
'ARTAGNAN
consulting

Challenges of Distance-based Road Usage Charging "RUC"

Jack Opiola D'Artagnan Consulting LLP

The time has come to apply distance-based charging

- The time has come to begin transitioning distance-based RUC in states where it is a mature policy, and for states where it is not mature to do policy development and testing
- Reason to transition: Gas tax revenues are in a state of perpetual decline
- Latest CAFE standards will cause a major (24-60\%) drop in fuel tax revenues by 2025
- Vehicles with new powertrain technologies do not pay gas tax (Electric, plug-in hybrid, LNG, etc.)
- Vehicles with Internal Combustion Engines (ICE) are also becoming more fuel efficient
- The gas tax was always a proxy for road usage. New technologies are eroding its quality as a proxy, while other new technologies are removing the administrative and cost barriers to collecting RUC

All Future Scenarios - Revenue Declines in Oregon
It doesn't matter which future scenario occurs; fuel taxes will continue to decline in the years ahead due to fleet efficiency = ICEs, Alternate Fuels, Hybrids, Plug-in Hybrids \& Electric Vehicles

Source: ODOT OIPP RUCPP Report on Fleet Forecast based on the GreenStep model results, February 2013
24 April 2013
© D'Artagnan Consulting LLP

The debate on Road Usage Charging is typically NOT a debate whether the technology exists to enable it.

Most Decision Makers and the Public perceive that the technology exists and the technology is capable of enabling a road usage charging system.

In the policy world, perception is reality!

Repeating Themes against distance-based charging

Too complicated and expensive to operate;

- Inequitable to rural drivers;
- Technology invades privacy of the driver; and
- No business case for it.

Repeating Themes against distance-based charging

Too complicated and expensive to operate;

- Inequitable to rural drivers;
- Technology invades privacy of the driver; and
- No business case for it.

Financial / Operational Cost Model

Annual operational costs per $\$ 156$ million revenue $=$ $\$ 10$ million (sum of all salaries and direct costs plus 50% contingency) $=6.7 \%$ of revenues.

Number of RUC accounts	Administration costs as a \% of revenues	
10,000	\begin{tabular}{r\|r	}
\hline		
\end{tabular}		
100,000	12%	
500,000	5.2%	
$1,000,000$	4.6%	
$4,000,000$	3.3%	

Repeating Themes against distance-based charging

- Too complicated and expensive to-operate; Inequitable to rural drivers;
- Technology invades privacy of the driver; and
- No business case for it.

Equity of a road usage charging system

Source: GAO Report GAO-13-77 Pilot Program Could Help Determine the Viability of Mileage Fees for Certain Vehicles, December 2012

Urban and Rural Road Usage Charge Impacts Average Self-reported Trip Distances (Miles)

- Rural residents tend to drive longer distances for all trips including medical appointments, shopping, and school

Urban and Rural Road Usage Charge Impacts Self-reported Distance Driven Annually (Miles)

County Type	Total miles driven (A)	Miles off road (B)	Total on- road miles $(\mathbf{C = B}-\mathbf{A})$	Miles driven out-of-state (D)	Total miles on Oregon public roads (C - D)
Urban	12,843	721	12,122	765	11,357
Mixed	13,865	1,077	12,788	1,495	11,293
Rural	12,511	1,090	11,421	1,939	9,482

- The difference in miles driven among urban, mixqd, and rural counties is not substantially different.
- Rural motorists drive more off-road and out-of-state miles than other motorists. This holds true for "border" and "non-border" counties.
- These figures are self reported but nevertheless illuminate individuals' collective impressions of their own situations

Repeating Themes against distance-based charging

- Too complicated and expensive to operate;
- Inequitable to rural drivers

Technology invades privacy of the driver; and

- No business case for it.

"User Choice"

Road Usage Charge

Minnesota Public Opinion on "Solutions"

Minnesota Public Opinion on "Features"

Why do you prefer this approach?			
High Tech (K) pase=146		Low Tech (S) base=423	
Convenience (NET)	39\%	Less invasive/more private (NET)	49\%
Simple/Accurate	31\%	Don't like GPS/Gov't monitoring	31\%
Fairness (NET)	21\%	Costs (NET)	23\%
Road maintenance paid by user	11\%	Lower administrative costs	18\%
Collection method (NET)	20\%	Convenience (NET)	19\%
Like the GPS idea	11\%	Simple/Accurate	18\%
Base for fees (NET)	18\%	Base for fees (NET)	16\%
Based on time of day	7\%	Not based on time of day	8\%
Based on type of road driven	6\%	Based on mileage driven	4\%
Enforcement issues (NET)	9\%	Collection method (NET)	12\%
Costs (NET)	4\%	Fairness (NET)	7\%
		Enforcement issues (NET)	3\%

Source: The Dieringer Research Group Inc. for Minnesota Department of Transportation, June-July 2009

Repeating Themes against distance-based charging

- Too complicated and expersive to operate;
- Inequitable to rural drivers;
- Technology invades privacy of the driver; and

No business case for it.

Summary Statistics for Oregon Legislative Pilot Test

Statistic
Nov. 2012

Dec. 2012
Jan. 2013
Feb 2013
Total

Transactions	1,402	2,787	2,867	1,180	8,236
Total Miles	$32,908.9$	$71,059.0$	$79,663.8$	$49,918.9$	$233,550.6$
Oregon Miles	$31,478.4$	$35,346.4$	$35,671.0$	$25,842.4$	$128,538.2$
Nevada Miles	$1,430.5$	$18,663.2$	$26,366.4$	$24,076.5$	$70,536.6$
Washington Miles	0	$17,049.4$	$17,626.4$	0	$34,675.8$
Gross Tax	$\$ 479.71$	$\mathbf{\$ 5 4 2 . 5 1}$	$\mathbf{\$ 1 1 7 6 . 6 4}$	$\mathbf{\$ 6 4 2 . 7 7}$	$\mathbf{\$ 2 , 8 4 1 . 6 3}$
OR Fuel Tax Credit	$-\$ 371.16$	$-\$ 316.65$	$\mathbf{\$ 9 8 5 . 7 9}$	$\mathbf{- \$ 4 9 2 . 2 4}$	$-2,165.84$
Net Tax	$\mathbf{\$ 1 0 8 . 5 5}$	$\mathbf{\$ 2 2 5 . 8 6}$	$\mathbf{\$ 1 9 0 . 8 5}$	$\mathbf{\$ 1 5 0 . 5 3}$	$\mathbf{\$ 6 7 5 . 7 9}$
Increased Revenue	$\mathbf{+ 2 9 \%}$	$+\mathbf{7 1 \%}$	$\mathbf{+ 1 9 \%}$	$\mathbf{+ 3 1 \%}$	$\mathbf{+ 3 1 \%}$

Note: Revenues based on per mile rate of 1.56ϕ in Oregon; 1.87ϕ in Washington and 1.19ϕ in Nevada

Effect of Improving Fuel Efficiency When State Fuel Tax and VMT Are Held Constant

Oregon

1 million auto and light truck VMT $\div 21.8 \mathrm{mpg}$
= 45,872 gallons of gasoline
$\times 30$ C Oregon State fuel tax
$=\$ 13,761$ in nominal revenues

Est. 2016 CAFÉ Standard

1 million auto and light truck VMT $\div 34.5 \mathrm{mpg}$ (average)
$=28,986$ gallons of gasoline
$\times 30$ C Oregon State fuel tax
$=\$ 8,696$ in nominal revenues

Est. 2025 CAFE Standard

1 million auto and light truck VMT
$\div 54.5 \mathrm{mpg}$ (average)
$=18,349$ gallons of gasoline
$\times 30$ C Oregon State fuel tax
= \$5,505 in nominal revenues

Gallons Consumed

Simplified Business Case based on Statistics for Pilot At the 2016 CAFE Fleet Standards (37\%)

Statistic
Nov. 2012
Dec. 2012 Jan. 2013 Feb 2013
Total

| Transactions | 1,402 | 2,787 | 2,867 | 1,180 | 8,236 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Total Miles | $32,908.9$ | $71,059.0$ | $79,663.8$ | $49,918.9$ | $233,550.6$ |
| Oregon Miles | $31,478.4$ | $35,346.4$ | $35,671.0$ | $25,842.4$ | $128,538.2$ |
| Nevada Miles | $1,430.5$ | $18,663.2$ | $26,366.4$ | $24,076.5$ | $70,536.6$ |
| Washington Miles | 0 | $17,049.4$ | $17,626.4$ | 0 | $34,675.8$ |
| Gross Tax | $\$ 479.71$ | $\$ 542.51$ | $\mathbf{\$ 1 1 7 6 . 6 4}$ | $\mathbf{\$ 6 4 2 . 7 7}$ | $\mathbf{\$ 2 , 8 4 1 . 6 3}$ |
| OR Fuel Tax Credit | $\mathbf{- \$ 2 3 3 . 8 3}$ | $\mathbf{- \$ 1 9 9 . 4 9}$ | $\mathbf{- \$ 6 2 1 . 0 5}$ | $\mathbf{- \$ 3 1 0 . 1 1}$ | $\mathbf{- \$ 1 , 3 6 4 . 4 8}$ |
| Net Tax | $\$ 245.88$ | $\mathbf{\$ 3 4 3 . 0 2}$ | $\mathbf{\$ 5 5 5 . 5 9}$ | $\mathbf{\$ 3 3 2 . 6 6}$ | $\mathbf{\$ 1 , 4 7 7 . 1 5}$ |
| Increased Revenue | $\mathbf{+ 1 0 5 \%}$ | $\mathbf{+ 1 7 2 \%}$ | $\mathbf{+ 8 9 \%}$ | $\mathbf{+ 1 0 7 \%}$ | $\mathbf{+ 1 0 8 \%}$ |

Note: Revenues based on per mile rate of 1.56ϕ in Oregon; 1.87ϕ in Washington and 1.19ϕ in Nevada.

Source: DCL Analysis based on data taken from the Preliminary Findings Report on the Oregon Legislative Pilot Test, February 2013

Simplified Business Case based on Statistics for Pilot At the 2025 CAFE Fleet Standards (60\%)

Statistic
Nov. 2012
Dec. 2012 Jan. 2013 Feb 2013
Total

| Transactions | 1,402 | 2,787 | 2,867 | 1,180 | 8,236 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Total Miles | $32,908.9$ | $71,059.0$ | $79,663.8$ | $49,918.9$ | $233,550.6$ |
| Oregon Miles | $31,478.4$ | $35,346.4$ | $35,671.0$ | $25,842.4$ | $128,538.2$ |
| Nevada Miles | $1,430.5$ | $18,663.2$ | $26,366.4$ | $24,076.5$ | $70,536.6$ |
| Washington Miles | 0 | $17,049.4$ | $17,626.4$ | 0 | $34,675.8$ |
| Gross Tax | $\$ 479.71$ | $\mathbf{\$ 5 4 2 . 5 1}$ | $\mathbf{\$ 1 1 7 6 . 6 4}$ | $\mathbf{\$ 6 4 2 . 7 7}$ | $\mathbf{\$ 2 , 8 4 1 . 6 3}$ |
| OR Fuel Tax Credit | $\mathbf{- \$ 1 4 8 . 4 6}$ | $\mathbf{- \$ 1 2 6 . 6 6}$ | $\mathbf{- \$ 3 9 4 . 3 2}$ | $\mathbf{- \$ 1 9 6 . 9 0}$ | $\mathbf{-} \mathbf{\$ 8 6 6 . 3 4}$ |
| Net Tax | $\mathbf{\$ 3 3 1 . 2 5}$ | $\mathbf{\$ 4 1 5 . 8 5}$ | $\mathbf{\$ 7 8 2 . 3 2}$ | $\mathbf{\$ 4 4 5 . 8 7}$ | $\mathbf{\$ 1 , 9 7 5 . 2 9}$ |
| Increased Revenue | $\mathbf{+ 2 2 3 \%}$ | $\mathbf{+ 3 2 8 \%}$ | $\mathbf{+ 1 9 8 \%}$ | $\mathbf{+ 2 2 6 \%}$ | $\mathbf{+ 2 8 8 \%}$ |

Note: Revenues based on per mile rate of 1.56ϕ in Oregon; 1.87ϕ in Washington and 1.19ϕ in Nevada.

Source: DCL Analysis based on data taken from the Preliminary Findings Report on the Oregon Legislative Pilot Test, February 2013

Simplified Business Case based on Statistics for Pilot At a conservative mid-Point (41\%)

Statistic.
Nov. 2012 Dec. 2012 Jan. 2013 Feb 2013
Total

| Transactions | 1,402 | 2,787 | 2,867 | 1,180 | 8,236 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Total Miles | $32,908.9$ | $71,059.0$ | $79,663.8$ | $49,918.9$ | $233,550.6$ |
| Oregon Miles | $31,478.4$ | $35,346.4$ | $35,671.0$ | $25,842.4$ | $128,538.2$ |
| Nevada Miles | $1,430.5$ | $18,663.2$ | $26,366.4$ | $24,076.5$ | $70,536.6$ |
| Washington Miles | 0 | $17,049.4$ | $17,626.4$ | 0 | $34,675.8$ |
| Gross Tax | $\$ 479.71$ | $\$ 542.51$ | $\mathbf{\$ 1 1 7 6 . 6 4}$ | $\mathbf{\$ 6 4 2 . 7 7}$ | $\mathbf{\$ 2 , 8 4 1 . 6 3}$ |
| OR Fuel Tax Credit | $\mathbf{- \$ 2 1 8 . 9 8}$ | $\mathbf{- \$ 1 8 6 . 8 2}$ | $\mathbf{- \$ 5 8 1 . 6 2}$ | $\mathbf{- \$ 2 9 0 . 4 2}$ | $\mathbf{- \$ 1 , 2 7 7 . 8 5}$ |
| Net Tax | $\$ 260.73$ | $\mathbf{\$ 3 5 5 . 6 9}$ | $\mathbf{\$ 5 9 5 . 0 2}$ | $\mathbf{\$ 3 5 2 . 3 5}$ | $\mathbf{\$ 1 5 6 3 . 7 8}$ |
| Increased Revenue | $\mathbf{+ 1 1 9 \%}$ | $\mathbf{+ 1 9 0 \%}$ | $\mathbf{+ 1 0 2 \%}$ | $\mathbf{+ 1 2 1 \%}$ | $\mathbf{+ 1 2 2 \%}$ |

Note: Revenues based on per mile rate of 1.56ϕ in Oregon; 1.87ϕ in Washington and 1.19ϕ in Nevada.

Source: DCL Analysis based on data taken from the Preliminary Findings Report on the Oregon Legislative Pilot Test, February 2013

Road Usage Charging Advantages

- Sustainable revenue source-resilient to increasing fuel efficiency
- More proportionate to roadway usage and damage
- Allows collection by private industry in an open system model that provides lower administrative costs
- Fulfills the user-pays principle
- Is more equitable horizontally and vertically
- There are solid responses to the main arguments against distancebased charging
- Too expensive to operate
- Inequitable to rural drivers
- Technology invades privacy
- No Business Case

It's NOT about the Technology!

