Use of FE Simulations to Parametrically Evaluate and Compare Seat Belt Restraint Systems and Related Injury Risk in Heavy Truck Frontal Crash Conditions

Chiara Silvestri Dobrovolny, Ph.D.
Associate Research Scientist, TTI

Nathan Schulz
Graduate Research Assistant, TTI

2015 Traffic Safety Conference
Corpus Christi, Texas

June 09, 2015
Order of Presentation

- Background
- Objective
- Methodology
- FE Computer Models (Vehicle, ATD, Passive Restraint Systems)
- FE Computer Frontal Impact Simulations
- Results
- Future Research
Background

- Approximately 340,000 medium/heavy trucks involved in traffic crashes per year in U.S.
- 600 fatalities; 20,000 injuries to truck drivers
- Aggregate cost of crashes to society is $3.1 billion

- No existing standards for truck cab crashworthiness or occupant protection in heavy truck crashes (although being discussed)
- Need of additional characterization of crash-injury, current heavy truck crashworthiness, potential benefits of crashworthy structures in heavy truck cabs
Objectives

TTI and UMTRI proposed jointly effort devoted to collect & develop required information by:

- analyzing crash & travel datasets available at UMTRI and TTI;
- identify frequencies & costs of types of heavy truck crashes;
- estimate benefits of crashworthy structures in heavy trucks to reduce death, injury, & societal costs of heavy truck crashes
Methodology
FE Computer Models

- Heavy Truck
- ATD
- Seatbelt
- Airbag

FE Computer Simulations

- Frontal Impact (Wall)
- Parametric Variation Seatbelt Properties
- ATD Injury Criteria
Simplified Methodology

Crash pulse applied to cab mounts

Frontal Impact (Wall)

ATD
Seatbelt
Airbag
Step 1

Develop Heavy Truck Cabin Model
Computer Model – Heavy Truck

Current FE Computer Model

Need for Occupant Compartment Interior
Heavy Truck Cabin Model

FE Model of Cab-Over-Engine Cabin*

* Developed by TTI under project funded by Department of State

Morphed Conventional Cab*

* As of Peterbilt 387
Step 2

Develop Heavy Truck Interior Compartment
Cloud Point Scans*
* Developed by UMTRI for Peterbilt 387
Heavy Truck Interior Compartment

Models developed applying mesh grid over cloud points
Step 3

Inclusion of ATD
ATD Inclusion and Pre-Positioning

Existing LSTC Hybrid III 50% Male ATD
Step 4

Addition of Passive Restraint Systems
Seatbelt Model

Original
*Developed by LSTC for Passenger Car

Modified
*To fit Heavy Truck Geometry

Original

Modified
Seatbelt Model

Modified

*To fit Heavy Truck Geometry

![Diagram of seatbelt model]

<table>
<thead>
<tr>
<th>Event</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ms</td>
<td>Retractor sensor fires – enters locked mode</td>
</tr>
<tr>
<td>10 ms</td>
<td>Pretensioner sensor fires – enters locked mode</td>
</tr>
<tr>
<td>1.8 kN tension reached</td>
<td>Pretensioner disengages – retractor active</td>
</tr>
<tr>
<td>4 kN tension reached</td>
<td>Load limiter 1 engages (load limit case 1 only)</td>
</tr>
<tr>
<td>8 kN tension reached</td>
<td>Load limiter 2 engages (load limit case 2 only)</td>
</tr>
</tbody>
</table>
Airbag Model

Airbag - *Developed by NCAC

Folded

Deployed

NCAC

Heavy Truck
Step 5

Crash Pulse
Crash Pulse – 35 mph Frontal
Step 6

FE Parametric Simulations of Frontal Impacts
Frontal Impacts - 35 mph

- Baseline
- No Pretensioner
- 4 kN Load Limiter
- 8 kN Load Limiter
- Lowered D-Ring
Step 7

ATD Injury Criteria Evaluation
ATD Modeled Instrumentation

- Head Accelerometer
- Chest Accelerometer
- Right Upper Leg (Femur)
- Pelvis Accelerometer
- Left Upper Leg (Femur)
- Left Lower leg (Tibia)
- Right Lower leg (Tibia)
Head Injury Criteria (HIC)

Head acceleration recorded during impact event employed to calculate HIC representing probability of head injury

\[HIC = \max \left[\left(\frac{\int_{t_2}^{t_1} a(t) \, dt}{(t_2 - t_1)} \right)^{2.5} (t_2 - t_1) \right] \]
Comparison to IARV

Injury Assessment Reference Values (IARVs)

Injury event termed “unlikely” if associated injury value does not exceed IARVs

<table>
<thead>
<tr>
<th>Body Region</th>
<th>Parameter</th>
<th>IARV</th>
<th>Injury Criteria</th>
<th>% of Critical Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td>HIC</td>
<td>700</td>
<td>104</td>
<td>0.15</td>
</tr>
<tr>
<td>Neck</td>
<td>Nij</td>
<td>1</td>
<td>0.78</td>
<td>0.78</td>
</tr>
<tr>
<td></td>
<td>Neck axial tension (kN)</td>
<td>4.17</td>
<td>2.8</td>
<td>0.68</td>
</tr>
<tr>
<td>Chest</td>
<td>Deflection (mm)</td>
<td>63</td>
<td>85</td>
<td>1.36</td>
</tr>
<tr>
<td>Lower Extremity</td>
<td>Femur axial force (kN)</td>
<td>-10</td>
<td>-4.7</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td>Tibia Index</td>
<td>1</td>
<td>2.3</td>
<td>2.26</td>
</tr>
<tr>
<td></td>
<td>Tibia axial force (kN)</td>
<td>-8</td>
<td>-9.3</td>
<td>1.16</td>
</tr>
</tbody>
</table>
Comparison to IARV
Examples of Computer Simulations
Frontal Simulations – No Airbag

No Airbag - Baseline

No Airbag – No Pretensioner

UMTRI
University of Michigan
Transportation Research Institute

ATLAS CENTER
Advancing Transportation, Leadership and Safety

Texas A&M Transportation Institute
Frontal Simulations – No Airbag

No Airbag – 4 kN Limit Load

No Airbag – Lowered D-Ring
No Airbag – Injury Probability

Head

- Baseline
- No Pretensioner
- 4 kN Load Limiter
- 8 kN Load Limiter
- Lowered D Ring

Neck

- Baseline
- No Pretensioner
- 4 kN Load Limiter
- 8 kN Load Limiter
- Lowered D Ring

Chest

- Baseline
- No Pretensioner
- 4 kN Load Limiter
- 8 kN Load Limiter
- Lowered D Ring
When Adding Airbag...
Head Injury Probability

No Airbag

Airbag
Neck Injury Probability

No Airbag

<table>
<thead>
<tr>
<th>Condition</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>0.3</td>
</tr>
<tr>
<td>No Pretensioner</td>
<td>0.4</td>
</tr>
<tr>
<td>4 kN Load Limiter</td>
<td>0.4</td>
</tr>
<tr>
<td>8 kN Load Limiter</td>
<td>0.5</td>
</tr>
<tr>
<td>Lowered D Ring</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Airbag

<table>
<thead>
<tr>
<th>Condition</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>0.1</td>
</tr>
<tr>
<td>No Pretensioner</td>
<td>0.1</td>
</tr>
<tr>
<td>4 kN Load Limiter</td>
<td>0.1</td>
</tr>
<tr>
<td>8 kN Load Limiter</td>
<td>0.1</td>
</tr>
<tr>
<td>Lowered D Ring</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Conclusions

- 35 mph w/OUT airbag and 8 kN load limiter produced lowest injury criteria results for ATD.
- 35 mph w/airbag and 4 kN load limiter produced lowest injury criteria results for ATD.
- Inclusion of airbag resulted in significant reduction in probability of neck injury.
Future Research

- Validation of interior component material modelling (for accurate deformation response of truck cabin interior)
- Realistic seat characteristics (suspensions)
- Development and analysis of additional restraint systems
 - side curtain airbag system
 - five point seatbelt
 - ...

UMTRI

ATLAS CENTER

Texas A&M Transportation Institute
Acknowledgements

- Robert Wunderlich (Associate Director, ATLAS Center, TTI) for sponsoring the project through ATLAS Center Program.
- DOS for use of COE truck cabin FE model developed by TTI.
- Jingwen Hu (Associate Research Scientist, UMTRI) for seatbelt model and assistance with FE computer simulations.
- Akram Abu-Odeh (Research Scientist, TTI) and Kimberley Ryan (Former Graduate Student Worker, TTI) for assistance with TruckSim.
- Abhinav Mohanakrishnan (Former Graduate Student Worker, TTI) for compilation of injury criteria results.
Chiara Silvestri Dobrovolny
E-mail: c-silvestri@ttimail.tamu.edu
Phone: 979-845-8971

Questions?