SLOPE FAILURES: REPAIR OPTIONS

Sean Yoon, Ph.D., P.E.
Bridge Division – Geotechnical Branch
Slope Failures

- Global & Structural Failures
- Erosion
- Piping and Undermining
- Mudflow
Global and Structural

- Often a result of a design error or oversight.
- Involve failure of soft ground under embankments.
- Failure of retaining wall and/or bridge structures.
- Require extensive engineering evaluation and design for repair.
- $$$
Global and Structural
Global and Structural
Erosion

- Not considered a design issue.
- Common in sandy soils, newly placed or cut slopes.
- Caused by water flowing over surface.
- Control with vegetation, management of surface drainage.
- Erosion control blankets, mulch, compost.
Erosion
Erosion
Piping and Undermining

- Concentrated water flowing under structures.
- Common problem at bridge ends.
- Consider using Cement Stabilized Sand behind abutments.
- Often not obvious until structure collapses.
- Can be detected with inspection.
Piping and Undermining
Piping and Undermining
Piping and Undermining

- Early detection is key. Small problems are easy to repair.
- Use Flowable Fill (Item 401) to fill voids.
- Maintain seals and divert water when possible.
- Minor voids can become major problems quickly.
- Large, open areas can be filled with aggregate or cement-stabilized sand.
Piping and Undermining
“Mud Flow” Failures

- Slopes composed of highly plastic clay.
- May take considerable time to fail.
- Water is always a culprit.
- May not be preventable. (For Maintenance Forces).
- Designers can solve this problem for future generations!!
“Mud Flow” Failures
High Plasticity Clay

- Absorbs large amounts of water (when available).
- Swells and softens when wet.
- Shrinks and cracks when dry.
- Simple lab test to determine Plasticity Index (PI).
- PI > 30 is troublesome.
Why Do High PI Slopes Fail?

- As constructed, material is dry and well compacted.
- Surface immediately begins to absorb water, swell and soften.
- During dry periods, material shrinks and cracks.
- During next wet cycle, rain penetrates more deeply, clay material swells and softens further.
- Finally, material can no longer hold its own weight, and flows down the slope.
Mudflow (1)

- Surface soils soften and begin to creep
- Eventually a complete failure plane forms
- Mud flow begins, forming scarp and toe bulge
Mudflow (4)

- Moisture penetrates more deeply, and size of failure increases
Mudflow (5)

- Process continues until moisture source is removed or slope is repaired
What Can Be Done To Prevent Failures?

- Control surface water. Avoid concentrated flows onto slopes unless in flumes.
- Maintain vegetation on slopes.
- Avoid rutting that may hold water or impede drainage.
- In some cases, you may not be able to avoid a failure. (For Maintenance Forces).
What Can Be Done To Repair Failures? (Permanently)

- Remove and replace all problem material.
- Flatten slope.
- Install retaining wall.
- Add drainage.
- Combination of above.
Remove and Replace

- All failed material must be removed
- Removal should extend beyond the failure plane.
- Using reinforcement layers will require even deeper excavation to “anchor” the reinforcement.
- Excavation may extend into the roadway.
- Shoring may be required.
Replace with What?

- **Import New Material:**
 - ✓ Low PI fill.
 - ✓ Reclaimed or “dirty” base.

- **Modify existing high PI clay:**
 - ✓ Layers of reinforcement (geogrid, steel mesh).
Solving the Problem

- Item 132 “Embankment”
 - ✓ Type C. Material meeting the specification requirements shown on the plans.

- Specify “Type C” and limit the PI.

- Do not allow material excavated on the job to be used as embankment if it does not meet the PI requirement.
<table>
<thead>
<tr>
<th>SLOPE (X to 1)</th>
<th>PLASTICITY INDEX (PI)(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5 to 1</td>
<td>< 5</td>
</tr>
<tr>
<td>3.0 to 1</td>
<td>< 20</td>
</tr>
<tr>
<td>3.5 to 1</td>
<td>< 35</td>
</tr>
<tr>
<td>4.0 to 1</td>
<td>< 55</td>
</tr>
<tr>
<td>4.5 to 1</td>
<td>< 85</td>
</tr>
</tbody>
</table>

- Plasticity Index Range for Various Slopes Required for FS = 1.3 in the Long-Term (Drained) Condition