>
<td>A (65%) – B (90%)</td>
<td>B (90%)</td>
<td>Use default value in FPS program.</td>
</tr>
<tr>
<td>District Temperature Constant</td>
<td>30 - 31</td>
<td>30 - 31</td>
<td>Use default value in FPS program.</td>
</tr>
<tr>
<td>Swelling Potential, PVR swelling rate</td>
<td>0% - 100%</td>
<td>0%</td>
<td>Do not use swelling potential as an input to FPS.</td>
</tr>
<tr>
<td>Detour (Road User Cost)</td>
<td>Posted speed and expected speed during overlay</td>
<td>Use same speed for all traffic speed entries and detour Model 3</td>
<td>Does not affect the pavement structure. Eliminates user costs associated with traffic delays for future overlays.</td>
</tr>
<tr>
<td>Material Cost per Cy</td>
<td>Use District Specific costs.</td>
<td>Monitor Bid Tabs and adjust accordingly</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material Description</th>
<th>Modulus Value</th>
<th>Poison’s Ratio</th>
<th>Cohesion Value for MT check</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing Material (including Subgrade)</td>
<td>Modulus Back-calculated from FWD data</td>
<td>0.35</td>
<td>na</td>
</tr>
<tr>
<td>Existing Pavement – Scarified, Reshaped and Compacted</td>
<td>Approximately 3 times the subgrade modulus</td>
<td>0.35</td>
<td>na</td>
</tr>
<tr>
<td>Stabilize Exist Pav/Subgrade</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) mostly granular base (75% or more base)</td>
<td>(100 ksi)</td>
<td>a) 0.3</td>
<td>a) 800</td>
</tr>
<tr>
<td>b) blend subgrade & base (50% to 75% base)</td>
<td>65 ksi</td>
<td>b) 0.3</td>
<td>b) 650</td>
</tr>
<tr>
<td>c) mostly subgrade (<50% base)</td>
<td>35 ksi</td>
<td>c) 0.35</td>
<td>c) 300</td>
</tr>
<tr>
<td>New Flexible Base</td>
<td>GR 2 = 50 ksi</td>
<td>0.25</td>
<td>1000</td>
</tr>
<tr>
<td>Cement Treated Base</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UCS>210, with 85% retained strength</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Construction of SH 288 FR
Completed highway 2010

10/07/2010
Project Description:

- ~ 5” existing ACP blended w/ 5” existing base
- ACP pulverized w/milling machine then blended w/base by rotomill in October 2008
- Cement slurry application (4%) initiated in November 2008
Field Construction
Application of Cement Slurry

- Produced by concrete plant and hauled in concrete trucks.
- Each truck spread in two batches with a custom spreader box over a length of ~ 211’
- Concerns with uniformity of cement application rate across transverse profile
 - Field-molded samples from wheelpath and center for 7-day UCS
 - PFWD on 2-day old section along both transverse and longitudinal profiles
Conclusions from SH 327

- Auger samples used for lab mix design matched well with field construction.
- Cement slurry application, after “bugs” worked out, seemed to work reasonably well.
 - No evidence of greater variability across lane width as compared to variability with longitudinal distance.
- 3 passes with roller recommended for microcracking.