Shiny-side Up: Advanced Crash Avoidance Technologies That Can Reduce Heavy Truck Crashes

Daniel Blower

Traffic Safety Conference Corpus Christi, Texas June 9, 2015

Acknowledgements

Sources:

- Hickman, J., F. Guo, et al. (2013). Onboard Safety Systems Effectiveness Evaluation Final Report. Washington, DC, Federal Motor Carrier Safety Administration: 267.
- Houser, A., D. Murray, et al. (2009). Analysis of Benefits and Costs of Lane Departure Warning Systems for the Trucking Industry. Washington, DC: 75.
- Woodrooffe, J., D. Blower, et al. (2009). Safety Benefits of Stability Control Systems for Tractor-Semitrailers. Washington, DC.
- Woodrooffe, J., D. Blower, et al. (2012). Performance Characterization and Safety Effectiveness of Collision Mitigation Braking and Forward Collision Warning Systems for Commercial Vehicles. Ann Arbor, Michigan, University of Michigan Transportation Research Institute: 138.
- John Woodrooffe, Scott Bogard at UMTRI

Dimensions of Heavy Truck Crash

Heavy truck crashes

- 3,800 fatal crashes annually.
- 3,900 deaths annually; 100,000 injuries.
- Truck crashes account for 13% of all traffic fatalities.
- Fatal crash involvement rate by VMT has converged with passenger cars.
- Crash avoidance technologies can drive the numbers down more.

Key Crash Avoidance Technologies

- Electronic stability control (ESC)
- Roll stability control (RSC)
- Forward Collision Avoidance and Mitigation Systems (F-CAM)
- Lane departure warning (LDW)

Electronic Stability Control & Roll Stability Control

Woodrooffe, J., D. Blower, et al. (2009). Safety Benefits of Stability Control Systems for Tractor-Semitrailers. Washington, DC.

Electronic Stability Control (ESC) Roll Stability Control (RSC)

Description of the technologies

- Both ESC and RSC respond to lateral acceleration
- ESC senses divergent yaw rate & lateral acceleration
- ESC & RSC have mass-related intervention strategies
- Assess vehicle mass using engine torque and acceleration
- Braking strategies:
 - De-throttle engine
 - Engage engine retarder
 - Apply foundation brakes
 - ESC-selective wheel braking

ESC engages earlier to control speed

RSC helps maintain stability in curves

ESC adds control on slick roads as well

Fitting the technologies to all tractor semitrailers

Crash reduction from <u>RSC</u>

- 3,489 crashes
- 106 fatalities
- 4,384 injuries

Crash reduction from ESC

- 4,659 crashes
- 126 fatalities
- 5,909 injuries

Fleet data show reduction in probability of roll by 25%.

Forward Collision Avoidance and Mitigation Systems (F-CAM)

Woodrooffe, J., D. Blower, et al. (2012). Performance Characterization and Safety Effectiveness of Collision Mitigation Braking and Forward Collision Warning Systems for Commercial Vehicles. Ann Arbor, Michigan, University of Michigan Transportation Research Institute: 138.

F-CAM Intervention Sequence

System characteristics

- Forward Collision Warning + Autonomous Braking
- Sensor range up to 100m
- FCW: audible, haptic warning
- Braking authority:

Generation	Vehicle detected moving	Vehicle never detected moving	
Current	0.35 <i>g</i>	No response.	
Next	0.6 <i>g</i>	0.3 <i>g</i>	
Future	0.6 g	0.6 g	

Target Crash Types

Rear-end, truck striking

- Current generation:
 - Lead vehicle stopped at impact, but seen moving.
 - Lead vehicle slower, steady speed.
 - Lead vehicle decelerating.
 - Lead vehicle cut-in.
- Next, future generation:
 - Lead vehicle stopped at impact, regardless whether ever detected as moving.

F-CAM system test

- Run to measure system characteristics.
- No FCW issued.
- Sensor detects at about 80m.
- Automatic braking at 0.35 g.
- Driver brakes after impact.

F-CAM test of next generation

- Test of next generation.
- Triggers on stopped objects.
- Brakes up to 0.6g.
- First run is at 40 mph.
- Second run is at 50 mph.

Estimated reduction in rear-end truck-striking crashes by severity

Generation	Fatal	Injury	No injury
Current	24%	25%	9%
Next	44%	47%	20%
Future	57%	54%	29%

 Analysis of fleet data showed F-CAM systems reduced truck-striking rear-end crashes by about <u>one-third</u>.

Lane departure warning

Hickman, J., F. Guo, et al. (2013). Onboard Safety Systems Effectiveness Evaluation Final Report. Washington, DC, Federal Motor Carrier Safety Administration: 267.

Houser, A., D. Murray, et al. (2009). Analysis of Benefits and Costs of Lane Departure Warning Systems for the Trucking Industry. Washington, DC: 75.

System characteristics

- Detect lane markings using windshield mounted camera.
 - Challenges: worn, missing lane lines; glare at night, especially on wet roads.
- Monitor truck position in lane.
 - Lateral position.
 - Speed.
 - Heading.
 - Compute time-to-lane crossing
- Detect lane crossing.
- Issue audible/haptic warning, <u>if turn signal not</u> <u>activated.</u>

Active above set speeds (25-35 mph).

Target crash types

- Single-vehicle road departure, followed by untripped rollover.
- Single-vehicle road departure, collision with fixed object.
- Lane departure, same-direction sideswipes.
- Lane departure, opposite direction sideswipes and head-on.

Lane change crash example only (Crash would not have been affected by LDW)

- Truck signals, so lane change warning would have been suppressed.
- Injuries in crash were moderate.

Estimated crash reductions

- About 48% for relevant crash types.
- Target crash types are about 10% of all tractorsemitrailer crashes.
- Net crash reduction is about 4.6% of all tractorsemitrailer crashes.
- Estimates are from deployments in 14 fleets.

Conclusions

- Advanced crash avoidance technologies can significant reduce heavy truck crash involvement.
 - ESC: 31% of relevant rollover & loss of control.
 - F-CAM: 37% of relevant forward collisions.
 - LDW: 48% of relevant lane/road departures.
- Need more validation in actual deployment.
- Current rulemaking by NHTSA on ESC.
- Other technologies voluntarily adopted by safetyoriented carriers.

Thank you!

Questions?

dfblower@umich.edu

