Statewide Implementation of the SPG Specification for Chip Seal Binders in Service

_TxDOT Implementation Project 5-6616_

Darren Hazlett, Jerry Peterson
Amy Epps Martin, Edith Arambula
Tom Freeman, Jon Epps
Shi Chang, Juan Carvajal Munoz

Summer 2014
OUTLINE

• Motivation & Objective

• Recommended SPG Specification

• Work Plan (Implementation Project Progress)

• The End of the World.
MOTIVATION & OBJECTIVE

• Increase performance and reduce cost.

• Improve chip seal binder spec & selection
  – performance-related tests
  – @ temperatures that cover entire *in service* range for specific climate
  – consider aging during critical 1*st* year
  – reduce variability in grades
  – possibly adjust due to traffic

• Implement SPG in TX in 4 year, staged effort
  – Replace Seal Coat Binder Selection Table & Item 300 Seal Coat binders
Asphalt Binder Specification History
Classification of Asphalt Binders - HMA

3 classification systems
1. Penetration 1962 (-)
2. Viscosity 1972
3. Performance 1997 (SHRP Superpave)

historical development

Long-term aging
Short-term aging
Original

Temperature

Stiffness

-20 C Low pavement temp
25C Avg pavement temp
60C High pavement temp
135C Construction

Low pavement temp Avg pavement temp High pavement temp
Classification of Asphalt Binders – AC Chip Seal

2 classification systems
1. Penetration 1962 (-)
2. Viscosity (1972)

historical development

Short-term aging

Stiffness

-20 C Low pavement temp
25C Avg pavement temp
60C High pavement temp
135C Construction temp

Temperature
Classification of Asphalt Binders – Chip Seal Emulsions

-20 C
Low pavement temp

25 C
Avg pavement temp

60 C
High pavement temp

135 C
Construction temp

Original Temperature

1. historical development
- classification systems
- Penetration 1962 (-)
DEVELOPMENT OF SPG

• TxDOT Research Project 0-1710 (45 field sections)
• TxDOT Research Project 0-6616 (30 field sections)
• NCHRP Research Project 14-17 (3 field sections)
• SPG spec for chip seal binders in service
  – Method B for emulsion residue recovery
  – + shear strain sweep with new threshold
  – X m-value
  – MSCR not added
• SPG specification part of system to be used with
  – design guidelines
  – quality control procedures
  – construction techniques
## RECOMMENDED SPG

### with AASHTO PP 72-11 Method B

<table>
<thead>
<tr>
<th>Performance Grade</th>
<th>SPG 64</th>
<th>SPG 67</th>
<th>SPG 70</th>
</tr>
</thead>
</table>

- **Average 7-day Maximum Surface Pavement Design Temperature, °C**
  - <64
  - <67
  - <70

- **Minimum Surface Pavement Design Temperature, °C**
  - >-13
  - >-16
  - >-19
  - >-22
  - >-16
  - >-19
  - >-22
  - >-25
  - >-22
  - >-25
  - >-28
  - >-31

### Original Binder

- **Dynamic Shear, AASHTO TP5**
  - $G*/\sin\delta$ Minimum: 0.65 kPa
  - Test Temperature @10 rad/s, °C

#### Shear Strain Sweep

- % strain @ 0.8$G_\ast$, Minimum: 17.5 (25)
- Test Temperature @10 rad/s linear loading from 1-50% strain, 1 sec delay time with measurement of 20-30 increments, °C

### Pressure Aging Vessel (PAV) Residue (AASHTO PP1)

- **PAV Aging Temperature, °C**
  - 100

- **Creep Stiffness, AASHTO T 313/ASTM D6648**
  - $S$, Maximum: 500 MPa
  - Test Temperature @ 8s, °C

- **Shear Strain Sweep**
  - $G_\ast$, Maximum: 2.5 MPa
  - Test Temperature @10 rad/s linear loading at 1% strain and 1 sec delay time, °C
with AASHTO PP 72-11 Method B

<table>
<thead>
<tr>
<th>Performance Grade</th>
<th>SPG 67</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-16</td>
</tr>
</tbody>
</table>

Avg 7-day Max **Surface** Pavement T, °C <67

Min **Surface** Pavement T, °C

>-16 >-19 >-22 >-25

• Method B for Emulsion Residue Recovery
  – Thin Film on Silicone Mat
  – 60 °C for 6 hrs
## RECOMMENDED SPG

<table>
<thead>
<tr>
<th>Performance Grade</th>
<th>SPG 67</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-16</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt;67</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Original Binder

**G*/Sinδ ≥ 0.65 kPa**

Test Temperature @ 10rad/s, °C

<table>
<thead>
<tr>
<th>Test Condition</th>
<th>67</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8Gᵢ* ≥ 17.5% strain</td>
<td>25</td>
</tr>
</tbody>
</table>

Test Temperature @ 10rad/s w/ 1-50%, °C

+ δ ≤ 80 where G*/sin δ = 0.65 kPa for UTI ≥ 89
## RECOMMENDED SPG

<table>
<thead>
<tr>
<th>Performance Grade</th>
<th>SPG 67</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-16</td>
</tr>
<tr>
<td></td>
<td>&lt;67</td>
</tr>
<tr>
<td></td>
<td>&gt;-16</td>
</tr>
</tbody>
</table>

### PAV Residue

<table>
<thead>
<tr>
<th><strong>S</strong> ≤ 500 MPa</th>
<th>-16</th>
<th>-19</th>
<th>-22</th>
<th>-25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Temperature @ 8s, °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>G_i</strong> ≤ 2.5 MPa</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Temperature @10 rad/s, 1% strain, °C</td>
<td></td>
</tr>
</tbody>
</table>
SPG Binder Specification
2004---300-054
2014---300-001
## Table 17A
### Surface Performance Grade (SPG) Specification

<table>
<thead>
<tr>
<th>Surface Performance Grade</th>
<th>SPG 64</th>
<th>SPG 67</th>
<th>SPG 70</th>
<th>SPG 73</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average 7-day Max pavement surface design temperature1, °C</td>
<td>&lt;64</td>
<td>&lt;67</td>
<td>&lt;70</td>
<td>&lt;73</td>
</tr>
<tr>
<td>Min pavement surface design temperature1, °C</td>
<td>&gt;-25</td>
<td>&gt;-13</td>
<td>&gt;-16</td>
<td>&gt;-19</td>
</tr>
</tbody>
</table>

### Original Binder

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Flash point temp, T 48, Min, °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viscosity, T 316: Max 0.15 Pa*s, test temp., °C</td>
<td>230</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Original Performance Properties

<table>
<thead>
<tr>
<th></th>
<th>SPG 64</th>
<th>SPG 67</th>
<th>SPG 70</th>
<th>SPG 73</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic Shear, T 315: G*/sind, Min 0.65 kPa, Test temp @ 10 rad/s, °C</td>
<td>64</td>
<td>67</td>
<td>70</td>
<td>73</td>
</tr>
<tr>
<td>Shear Strain Sweep, T 315: % strain @ 0.8 G*, Min: 17.5 MPa Test temp. @ 10 rad/s linear loading from 1–50% strain, 1 sec. delay time with measurement of 20–30 increments, °C</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Phase angle3 (d), Max, @ temp. where G*/sind = 0.65 kPa</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
</tbody>
</table>

### Pressure Aging Vessel (PAV) Residue (R 28)

<table>
<thead>
<tr>
<th></th>
<th>PAV aging temperature, °C</th>
<th>100</th>
<th>100</th>
<th>100</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creep stiffness, T 313: S, Max 500 MPa, Test temp. @ 8 sec., °C</td>
<td>-25</td>
<td>-13</td>
<td>-16</td>
<td>-19</td>
<td>-22</td>
</tr>
<tr>
<td>Shear Strain Sweep, T 315 G*, Max: 2.5 MPa Test temp. @ 10 rad/s linear loading at 1% strain, 1 sec. delay time, °C</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

1. Temperatures are at the surface of the pavement structure. These may be determined from experience or may be estimated using equations developed by SHRP or LTPP, but modified to represent surface temperatures. Surface-grade high temperatures are generally 3°C to 4°C greater than those determined for Superpave PG binders.
2. The referee method will be AASHTO T 316 using a #21 spindle at 50 r/min, however alternate methods may be used for routine testing and quality assurance.
3. Phase angle is determined at the temperature where G*/sind = 0.65 kPa. For routine testing and quality assurance, the phase angle can be interpolated from testing at two temperatures, one above and one below where G*/sind = 0.65 kPa.
## Table 7A
### Surface Performance-Grade Emulsified Asphalt

<table>
<thead>
<tr>
<th>Grade</th>
<th>Test Procedure</th>
<th>HFRS-2(SPG xy)</th>
<th>CRS-2(SPG xy)</th>
<th>CHFRS-2(SPG xy)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
</tr>
<tr>
<td>Tests on emulsions:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viscosity, Saybolt Furol at 50°C, SFs²</td>
<td>T 72</td>
<td>150</td>
<td>400</td>
<td>150</td>
</tr>
<tr>
<td>Storage stability test, 24 h., %²</td>
<td>T 59</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Demulsibility, 35 mL, 0.02 N CaCl₂, %</td>
<td>T 59</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Demulsibility, 35 mL, 0.8% dioctyl sodium sulfosuccinate, %</td>
<td>T 59</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Particle charge test</td>
<td>T 59</td>
<td>positive</td>
<td>positive</td>
<td>positive</td>
</tr>
<tr>
<td>Sieve test, %²</td>
<td>T 59</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Residue recovery</td>
<td>PP 72, Procedure B</td>
<td>65</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>Tests on recovered residue:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residue properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solubility in trichloroethylene, %</td>
<td>T 44</td>
<td>97.5</td>
<td>97.5</td>
<td>97.5</td>
</tr>
<tr>
<td>Float test, 60°C, sec.⁴</td>
<td>T 50</td>
<td>1,200</td>
<td>1,200</td>
<td>1,200</td>
</tr>
</tbody>
</table>

1. X is the average 7-day maximum pavement surface design temperature, and y is the minimum pavement surface design temperature used in Table 17A.
2. This test requirement on representative samples is waived if successful application of the material has been achieved in the field.
3. Meet original performance properties and PAV residue requirements only
4. If Float test is less than 1,200 sec. using PP 72, Procedure B, for residue recovery, then use T 59 for residue recovery.
WORK PLAN

• Conduct Technical Briefings w/TxDOT & Industry

• Determine SPG Requirements in TX based on climate
  – Adjust based on traffic
  – Other considerations
WORK PLAN

• Determine SPG Grades & Monitor Performance near construction & @ 1-year (including embedment depth)
  – 2013 - 30 binders & 26 sections
  – 2014 - ~25 sections & Plan Note
  – 2015 - ~20 sections in ≥ 2 districts
  – 2016 - ~15 sections statewide
WORK PLAN

• Verify SPG
  – Validate that PAV simulates critical 1\textsuperscript{st} year
  – Review 10 uncorrelated (lab ≠ field) 0-6616 sections
    • Validated critical 1\textsuperscript{st} year field performance

• Revise SPG
  – Consider 3°C vs 6°C increments, single maximum surface temperature, & \textit{traffic effects}
  – Further explore exclusive use of DSR w/predicted low temperature property & LAS for intermediate temperature
  – Add high temperature property & threshold to ensure modification = $\delta \leq 80 \ @ \ continuous \ T_H \ for \ UTI > 89$
  – Verify thresholds
### Project Research and Project Samples Tested as SPG (< summer 2013)

<table>
<thead>
<tr>
<th>Current Grade</th>
<th>Surface Performance Grade of Multiple Project Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC-20-5TR</td>
<td>67-16 70-13 70-16 70-19 73-16 73-19 76-16 79-19</td>
</tr>
<tr>
<td>CRS-2</td>
<td>64-10 67-13</td>
</tr>
<tr>
<td>CRS-2P</td>
<td>70-10 76-16 79-16</td>
</tr>
<tr>
<td>AC-10</td>
<td>61-19 64-16 64-19</td>
</tr>
<tr>
<td>AC-15P</td>
<td>70-19 73-13 73-19 73-22</td>
</tr>
</tbody>
</table>

Current specifications allow a significantly wide variation in properties, enough for multiple proposed SPG grade binders. Data from Research Project and Implementation Efforts.
# AC-SPG Summary 2013 Samples

<table>
<thead>
<tr>
<th>AC Grade</th>
<th>SPG</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC-10</td>
<td>61-13, 61-19</td>
</tr>
<tr>
<td>AC-10-2TR</td>
<td>64-16, 67-16, 67-19, 67-22, 70-28</td>
</tr>
<tr>
<td>AC-15P</td>
<td>67-25, 70-28, 70-31, 73-25</td>
</tr>
<tr>
<td>AC-20-5TR</td>
<td>70-22, 70-25, 73-19, 73-22, 73-25, 76-19</td>
</tr>
<tr>
<td>AC-20XP</td>
<td>73-19</td>
</tr>
<tr>
<td>AR</td>
<td>79-25</td>
</tr>
</tbody>
</table>
WORK PLAN

• Modify SPG based on feedback from TxDOT districts & briefings

• Document effort including estimated economic impact of implementation
How am I going to get my polymer?

• Rule of 89
  – If Temperature Spread > 89°C
  – Phase Angle (δ) < 80°
    (at the temperature where G*/sin δ = 0.65)
How would I call for a material using the Spec?
Possible SPG Grades

- SPG 73-25
- SPG 70-19
- SPG 67-16
- SPG 64-25
- CRS-2(SPG 73-25)
- CRS-2(SPG 70-19)
- HFRS-2(SPG 67-16)
- CHFRS-2(SPG 64-25)
Like the REM song says, is it: “The End of the World as We Know It?”
Effects of SPG Specification

I would say NO!

• Select Binders based on Climate
• Modify Climate Grade based on traffic or other considerations.
• Can set hot applied versus emulsion (both would have to meet the same binder or emulsion residue properties).
Effects of SPG Specification

- Every material will meet some grade.
- SPG is a tighter spec and we will get less variability.
- Current higher performing binders will still be higher performing binders – we will have a way to say they are higher performing.
- Tiered System “as we know it” goes away for a better tiered system based on performance.
Effects of SPG Specification

• Remember the rest of that REM verse:

  It’s the End of the World As We Know It, AND I FEEL FINE.
THANK YOU