HOT IN PLACE RECYCLING

Brett Haggerty, PE
TxDOT - San Antonio District
October 15, 2013
Table of Contents

<table>
<thead>
<tr>
<th></th>
<th>What is HIR</th>
<th>3-17</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>When/Where to use HIR</td>
<td>18-18</td>
</tr>
<tr>
<td>3</td>
<td>Why use HIR</td>
<td>19-20</td>
</tr>
<tr>
<td>4</td>
<td>Lessons Learned</td>
<td>21-31</td>
</tr>
</tbody>
</table>
What is HIR

Categories of HIR

- Recycling
- Remixing
- Repaving
What is HIR

Repaving

hopper

pug mill

screeds

integrated new/recycled overlay
What is HIR

- **screed**
- **pug mill**
- **heaters**
- **new hot mix**
What is HIR

- 100% or close to it
- Can be overlaid
What is HIR - Recycling Process

- Continuous Process with Self-Contained Train
 - Asphalt Surface Heated
 - Heated Pavement Milled in ½” to ¾” increments
 - Engineered Emulsion Added at Design Content
 - Materials Mixed and Windrowed
 - Recycled Mix Placed by Paver with Vibratory Screed
 - Mat Compacted
 - Surface Applied
What is HIR – Milling Heater

- Milling Heater cutting \(\frac{1}{2}''-3/4'' \) of heated material. The milling heads are capable of milling 15’ wide.
Milling heater’s windrow of material. This material is being processed between 200 and 275 degrees F.
What is HIR – Milling Heater
What is HIR – Milling Heater

- Windrow of material from milling heater going under a tunnel heater. Heat is transferred into underlying pavement and into windrow.
What is HIR – Adding Recycling Agent

- Distribute Evenly
- Based on volume of mix recycled
- Typically: ARA-1P
What is HIR – Adding Recycling Agent
What is HIR – Laydown

- Windrowed 100% recycled material is picked up and paved in a conventional paver to the specified width
- **Utilize conventional pavers**
What is HIR – Laydown

- Utilize conventional pavers
When/Where to use HIR – Scoping applicability

- Restoring the top 3 to 4 inches of the pavement (HIR should not be left as the final surface)
 - Flood plains can be an issue if raising elevation
- Need to have at least 2” of HMA or Concrete underneath the HIR train
- No more than 1 seal coat within recycling layers
- No grid
- No AR or TR asphalt allowed (it burns)
Why use HIR

- **Fast**
 - For 2” layer we’ve seen typical rates of 2 miles per day (~17,000 sy/day)

- **Smaller Carbon Footprint**
 - Reduced transportation, reusing existing material

- **Increased Competition**
 - Alternates yield: Better prices, innovation, proof of concept
Why use HIR - Pricing

<table>
<thead>
<tr>
<th>Material</th>
<th>Unit Cost for Material</th>
<th>Unit Cost for placement ($/SY-inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type D PG 70-22</td>
<td>$72.28/TON</td>
<td>$3.98</td>
</tr>
<tr>
<td>Planing 1”</td>
<td>$0.93/SY-in.</td>
<td>$0.93</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>$4.91/SY-in.</td>
</tr>
<tr>
<td>HIR</td>
<td>$4.40/SY-2in.</td>
<td>$2.20/SY</td>
</tr>
<tr>
<td>Rejuvenator (~0.25 gal/sy-in.)</td>
<td>$2.83/gal</td>
<td>$0.71/SY</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>$2.91/SY-in.</td>
</tr>
</tbody>
</table>

~70% difference between HIR and Type D mixture

* - Unit costs obtained from TxDOT 12 month moving average cost (September 30, 2013)
* - Rejuvenator rate obtained from last 3 projects in San Antonio District
Lessons Learned

- **Hamburg requirements**
 - All RAP, no mix design has seen less than 20,000 passes

- **Rejuvenator (ARA-1P)**
 - All samples obtained easily meet Item 300. Potential modification to account for new materials

- **General Notes**
 - Penetration doesn’t capture material performance
 - Utilize Overlay Tester to help identify cracking resistance/capability of combined mixture. Most jobs have been able to obtain over 100 cycles during mix design.
 - Utilize general note for remove and replace mixture

- **Expand out limits on QA test requirements**
 - Current HIR Spec In-Place Air Voids: 4%-9%
 - Current Dense Graded Spec In-Place Air Voids: 2.7%-9.9%
Lessons Learned

- **Items to monitor in the field**
 - Temperature behind the screed
 - Temperature of the left behind pavement (don’t want big temperature differential between HIR and existing pavement).
 - In-Place Air Voids

- **Modifications in the field**
 - Temperature – More/less heaters or changing speed on HIR train. To accommodate density.
 - Rejuvenator Content – More/Less to accommodate density
 - Depth of recycling – Generally, deeper to lower density. Generally, higher to increase density or account for subsurface irregularities.

- **Difficulties**
 - Segregation
 - Surface irregularities
 - Material is what it is
 - Re-recycling has had difficulties in San Antonio
 - Alternates (Performance or Cost?)
Lessons Learned

- Recycling Alternates

 - Cost

 - Asphalt
 - Aggregate
 - Underseal
 - Thickness

 - Performance (HIR to alternate OR consider design without alternate when making material selection)
 - HIR will have great Hamburg, but does not necessarily warrant speccing out PG76-22 alternate
 - HIR will typically have a SAC aggregate, does not warrant having SAC alternate if subsurface
 - HIR does not use an underseal, does not necessarily warrant removal of underseal for alternate. Need engineering judgment to identify if one is needed (i.e. bonding, sealing, etc...).
 - Different thicknesses should not be considered to meet equal payment