The Effect of Crash Avoidance Technologies on Truck Driver Fatality and Injury, and Identifying Residual Crash Types

Daniel Blower

Traffic Safety Conference
Corpus Christi, Texas
June 9, 2015
Acknowledgements

This research project was supported by the Center for Advancing Transportation Leadership and Safety (ATLAS Center). The ATLAS Center is supported by a grant from the U.S. Department of Transportation, Office of the Assistant Secretary for Research and Transportation, University Transportation Centers Program (DTRT13-G-UTC54). The ATLAS Center is a collaboration between the University of Michigan Transportation Research Institute (UMTRI) and the Texas A&M Transportation Institute (TTI).

Scott Bogard & John Woodroofe at UMTRI, for providing videos and graphics.
Outline

- Problem dimensions: Number of fatalities & injuries.
- Identification of riskiest crash types for truck drivers.
- Crash avoidance technologies:
 - Stability control.
 - Forward collision warning & mitigation.
 - Lane departure warning.
- Estimate effect of full deployment in the fleet.
- Identification of residual crash population.

Focus is on tractor-semitrailer crashes & drivers.
Truck, tractor-semitrailer & light vehicle driver fatalities

- Truck driver fatalities varied, but about the same as 2001.
- Light vehicle driver fatalities down 30% from 2001.
- Trucking in top 3 for occupational injury.
- Fatality rate about 7 times average.
What is to be done?

- Increase safety belt use
 - Belt use rates 84% in 2013.
 - Approaching light vehicles (87%).
- Deploy crash avoidance technologies
 - Effect of existing technologies.
 - Identification of residual crashes for interventions.
- Improve crashworthiness
 - More protective interiors
 - Improve restraints.
Identification of most dangerous crash types

- Most harmful event in crash.
- Rollover: 4% of crashes; 52% of fatal & serious inj.
- Collisions with other trucks & hard fixed objects.
- Fire, often after a collision.
Impact location for serious/fatal injuries

Impact location for serious driver injuries

- Front, 59.5%
- Right, 20.3%
- Left, 16.7%
- Back, 1.3%

Serious injury rate

- Front: 2.5
- Right: 0.7
- Back: 0.1
- Left: 0.6
Key Crash Avoidance Technologies

- Electronic stability control (ESC)
- Roll stability control (RSC)
- Forward Collision Avoidance and Mitigation Systems (F-CAM)
- Lane departure warning (LDW)
Electronic Stability Control (ESC) Roll Stability Control (RSC)

- Both ESC and RSC respond to lateral acceleration
- ESC senses divergent yaw rate & lateral acceleration
- ESC & RSC have mass-related intervention strategies
- Assess vehicle mass using engine torque and acceleration

- Braking strategies:
 - De-throttle engine
 - Engage engine retarder
 - Apply foundation brakes
 - ESC-selective wheel braking
Target Crash Types

- Untripped rollover
- Crashes precipitated by on-road loss of control

“Untripped rollover” typically on-road, precipitated by lateral acceleration and roadway friction.

Too fast in curve.

Loss of control crashes initiated by power unit yaw and skidding.

7.2% of all crash involvements.
F-CAM system characteristics

- Forward Collision Warning + Autonomous Braking
- Sensor range up to 100m
- FCW: audible, haptic warning
- Braking authority:

<table>
<thead>
<tr>
<th>Generation</th>
<th>Vehicle detected moving</th>
<th>Vehicle never detected moving</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current</td>
<td>0.35 g</td>
<td>No response.</td>
</tr>
<tr>
<td>Next</td>
<td>0.6 g</td>
<td>0.3 g</td>
</tr>
<tr>
<td>Future</td>
<td>0.6 g</td>
<td>0.6 g</td>
</tr>
</tbody>
</table>
F-CAM Intervention Sequence

- **t0**: Object tracked
- **t1**: Potential rear end collision detected
- **t2**: Hard braking required to prevent collision
- **t3**: Avoidance maneuver not possible
- **t4**: Crash prevented or mitigated

System Reactions
- **Warning Tone and Lamp**
 - **Engine Torque Limitation**
 - **Brake Activation**
Target Crash Types

Rear-end, truck striking

- Current generation:
 - Lead vehicle stopped at impact, but seen moving.
 - Lead vehicle slower, steady speed.
 - Lead vehicle decelerating.
 - Lead vehicle cut-in.

- Next, future generation:
 - Lead vehicle stopped at impact, regardless whether ever detected as moving.

8.6% of all tractor-semitrailer crashes
Lane departure warning

system characteristics

- Detect lane markings using windshield mounted camera.
 - Challenges: worn, missing lane lines; glare at night, especially on wet roads.
- Monitor truck position in lane.
 - Lateral position.
 - Speed.
 - Heading.
 - Compute time-to-lane crossing
- Detect lane crossing.
- Issue audible/haptic warning, if turn signal not activated.
- Active above set speeds (25-35 mph).
Target crash types

- Single-vehicle road departure, followed by untripped rollover.
- Single-vehicle road departure, collision with fixed object.
- Lane departure, same-direction sideswipes.
- Lane departure, opposite direction sideswipes and head-on.

5.1% of tractor-semitrailer crashes.
Estimating the Joint Effect of Crash Avoidance Technologies On the Crash Population accounting for:

- Electronic stability control (ESC)
- Roll stability control (RSC)
- Forward collision warning and mitigation (F-CAM)
- Lane departure warning (LDW)
Data

- Fatality Analysis Reporting System (FARS)
 - Census file of **fatal** traffic crashes in U.S.
 - Used 2010-2012.
- General Estimates System (GES)
 - Nationally-representative sample of police-reported crashes.
 - All severities.
 - Weighted to produce valid national estimates
 - Used 2010-2012.
- Combined FARS for fatal crashes with GES for non-fatal crashes.
Method

- Survey literature to identify most reliable estimates of effect of ESC, RSC, F-CAM, & LDW.
 - Based on field operational tests, fleet deployment, or hybrid.
 - Crash type filters implemented in available crash data.
- Develop algorithms to identify crash population applicable to each technology.
- Identify & filter exceptions.
- Apply effectiveness estimates by adjusting crash weights.
- Adjust effectiveness estimates to account for penetration of technologies into the existing fleet.
Effectiveness weight = (1-\(E_{ct}\)) * case weight
Where: case weight is the crash sample weight
\(E_{ct}\) is effectiveness of technology \(t\)
for crash type \(c\).

- Account for penetration of technology into existing fleet.

Case weight adjustment factor (CWAF)=1-\((E_{ct} * (1-P_{ty}))\)
Where: \(P_{ty}\) is penetration of technology \(t\)
for model year \(y\)

Final case weight=CWAF * case weight
Effectiveness estimates based on existing literature

- Field operational tests.
- Track testing.
- Simulation, including hardware-in-the-loop.
- Engineering evaluation of in-depth crash investigations.
- Analysis of carrier-based crash data.
Effectiveness estimates table

<table>
<thead>
<tr>
<th>Technology</th>
<th>Estimated effectiveness depending on crash type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESC</td>
<td>0% to 75%</td>
</tr>
<tr>
<td>RSC</td>
<td>0% to 71%</td>
</tr>
<tr>
<td>F-CAM</td>
<td>0% to 60%</td>
</tr>
<tr>
<td>LDW</td>
<td>23% to 48%</td>
</tr>
</tbody>
</table>
Crash reduction with full deployment of ESC, F-CAM, & LDW

<table>
<thead>
<tr>
<th>Measure</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>All crashes</td>
<td>-10.9%</td>
</tr>
<tr>
<td>K & A-injury crashes</td>
<td>-30.8%</td>
</tr>
<tr>
<td>Driver injuries</td>
<td>-22.4%</td>
</tr>
<tr>
<td>Fatal injuries</td>
<td>-32.7%</td>
</tr>
<tr>
<td>A-injuries</td>
<td>-30.0%</td>
</tr>
<tr>
<td>All injuries</td>
<td>-22.4%</td>
</tr>
<tr>
<td>All rollovers</td>
<td>-39.7%</td>
</tr>
<tr>
<td>MHE rollovers</td>
<td>-42.7%</td>
</tr>
<tr>
<td>Frontal collisions</td>
<td>-21.1%</td>
</tr>
</tbody>
</table>
Joint effect on serious injury crash types

- Primary effect is to reduce MHE rollover.
- Collisions with:
 - Other trucks.
 - Hard fixed objects
- Reduce fatal & serious injuries by 30.8%.
Side struck in K & A-injury crashes current & after full deployment

- Front: 60% current, 55% full deployment
- Right: 20% current, 22% full deployment
- Back: 1% current, 1% full deployment
- Left: 18% current, 18% full deployment

Percent crash involvements

[Graph showing crash involvements for Front, Right, Back, and Left sides with blue and red bars]
Implications

- Collision avoidance technologies can have a significant effect on truck driver fatal & serious injuries.
- Rollover the primary crash type.
- Technologies reduce crash types that are the most risky for truckers.
- **However**, crashes remaining after full deployment are largely the same:
 - Rollover
 - Frontal collision
- Current technologies need to be improved.
- Remaining crashes may be more complex & challenging for technological intervention.
- Interventions to improve truck occupant protection in crashes.
Thank you!

Questions?

dfblower@umich.edu