<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>“New” and Reconstruction Design – CRCP and JCP</td>
<td>3-20</td>
</tr>
<tr>
<td>2</td>
<td>Rehabilitation Design – Bonded and Unbonded Concrete Overlay</td>
<td>21-32</td>
</tr>
<tr>
<td>3</td>
<td>Uncommon Concrete Pavement Types</td>
<td>31-42</td>
</tr>
<tr>
<td>4</td>
<td>Concrete Paving FY 2009 to FY 2013 Letting information</td>
<td>43-49</td>
</tr>
</tbody>
</table>
Pavement Design Categories

There are three pavement structural design categories:

- “New” pavement design
- Pavement reconstruction design and
- Pavement rehabilitation design
“New” and Reconstruction Design

- Continuously Reinforced Concrete Pavement (CRCP)
- Jointed Concrete Pavement (JCP) or Concrete Pavement Contraction Design (CPCD)
Steel in CRCP:
- Contains longitudinal and transverse steel
- Does not contain transverse joints except at construction joints

The function of the longitudinal steel
- **NOT** to strengthen the concrete slab,
- But to control concrete volume changes due to temperature and moisture variations and
- Keep transverse cracks closed tightly.
Continuously Reinforced Concrete Pavement (CRCP)
CRCP Components

- Longitudinal Joint
- Longitudinal Steel
- Transverse Steel
- Tie Bars
- Longitudinal Steel
- 4” ACP Base
- 11” CRCP

OCT 29 2003
Jointed Concrete Pavement (JCP)

- **Steel & Joints in JCP:**
 - Transverse joints spaced at regular intervals
 - Transverse joints used to control temperature induced contraction and expansion
 - Smooth dowel bars used at transverse joints for load transfer
 - Transverse joints spaced at 15 foot intervals

- **The function of the longitudinal joints**
 - Used to control random longitudinal cracking
 - Longitudinal joints are tied together with tie bars
Jointed Concrete Pavement (JCP)
JCP Components

Dowel Bars

Tie Bars

ACP Base
Selection of Rigid Pavement Type

- CRCP provides excellent long-term performance requiring very low maintenance
- TxDOT policy is to utilize CRCP for new or reconstructed rigid pavements in Texas
- There are situations where jointed pavement may be desirable
Situations Where Jointed Pavement may be Desirable

- For JCP to be utilized, it must meet one of the following criteria:
 - Roadways controlled and maintained by another government entity
 - Aesthetic reasons where pedestrian traffic might interpret the randomly spaced cracks of CRCP with premature failure
 - Parking areas or roadways with crosswalks, adjacent parking, or sidewalks
For JCP to be utilized, it must meet one of the following criteria:

- Railroad crossings, approaches to structures or widening existing JCP

- Intersections and approaches in flexible pavement roadways associated with vehicle braking and acceleration which could cause shoving and rutting of an asphalt pavement

- Other situations approved by the Administration, after submittal of request and justification to the Materials & Pavements Section of the Construction Division (CST-M&P).
Other Situations Where JCP has been Used

- District experience
 - CRCP failures but good performing JCPs
 - When local aggregates were used and
 - Design traffic was not very high
- Urban Section with many leave-outs
- Selection of the same pavement design as adjacent section
Reconstruction

- **Reconstruction of Concrete Pavement**
 - Most invasive rehabilitation option, however, in many cases the most cost-effective
 - Used for pavements with many cracked slabs, subgrade and support instability, serious material distresses and roadway safety needs
 - Restoration and resurfacing of pavements in these conditions is usually less effective
 - May involve removal and replacement of parts of the pavement, limited to one lane or removal of the entire pavement, including support layers
Recycling Concrete Pavement

- Eliminates need for disposal by using the readily available pavement as an aggregate source for new concrete or subbase layers
- Recycling concrete pavement is a relatively simple process
 - Involves breaking, removing and crushing concrete from an existing pavement into a material with a specified size and quality.
 - Crushed concrete may be reused as an aggregate in new Portland cement concrete or any other structural layer.
Reconstruction - Recycling of Concrete Pavement

- TxDOT CRCP with Recycled Concrete Aggregate (RCA)
 - Rehab project in Houston, TX
 - I-10 between I-45 & Loop 610 West
 - Project Length: 5.8 miles
 - Existing CRCP: Constructed in 1968
 - 10 Lanes + HOV
 - No virgin aggregates used in concrete
 - All RCA (both coarse & fine aggregate)
- Good performance of CRCP with RCA in Illinois and Texas
- TxDOT Specification
 - Allows 100% coarse RCA
 - Waives soundness requirement
 - Use of coarse RCA is encouraged
Pavement Rehabilitation Design

- Bonded Concrete Overlay (CRCP)
- Unbonded Concrete Overlay (CRCP or JCP)
Bonded Concrete Overlay (BCO) on CRCP

- Concrete pavements designed and constructed with predicted traffic
 - Some sections are insufficient for today’s traffic demand
 - Insufficient thickness has often resulted in pavement distresses
 - Punchouts for CRCP
 - Mid-slab cracking or joint faulting in CPCD
 - BCO can be a cost-effective rehabilitation strategy to extend pavement life if:
 - Portland cement concrete (PCC) pavement is structurally sound (slab support is in good condition) except for the deficient thickness
In bonded concrete overlays:
- New concrete layer is applied to the surface of an existing PCC pavement
- Increases total thickness of the concrete slab
 - Reducing wheel load stresses and
 - Extending pavement life

Completed BCO projects in Texas
- Some have provided an additional 20-years of service
- Other projects did not perform well

Difference between good and poorly performing BCOs traced to bond strength between new and old concretes
Design and construction of BCOs involves the following:

- Evaluate the project’s candidacy for BCO
- Develop adequate slab thickness and steel designs
- Repair distresses in existing pavement
- Prepare surface of existing pavement for overlay
- If needed, place steel
- Place new concrete and provide for optimum curing
Bonded Concrete Overlay (BCO) ≤ 3 in
Bonded Concrete Overlay (BCO) \leq 5 \text{ in}
Unbonded Concrete Overlay (UBCO)

- Unbonded concrete overlay consists of:
 - Concrete layer (≥ 5 inches) on top of an existing concrete
 - With “separation interlayer” to separate new overlay and existing concrete
 - Feasible rehabilitation alternative for PCC pavement for practically all conditions
 - Most cost-effective when existing pavement is badly deteriorated due to reduction in repairs to existing pavement
Unbonded Concrete Overlay (UBCO)

- Unbonded CRCP concrete overlays may be used over CRCP, JCP, or jointed reinforced concrete pavement (JRPCP).
- Unbonded CRCP overlay uses the same design procedure as new CRCP.
- This use of unbonded CRCP overlay can:
 - Be credited for contributing to the structural capacity of existing concrete pavement and
 - Results in a thinner concrete pavement design than required for CRCP constructed on a new location.
Unbonded Concrete Overlay (UBCO)

- Design and construction of UBCO very similar to new construction; the procedure is as follows:
 - Evaluate the project’s candidacy for UBCO
 - Develop adequate slab and interlayer thickness and steel designs
 - Repair distresses in existing pavement
 - Place new concrete and provide for optimum curing

- If UBCO is placed over CPCD, shattered slabs must be removed and replaced

- If placed over CRCP, punchouts should be repaired through full depth repair (FDR)
 - Spalling, whether partial or half depth, does not require repairs; however, some districts repair them before placing an UBCO
Unbonded Concrete Overlay (UBCO)

- Layer directly beneath new CRCP slabs is always a bituminous layer in TxDOT designs
 - This holds regardless whether the subbase is cement treated or asphalt stabilized
 - The 1-inch bituminous layer over cement stabilized subbase is called “bond breaker”

- In UBCO, the existing PCC pavement (whether CPCD or CRCP) acts as a stabilized subbase like cement treated base (CTB)

- From a structural standpoint, UBCO is similar to TxDOT’s new CRCP system with CTB and bond breaker
Uncommon Concrete Pavement Types

- Thin Whitetopping
- Jointed Reinforced Concrete Pavement (JRCP)
- Precast Concrete Pavement
- Roller Compacted Concrete Pavement
Thin Whitetopping (TWT)

- Thin whitetopping (TWT)
 - 4 - 7 inch thick concrete overlay
 - Bonded to existing asphalt concrete pavement (ACP)
 - Creates composite section

- Normally constructed at intersections where rutting and shoving in asphalt pavement continue to occur

- May also be used in the following locations:
 - Access/exit ramps of interstate highways
 - Entire sections of urban roadways
 - Low-volume rural roads
 - Bus lanes
 - Parking areas
Thin Whitetopping (TWT)

ACP with Rutting

Whitetopping Panels in Excellent Condition
Thin Whitetopping (TWT)
Thin Whitetopping (TWT)
Thin Whitetopping (TWT)
Thin Whitetopping (TWT)

- Requirements
 - Adequate Support by Existing ACP
 - ≥ 4 inch ACP layer
 - Uniform support
 - Milling = better bond
 - Remove rutting > ½ inch
Jointed reinforced concrete pavement (JRCP)

- **Joints**
 - Contraction joints and reinforcing steel used to control cracking
 - Transverse joint spacing greater than that for JPCP (60 feet, old TxDOT standard)

- **Cracks**
 - Temperature and moisture stresses expected to cause cracking between joints
 - Reinforcing steel or steel mesh is used to hold these cracks tightly together

- **Load Transfer**
 - Dowel bars typically used at transverse joints
 - Assist in load transfer at transverse joints
 - Reinforcing Steel/Wire Mesh assists in load transfer across cracks
Jointed Reinforced Concrete Pavement (JRCP)
Precast Concrete Pavement
Roller Compacted Concrete Pavement (RCC)
Total Lane Miles in PMIS, by Pavement Type, FY 2009 - 2012

<table>
<thead>
<tr>
<th>Pavement Type</th>
<th>Fiscal Year</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexible or Asphalt Concrete Pavement (ACP)</td>
<td></td>
<td>178,591.5</td>
<td>178,953.8</td>
<td>179,318.3</td>
<td>179,485.9</td>
</tr>
<tr>
<td>Continuously Reinforced Concrete Pavement (CRCP)</td>
<td></td>
<td>11,770.5</td>
<td>12,345.1</td>
<td>13,109.1</td>
<td>13,387.9</td>
</tr>
<tr>
<td>Jointed Concrete Pavement (JCP)</td>
<td></td>
<td>4,098.4</td>
<td>3,988.5</td>
<td>3,895.0</td>
<td>3,947.6</td>
</tr>
<tr>
<td>STATEWIDE</td>
<td></td>
<td>194,460.4</td>
<td>195,287.4</td>
<td>196,322.4</td>
<td>196,821.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concrete Paving</th>
<th>Fiscal Year</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Square Yards of Concrete</td>
<td></td>
<td>4,201,915</td>
<td>7,671,861</td>
<td>7,613,213</td>
<td>4,989,744</td>
<td>6,574,191</td>
</tr>
<tr>
<td>Lane Miles</td>
<td></td>
<td>597</td>
<td>1090</td>
<td>1081</td>
<td>709</td>
<td>934</td>
</tr>
<tr>
<td>Number of Projects</td>
<td></td>
<td>152</td>
<td>201</td>
<td>183</td>
<td>121</td>
<td>173</td>
</tr>
<tr>
<td>Item Description</td>
<td>Number of Projects</td>
<td>Average Bid Price</td>
<td>Total Square Yards</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conc Pvmt (Cont Rein-CRCP)(8”)</td>
<td>139</td>
<td>56.47</td>
<td>2,809,999</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conc Pvmt (Cont Rein-CRCP)(9”)</td>
<td>87</td>
<td>49.34</td>
<td>4,264,845</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conc Pvmt (Cont Rein-CRCP)(10”)</td>
<td>151</td>
<td>53.14</td>
<td>5,836,196</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conc Pvmt (Cont Rein-CRCP)(11”)</td>
<td>36</td>
<td>46.80</td>
<td>2,153,226</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conc Pvmt (Cont Rein-CRCP)(12”)</td>
<td>46</td>
<td>52.37</td>
<td>2,118,267</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conc Pvmt (Cont Rein-CRCP)(13”)</td>
<td>62</td>
<td>58.64</td>
<td>5,909,985</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conc Pvmt (Cont Rein-CRCP)(14”)</td>
<td>15</td>
<td>59.28</td>
<td>1,260,931</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conc Pvmt (Cont Rein-CRCP)(15”)</td>
<td>23</td>
<td>53.18</td>
<td>3,927,197</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Max Bid Price
CRCP 15" = $160.29/SY

<table>
<thead>
<tr>
<th>CRCP Thickness (in)</th>
<th>≤ ¼ lane mile</th>
<th>≤ ½ lane mile</th>
<th>≤ one lane mile</th>
<th>≤ two lane miles</th>
<th>> two lane miles</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRCP 8"</td>
<td>73.07</td>
<td>49.68</td>
<td>53.43</td>
<td>41.86</td>
<td>39.27</td>
</tr>
<tr>
<td>CRCP 9"</td>
<td>92.79</td>
<td>51.16</td>
<td>54.00</td>
<td>44.65</td>
<td>38.19</td>
</tr>
<tr>
<td>CRCP 10"</td>
<td>83.45</td>
<td>65.78</td>
<td>58.34</td>
<td>49.34</td>
<td>38.51</td>
</tr>
<tr>
<td>CRCP 11"</td>
<td>70.40</td>
<td>62.58</td>
<td>48.29</td>
<td>43.75</td>
<td>39.72</td>
</tr>
<tr>
<td>CRCP 12"</td>
<td>69.95</td>
<td>61.00</td>
<td>51.96</td>
<td>59.73</td>
<td>38.30</td>
</tr>
<tr>
<td>CRCP 13"</td>
<td>69.37</td>
<td>74.50</td>
<td>56.27</td>
<td>63.28</td>
<td>46.93</td>
</tr>
<tr>
<td>CRCP 14"</td>
<td>69.37</td>
<td>61.90</td>
<td>58.56</td>
<td>59.09</td>
<td>37.46</td>
</tr>
<tr>
<td>CRCP 15"</td>
<td>160.29</td>
<td>45.00</td>
<td>52.50</td>
<td>52.50</td>
<td>41.81</td>
</tr>
</tbody>
</table>
SiteManager Data, FY 2009 - 2013

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Number of Projects</th>
<th>Average Bid Price</th>
<th>Total Square Yards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conc Pvm (Jointed-CPCD) (6”)</td>
<td>1</td>
<td>35.00</td>
<td>17,396</td>
</tr>
<tr>
<td>Conc Pvm (Jointed-CPCD) (8”)</td>
<td>13</td>
<td>56.94</td>
<td>162,680</td>
</tr>
<tr>
<td>Conc Pvm (Jointed-CPCD) (9”)</td>
<td>17</td>
<td>58.34</td>
<td>140,984</td>
</tr>
<tr>
<td>Conc Pvm (Jointed-CPCD)(10”)</td>
<td>13</td>
<td>62.99</td>
<td>101,249</td>
</tr>
<tr>
<td>Conc Pvm (Jointed-CPCD)(11”)</td>
<td>4</td>
<td>44.22</td>
<td>57,649</td>
</tr>
<tr>
<td>Conc Pvm (Jointed-CPCD)(12”)</td>
<td>9</td>
<td>60.10</td>
<td>123,774</td>
</tr>
<tr>
<td>Conc Pvm (Jointed-CPCD)(13”)</td>
<td>6</td>
<td>88.84</td>
<td>47,632</td>
</tr>
<tr>
<td>Conc Pvm (Jointed-CPCD)(15”)</td>
<td>2</td>
<td>35.50</td>
<td>69,832</td>
</tr>
</tbody>
</table>
The selection of a pavement type is not an exact science; but one in which the highway engineer must make a judgment on many varying factors such as traffic, soil, weather, materials, construction, maintenance, and environment.