Analyzing the Impact of Larger Ships through Panama Canal on the U.S. Container Imports

Dr. Qing Liu
Rahall Transportation Institute
Dr. William Wilson
North Dakota State University
Introduction

• The Panama Canal expansion & larger ship size
 – Substantial impact or not?
• Player interactions in container shipping market
 – Vertical integration of shipment chain
 – Long-term contracts between shipping companies and others
 – Coalitions and merges of ocean carriers
 – Intense competition between ports
Study Purpose

• Study purpose
 – to incorporate player relationships into the optimal container shipping problem;
 – to capture the Panama Canal expansion’s potential impacts on the container flow patterns and the distribution of market power among the players in the container shipping market;
 – assuming PostPanama containerships are used for the East Coast route after expansion

• Approach
 – Game theory models & Shapley value changes
Game Theory Concepts

• Stackelberg games (leader-follower)
 – Ocean carrier vs. others
 – Bi-level programming models

• Cooperative games
 – Characteristic function \rightarrow coalition values $v(K)$
 – Shapley value:

$$\phi_i(v) = \sum_{K} [v(K) - v(K\{i\})] \frac{(k - 1)! (n - k)!}{n!} \ldots \ldots (1)$$
Case Study

• One origin (Hong Kong Port) & one destination (Norfolk, VA)

• Five Players
 – One ocean carrier (OC)
 – Los Angeles Port (P1)
 – Norfolk Port (P2)
 – One rail operator (R)
 – Panama Canal (PC)
Notations

Control Variables

feu(j): number of FEU containers through port j

pr1: Port 1 rate per FEU

rr: Railroad rate per FEU

pr2: Port 2 rate per FEU

cr: Panama Canal rate per FEU

5 Players

- **Ocean carrier**
- **Los Angeles Port**
- **Railroad**
- **Norfolk Port**
- **Panama Canal**

Objective Functions

- **R_{oc}:** OC revenue
- **C_{oc}:** OC total vessel operating cost
- **f_{p1}:** Port 1 profit
- **R_{p1}:** Port 1 revenue
- **f_{r}:** Railroad profit
- **R_{r}:** Railroad revenue
- **f_{p2}:** Port 2 profit
- **R_{p2}:** Port 2 revenue
- **f_{pc}:** Canal profit
- **R_{pc}:** Canal revenue
<table>
<thead>
<tr>
<th>Model</th>
<th>Level 1 Coalition value</th>
<th>Level 2 Coalition value</th>
<th>Level 1 Objective Function</th>
<th>Level 2 Objective Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_0</td>
<td>$v({OC}) = v_0^1$</td>
<td>$v({R, P1, P2, PC}) = v_0^2$</td>
<td>$\max(R_{oc} - C_{oc} - R_{p1} - R_{p2} - R_{pc} - R_r) = v_0^1$</td>
<td>$\max(f_{p1} + f_{p2} + f_{pc} + f_r) = v_0^2$</td>
</tr>
<tr>
<td>M_1</td>
<td>$v({OC, P1}) = v_1^1$</td>
<td>$v({P2, PC, R}) = v_1^2$</td>
<td>$\max(R_{oc} - C_{oc} - C_{p1} - R_{p2} - R_{pc} - R_r) = v_1^1$</td>
<td>$\max(f_{p2} + f_{pc} + f_r) = v_1^2$</td>
</tr>
<tr>
<td>M_2</td>
<td>$v({OC, P2}) = v_2^1$</td>
<td>$v({P1, PC, R}) = v_2^2$</td>
<td>$\max(R_{oc} - C_{oc} - R_{p1} - C_{p2} - R_{pc} - R_r) = v_2^1$</td>
<td>$\max(f_{p1} + f_{pc} + f_r) = v_2^2$</td>
</tr>
<tr>
<td>M_3</td>
<td>$v({OC, PC}) = v_3^1$</td>
<td>$v({P1, P2, R}) = v_3^2$</td>
<td>$\max(R_{oc} - C_{oc} - R_{p1} - R_{p2} - C_{pc} - R_r) = v_3^1$</td>
<td>$\max(f_{p2} + f_{p1} + f_r) = v_3^2$</td>
</tr>
<tr>
<td>M_4</td>
<td>$v({OC, R}) = v_4^1$</td>
<td>$v({P1, P2, PC}) = v_4^2$</td>
<td>$\max(R_{oc} - C_{oc} - R_{p1} - R_{p2} - R_{pc} - C_{pc} - R_r) = v_4^1$</td>
<td>$\max(f_{p2} + f_{pc} + f_{p1} + f_r) = v_4^2$</td>
</tr>
<tr>
<td>M_5</td>
<td>$v({OC, P1, P2}) = v_5^1$</td>
<td>$v({R, PC}) = v_5^2$</td>
<td>$\max(R_{oc} - C_{oc} - C_{p1} - C_{p2} - R_{pc} - C_r) = v_5^1$</td>
<td>$\max(f_r + f_{pc}) = v_5^2$</td>
</tr>
<tr>
<td>M_6</td>
<td>$v({OC, P1, PC}) = v_6^1$</td>
<td>$v({P2, R}) = v_6^2$</td>
<td>$\max(R_{oc} - C_{oc} - R_{p1} - C_{p2} - R_{pc} - C_r) = v_6^1$</td>
<td>$\max(f_{p1} + f_{p2}) = v_6^2$</td>
</tr>
<tr>
<td>M_7</td>
<td>$v({OC, P1, R}) = v_7^1$</td>
<td>$v({PC, P2}) = v_7^2$</td>
<td>$\max(R_{oc} - C_{oc} - R_{p1} - R_{p2} - C_{pc} - C_r) = v_7^1$</td>
<td>$\max(f_{p1} + f_{pc}) = v_7^2$</td>
</tr>
<tr>
<td>M_8</td>
<td>$v({OC, PC, P2}) = v_8^1$</td>
<td>$v({R, PC}) = v_8^2$</td>
<td>$\max(R_{oc} - C_{oc} - C_{p1} - R_{p2} - C_{pc} - C_r) = v_8^1$</td>
<td>$\max(f_{p2} + f_{pc}) = v_8^2$</td>
</tr>
<tr>
<td>M_9</td>
<td>$v({OC, R, P2}) = v_9^1$</td>
<td>$v({P1, PC}) = v_9^2$</td>
<td>$\max(R_{oc} - C_{oc} - C_{p1} - C_{p2} - C_{pc} - C_r) = v_9^1$</td>
<td>$\max(f_{p1} + f_{pc} + f_r) = v_9^2$</td>
</tr>
<tr>
<td>M_{10}</td>
<td>$v({OC, R, PC}) = v_{10}^1$</td>
<td>$v({P1, P2}) = v_{10}^2$</td>
<td>$\max(R_{oc} - C_{oc} - R_{p1} - R_{p2} - C_{pc} - C_r) = v_{10}^1$</td>
<td>$\max(f_{p2} + f_{p1} + f_r) = v_{10}^2$</td>
</tr>
<tr>
<td>M_{11}</td>
<td>$v({OC, P1, P2, PC}) = v_{11}^1$</td>
<td>$v({R}) = v_{11}^2$</td>
<td>$\max(R_{oc} - C_{oc} - C_{p1} - C_{p2} - C_{pc} - R_r) = v_{11}^1$</td>
<td>$\max(f_r) = v_{11}^2$</td>
</tr>
<tr>
<td>M_{12}</td>
<td>$v({OC, R, P2, P1}) = v_{12}^1$</td>
<td>$v({PC}) = v_{12}^2$</td>
<td>$\max(R_{oc} - C_{oc} - C_{p1} - C_{p2} - R_{pc} - C_r) = v_{12}^1$</td>
<td>$\max(f_{pc}) = v_{12}^2$</td>
</tr>
<tr>
<td>M_{13}</td>
<td>$v({OC, R, PC, P1}) = v_{13}^1$</td>
<td>$v({P2}) = v_{13}^2$</td>
<td>$\max(R_{oc} - C_{oc} - C_{p1} - R_{p2} - R_{pc} - C_r) = v_{13}^1$</td>
<td>$\max(f_{p2}) = v_{13}^2$</td>
</tr>
<tr>
<td>M_{14}</td>
<td>$v({OC, R, P2, PC}) = v_{14}^1$</td>
<td>$v({P1}) = v_{14}^2$</td>
<td>$\max(R_{oc} - C_{oc} - R_{p1} - C_{p2} - C_{pc} - C_r) = v_{14}^1$</td>
<td>$\max(f_{p1}) = v_{14}^2$</td>
</tr>
<tr>
<td>M_{15}</td>
<td>$v({OC, R, P1, P2, PC}) = v_{15}^1$</td>
<td>$v({\emptyset}) = v_{15}^2 = 0$</td>
<td>$\max(R_{oc} - C_{oc} - C_{p1} - C_{p2} - C_{pc} - C_r) = v_{15}^1$</td>
<td>$\max(\emptyset) = v_{15}^2$</td>
</tr>
</tbody>
</table>

Model 1 Formulation

Max $\left(R_{oc} - C_{oc} - C_{p1} - R_{p2} - R_{pc} - R_r\right)$
subject to:
max$f_{p2} + f_{pc} + f_r$
subject to:
g_i(X) \leq 0, i = 1, \ldots, m$
(Capacity, demand and non-negative constraints)
Model 1 Formulation

$$\text{Max } (R_{oc} - C_{oc} - C_{p1} - R_{p2} - R_{pc} - R_r)$$

subject to:

$$\text{max}(f_{p2} + f_{pc} + f_r)$$

subject to:

$$g_i(X) \leq 0, i = 1, ..., m$$

(Capacity, demand and non-negative constraints)

<table>
<thead>
<tr>
<th>Model</th>
<th>Original Constraints</th>
<th>Constraints after KKT Transformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_0</td>
<td>$\sum_j(fe_j) \geq DMD$
$fe_j \leq \text{Cap}(j)$
$PRL_1 \leq pr_1 \leq PRU_1$
$PRL_2 \leq pr_2 \leq PRU_2$
$RRL \leq rr \leq RRU$
$CRL \leq cr \leq CRU$
$fe_j, pr_j, rr, cr, u_i \geq 0$</td>
<td>$\sum_j(fe_j) \geq DMD$
$fe_j \leq \text{Cap}(j)$
$PRL_1 \leq pr_1 \leq PRU_1$
$PRL_2 \leq pr_2 \leq PRU_2$
$RRL \leq rr \leq RRU$
$CRL \leq cr \leq CRU$
$fe_j, pr_j, rr, cr, u_i \geq 0$
$fe_1 - u_1 + u_5 = 0$
$fe_2 - u_2 + u_6 = 0$</td>
</tr>
<tr>
<td>M_1</td>
<td>$\sum_j(fe_j) \geq DMD$
$fe_j \leq \text{Cap}(j)$
$PRL_2 \leq pr_2 \leq PRU_2$
$RRL \leq rr \leq RRU$
$CRL \leq cr \leq CRU$
$fe_j, pr_j, rr, cr, u_i \geq 0$</td>
<td>$\sum_j(fe_j) \geq DMD$
$fe_j \leq \text{Cap}(j)$
$PRL_2 \leq pr_2 \leq PRU_2$
$RRL \leq rr \leq RRU$
$CRL \leq cr \leq CRU$
$fe_j, pr_j, rr, cr, u_i \geq 0$
$fe_2 - u_2 + u_6 = 0$</td>
</tr>
</tbody>
</table>
Impacts of Larger Ships

• Scenario 1 (S1): —Before Canal Expansion: 4,000-TEU Vessels for East Coast & 8,000-TEU Vessels for West Coast
• Scenario 2 (S2): —After Canal Expansion: 8,000-TEU Vessels for Both Routes
• Assumptions: Both terminals 80% of total container demand
• Parameters
 – Vessel operating costs
 – shipping rates
 – lower and upper bounds of railroad rates, terminal rates, and Panama Canal rates
 – transit time
Result Analysis

- **S1**: if the grand coalition is formed, the OC prefers the WCR (80% of containers via West Coast)
- **S2**: OC chooses ECR via the Panama Canal (80% via East Coast route)
- Market power shift due to the usage of PostPanama containerships for East Coast
- Power is gained by the Canal and the East Coast ports
- Slight lessening of market power for railroads and the West Coast ports

| TABLE 3 Shapley Values and Value Ratios for Scenario 1 (S1) and Scenario 2 (S2) |
|---------------------------------|-----|-----|-----|-----|-----|-----|
| | P1 | P2 | R | PC | OC | Total|
| S1: Before Canal Expansion | 80.82| 63.94| 337.22| 31.82| 1589.57| 2103.37|
| S2: After Canal Expansion | 30.53| 122.08| 265.40| 57.71| 1645.61| 2121.34|
| S1 Ratio: Before Canal Expansion| 0.04 | 0.03 | 0.16 | 0.02 | 0.76 | 1.00 |
| S2 Ratio: After Canal Expansion | 0.01 | 0.06 | 0.13 | 0.03 | 0.78 | 1.00 |
Conclusions

• Relationships of multiple entities have direct impacts on the container shipping choices
• The expansion has positive impacts on the ECR, and negative impacts on the WC players’ market power
• The expansion has a two-sided impact on the OC
 – saves vessel operating costs for the OC
 – hurts the OC’s relative market power
Future Study

• The game theory solutions offer a measurable tool to understand the interactive relationships in the ocean shipping industry, to compare the relative powers of players, and to make predictions of market equilibrium;
• More players need to be added to include nationwide containerized-import shipments, and more factors other than ship size need to be considered;
• Main challenge: computational complexity when the number of mathematical models and the complexity of each model both rise dramatically with the number of players and variables.