SURFACE TREATMENTS TO ALLEVIATE CRASHES ON HORIZONTAL CURVES

2014 Traffic Safety Conference
Research Projects

- 0-5439 – Identifying and Testing Effective Advisory Speed Setting Procedures
- 5-5439 – Workshops on Identifying and Testing Advisory Speed Setting Procedures
 - Criteria for setting advisory speed
 - Curve severity assessment
 - GPS Method
- 0-6714 – Surface Treatments to Alleviate Crashes on Horizontal Curves
 - Curve speed and safety trends
 - Margin-of-safety analysis framework
 - Friction supply – friction demand
 - Assess benefit of increasing supply with surface treatment
Objectives and Scope

0-6714– Surface Treatments to Alleviate Crashes on Horizontal Curves

- **Objectives**
 - Assess effectiveness of high-friction surface treatments at improving curve safety
 - Develop guidelines for application of high-friction surface treatments

- **Scope**
 - Horizontal curves
 - “High”-speed roadways
Treatments

- Select Treatments
 - High-friction surface treatment
 - Pavement texturing
 - Seal coat
Findings

- **The Issues**

 - Curve tracking errors

 Spacek, 2005
The Issues

- Superelevation transition issues
 - Lack of full superelevation in beginning of curve
 - Hydroplaning

Glennon, 1969
Findings

The Issues

- Curve severity assessment
 - Based on friction demand and kinetic energy
 - Category E is most severe – use “special treatments”

Bonneson et al., 2007 (0-5439)
Findings

- Soft Shoulder
- Blind Curves
- Steep Grade
- Big Trucks
- Good Luck!
Crash Data Analysis

- Cross-sectional models
 - About 500 curve sites
 - Four models (all, wet-weather, run-off-road, and wet-weather run-off-road crashes)
 - CMF for skid number
Detailed Analysis
- Skid number CMF

![Graph showing Crash Modification Factor (CMF) against Skid Number for different types of crashes: All crashes, Wet-weather crashes, Run-off-road crashes, and Wet-weather run-off-road crashes. The graph indicates a decreasing trend with increasing skid number.]
Data Collection
- 15 sites
 - Bryan, Dallas, and Tyler districts
 - 55-70 mph speed limits
 - 30-55 mph advisory speeds
- 6000 vehicles
Field Evaluation

- Cross-Sectional Database
 - Data collection plan
Field Evaluation

- **Operational Data**
 - Speed
 - Lane placement

- **Friction Data**
 - Skid number

![Diagram of field evaluation setup](image)

Legend

- Speed Trap
- Z Trap
- Data Collection Zone

Not to Scale
Field Evaluation

- **Models**
 - Mid-curve speed model
 - Speed differential models
 - PC-MC, MC-PT
 - Used to compute side friction demand along the entire curve
 - Lane placement models
 - Probability of different track types
Texas Curve Margin of Safety (TCMS)

- Input data
 - Curve geometry
 - Traffic volume
 - Skid number
 - Speed limit

- Output
 - Margin of safety calculations
 - Curve CMFs
Improved by treatment

Low margin of safety at PC
Crash Modification Factors (CMFs)

Crash Prediction Model Calculations

<table>
<thead>
<tr>
<th></th>
<th>Predicted Crash Counts in Analysis Period</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before</td>
<td>After</td>
</tr>
<tr>
<td>All</td>
<td>1.406</td>
<td>1.386</td>
</tr>
<tr>
<td>Wet-weather</td>
<td>0.025</td>
<td>0.021</td>
</tr>
<tr>
<td>Run-off-road (ROR)</td>
<td>1.426</td>
<td>1.389</td>
</tr>
<tr>
<td>Wet-weather ROR</td>
<td>0.022</td>
<td>0.018</td>
</tr>
</tbody>
</table>

Predicted Change in Crash Count

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>-3.1%</td>
</tr>
<tr>
<td>Wet-weather</td>
<td>-17.2%</td>
</tr>
<tr>
<td>Run-off-road (ROR)</td>
<td>-4.6%</td>
</tr>
<tr>
<td>Wet-weather ROR</td>
<td>-20.8%</td>
</tr>
</tbody>
</table>

Overall Crash Modification Factors (CMFs)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Curve radius</td>
<td>9.432</td>
</tr>
<tr>
<td>Lane width</td>
<td>1.066</td>
</tr>
<tr>
<td>Shoulder width</td>
<td>1.287</td>
</tr>
<tr>
<td>Skid number</td>
<td>1.033</td>
</tr>
<tr>
<td>Combined</td>
<td>13.368</td>
</tr>
</tbody>
</table>

Wet-Weather CMFs

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane width</td>
<td>1.095</td>
</tr>
<tr>
<td>Skid number</td>
<td>1.208</td>
</tr>
<tr>
<td>Combined</td>
<td>1.322</td>
</tr>
</tbody>
</table>

Run-off-Road CMFs

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Curve radius</td>
<td>12.825</td>
</tr>
<tr>
<td>Lane width</td>
<td>1.064</td>
</tr>
<tr>
<td>Shoulder width</td>
<td>1.328</td>
</tr>
<tr>
<td>Skid number</td>
<td>1.048</td>
</tr>
<tr>
<td>Combined</td>
<td>19.006</td>
</tr>
</tbody>
</table>

Wet-Weather Run-off-Road CMFs

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane width</td>
<td>1.101</td>
</tr>
<tr>
<td>Skid number</td>
<td>1.262</td>
</tr>
<tr>
<td>Combined</td>
<td>1.390</td>
</tr>
</tbody>
</table>
High Friction Surface Treatments
Questions or comments?

Thank you for your time!