

Intersection & Interchange Geometrics

National Use of Alternative Intersections

Mark Doctor – FHWA Resource Center 2013 TxDOT Short Course October 15, 2013

What are Intersection & Interchange Geometrics?

Innovative designs that:

- Improve the way traffic makes certain movements
- Eliminate, relocate or modify conflict points
- Strategically improve signalization

As planned points of crossing and conflict, intersections are a major safety issue and may become bottlenecks along high-volume roadways

Why Intersection & Interchange Geometrics?

- Growing traffic demands
- Scarce funding
- Restricted ability to add more lanes or build grade separations
- Need for improved safety for pedestrians, bicyclists and drivers

Intersection Conflicts

Conflict Points at a Typical Intersection

Intersection Safety Facts

Angle crashes account for over 40% of fatal crashes at intersections

Intersection Safety Facts

Left-turn crashes account for over 20% of fatal crashes at intersections

Intersection Safety Facts

Ped/Bike crashes account for 25% of fatal crashes at signalized intersections

Why Intersection & Interchange Geometrics?

Benefits of Intersection & Interchange Geometrics

SAFETY

- Fewer conflict points
- Significant Before/After Crash Reductions

MOBILITY

- Less delay
- Reduced congestion

VALUE

- Less ROW
- Less construction costs
- Implemented quicker

Vehicle Movement

Signalized Intersections

Typical signal scheme with "protected" left-turn phasing

Signal Phases

Eliminating or strategically relocating left-turn movements from an intersection can provide more green time to through traffic

Signalized Intersections

Eliminating or strategically changing how left turns are handled can allow more green time allocated to through traffic

Featured Innovations

EDC2 IIG Innovations

Roundabouts

- Modern designs are safer and more efficient than old circles and rotaries
- Measurable progress in last 10+ years, but still underutilized

Roundabouts Track Record

- Effective for both corridor and spot improvements
- Can complement other program goals such as Access Management, Active Transportation, etc.
- Proven in both lowspeed urban and highspeed rural environments

Roundabout Opportunities

Roundabouts at interchanges

Roundabouts Education

Outreach & Education are Critical to Success

 Toolbox of case studies documenting successful implementation of roundabouts from around the U.S.

Roundabouts

Roundabouts

U-Turn Intersections

Restricted Crossing U-turn (RCUT)
(aka J-turn, Superstreet)

Median U-Turns (aka Michigan Left, Indirect Left)

ThrU Turn

U-Turn Intersection Basics

Conflict Point Comparison by Intersection Type (2X2)

Conflict Type	Conventional Signalized 4-leg	Median U-Turn	Restricted Crossing U-Turn
Merging/Diverging	16	12	16
Crossing (left turn)	12	0	2
Crossing (angle)	4	4	0
Total	32	16	18

U-Turn Intersections: RCUT

Distinguishing Features:

- Cross street (minor road) traffic turns right, then accesses U-turn to proceed in desired direction.
- Main and U-turn intersections can be either signalized ("Superstreet") or not ("J-Turn")

βœ

U-Turn Intersections: MU-T

Distinguishing Features

- Eliminates direct left-turns at main intersection
- Left turning traffic proceeds past main intersection to a U-turn location downstream
- Traffic then turns right at main intersection
- U-turn locations can be signalized and coordinated with main intersection

U-Turn Intersections: ThrU Turn

Distinguishing Features

- Similar to MU-T in that direct left-turns are eliminated from main intersection
- Main difference is design of U-turn, substituting a paved bump-out or "loon" beyond the outside lane (or coinciding with a sidestreet tee intersection or driveway) for the wide median of a MU-T

U-Turn Intersections Safety

Crash Reductions by Severity (MD RCUT sites) ¹				
PDO	Injury	Fatal		
21%	42%	70%		

U-Turn Intersections

Displaced Left Turn (DLT) Intersection

Distinguishing Feature:

Left-turn movement (on one or more approaches) strategically relocated to the far-side of the opposing roadway via interconnected signalized crossover in advance of the main intersection

DLT Intersection – Pedestrian Crossings

Displaced Left Turn (DLT) Intersection

- Observed crash reductions of 60%
- Total travel time reduction

Before and After Comparison for

BANGERTER HIGHWAY IMPROVEMENTS

Displaced Left-Turn Intersections

Diverging Diamond Interchange

Distinguishing Feature:

Geometry that temporarily channelizes traffic to the left side of the roadway (between the ramp terminals); thus allowing left-turn movements without the need for an exclusive signal phase.

What is a Diverging Diamond Interchange?

Essentially a diamond interchange with crossover intersections at the ramp terminals

What Makes the DDI Different?

What is a Diverging Diamond Interchange?

Essentially a diamond interchange with crossover intersections at the ramp terminals

Early DDI Safety Results

Crash Reductions By Crash Type ¹			
Left-Turn Type	Left-Turn Right Angle	Total Crashes	
100%	72%	46%	

Conventional Diamond 26 conflict points

Diverging Diamond

14 conflict points

DDI - Noteworthy Attributes

- Relatively small footprint
- Existing bridge can often be salvaged on retrofits
- Versatile alternative for low and high volume locations
- Non-motorized accommodation

Diverging Diamond Interchanges

Our EDC Vision

Agencies include these EDC intersection designs in their evaluation processes or policies in a manner that ensures they are considered and evaluated alongside other improvement alternatives, and implemented when appropriate.

Key Issues/Challenges

- Lack of knowledge regarding these concepts
- Ambiguity on criteria for when to apply them
 - No formal screening process
 - No process to assess "best value"
 - Lack of tools to analyze operations
- Public/Political Reaction
 - Apprehension/Resistance to change
 - Fear of failure

Strategies for Advancing Deployment

- Awareness and Outreach (communication and marketing)
- Training
 - Web-based and instructor-led workshops
- Knowledge and Information Exchange
 - Peer Exchanges of successful practices and projects
 - Communicate and share lessons learned
 - Intersection and Interchange Geometrics website
- Analysis Tools and Evaluation Processes
 - HCM methodologies and use of screening tools such as CAP-X

Selected Resources

- Alternative Intersections/Interchanges: Informational Report (AIIR)
 - http://www.fhwa.dot.gov/publications/research/ safety/09060/
- Roundabout Outreach and Information Toolbox
 - http://safety.fhwa.dot.gov/intersection/ roundabouts/RoundaboutToolbox/
- Mobility Investment Priorities
 - http://mobility.tamu.edu/mip/strategies.php

How can I get more information?

Mark Doctor FHWA Resource Center

mark.doctor@dot.gov or (404) 562-3732

Marcus Brewer
TTI Roadway Design Program

m-brewer@tamu.edu or (979) 845-7321