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Introduction

Background: existing research has quantified effects of road
capacity changes on

* travel demand (e.g. ‘induced’ demand),
* network performance (e.g. speeds, travel times, flow, density etc)
* productivity (e.g. GVA, wages, TFP, growth etc)

But largely distinct perspectives using different approaches and data

Worth considering these effects together as there could be interesting
relations between them

Do productivity effects from transport investments arise via

* Improvements in network performance

* Increased scale of ‘activity’ (i.e. agglomeration effect)



Introduction

Objective: develop a common framework to study relative effects
of capacity expansions on demand, network performance, and
productivity

Method: develop a causal inference approach for average
treatment effect (ATE) estimation with longitudinal data

* Where treatments are ‘doses’ of urban road network capacity
expansion

* Assignment is non-random, and the probability of receiving a given
dose varies systematically with city characteristics (confounding)

* Quantify relationship between expected ‘response’ (i.e demand,
performance, productivity) and dose, net of confounding effects
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Causal inference for continuous ATE estimation

Typical set-up: we observe data z; = (y;,d;, x;), i = 1,...,n, where y; is
a response, d; is treatment (dose), and x; a vector of covariates

Target of inference: we seek to estimate ATEs
m(d*) =E[Y(d")] - E[Y(0)]
for all doses d* € D C R of interest. But we have confounding

fz(2) = fy\p,x(yld,z) fp|x (d|z) fx (x)

Implies that Y'(d) £ D = d, so comparison of mean outcomes across
different treatment strata will not in general reveal a causal effect

But we do have conditional independence between Y and D given X
Y(d) LD=dX =z« forall deDCR,

so we can estimate ATEs by somehow adjusting for X. We do so via
generalised propensity scores for longitudinal data



Generalised Propensity Score (GPS) adjustment

The GPS is a scalar that measures the conditional probability of
assignment to treatment given confounding characteristics

We can define the GPS for any dose d* (observed or unobserved)
m(d*| X;a) = Pr(D = d*| X = x)
Literature shows that conditional independence holds via the GPS
Y(@d*) L D=d"n(d*|X;a) forall d*eD
providing a means of adjusting for confounding across doses of interest

We use a 4 step semiparametric regression approach:
i. Estimate the GPS using a flexible model: 7(d|X; @)
ii. Adjust for confounding via a mean response model: E[Y|D,7(d|X;&); f]
iii. Use § to calculate fi(d*) = E[Y(d*)] = Ex [E(Y|d*,%(d*|X; Q)):; B], and
repeat for all doses of interest.

iv. Calculate ATEs: 7(d*) = (d*) — 12(0), using (block) bootstrap for
variance estimation

13



Advantages of the causal GPS approach

Clearly defined ‘causal’ framework based on measurable
manipulation of a treatment

Circumvents need for a comprehensive theoretical model, though
theory informs selection of confounders

Approach can estimate ATEs across multiple doses rather than a
single point estimate

Modelling with a scalar PS, rather than high-dimensional X, allows
use of flexible forms (i.e. GAMs and high-order polynomial)

GPS can be used to form a number of ATE estimators via
weighting, matching, or regression (combine for doubly robust)

A longitudinal mixed model extension of the GPS can
accommodate measured confounding, unmeasured time-invariant
confounding, and bi-directionality between response and treatment
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Methodological contribution of the paper

ATE estimates are unbiased if the estimated GPS consistently
estimates the true GPS

A necessary condition is that X is sufficient to represent confounding

We show that with longitudinal data the GPS can be estimated via a
mixed model approach to address

* Unmeasured confounding: condition on unit level random effects,
or correlated random effects, to adjust for unobserved time-invariant
confounding: 7(d* |z, u;; Q)

* Reverse causality: condition on lagged values of the response
Yi,t—p, or the response history %Y, ,, to allow for endogeneity from

-~

reverse causation: w(d*|x;¢, u, Hiyt_l; Q)

* Dynamic assignment: include lagged values of the treatment
d;1—p, or treatment history H¢, |, to represent the dynamic nature

~

of assighment: ﬁ(d*|m¢t,u¢,7—[§”t71,”H,thl;a)
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Algorithm for ATE estimation via mixed GPS model

. Use a flexible mixed model (i.e. GAMM) to estimate fpx (d|z, u; )

. Use @, with the appropriate density function, to calculate the GPSs:
m(d*|x, u; @), for all d* of interest

. Ensure common support by selecting only units which have a
reasonable probability of being treated across the range of dose

. Estimate E(Y'|D, 7(d|z, u; @)) using a penalised spline model

. Average over predicted values from 4., evaluated at at dose d*, to
obtain a point estimate of the expected response at d*: fi(d*)

. Repeat for all dose of interest, form the dose-response curve, and
estimate ATEs:

7(d") = p(d") — p(0)

. Use a single (block) bootstrap re-sampling scheme over 1. to 6. to
obtain standard errors
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Data: TTI urban mobility data, 101 US cities, (1982-2007)
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Urban longitudinal data (TTI and MSA)

® Responses: annual proportional change in demand (vmt), network
performance (delay per vmt), and productivity (average wage)

® Treatment: annual proportional change in network lane miles
e Pre-treatment covariates (confounders):

* Lagged responses: to capture reverse causality

Congestion & traffic volume: measured by delay and vmt
Network scale & mix: network length, mix of freeway / arterial
Traffic mix: volume on freeway / arterial

Mode characteristics: public transport patronage, state fuel price
Economy: productivity, income and economic structure
Employment and population distribution and growth

R S . S

e Unobserved (unknown) confounders: zone / area /region
characteristics, road network design, activity/travel behaviour.

* Random city-level effects specified in longitudinal mixed models

® Models: Normal GAMMs for all sub models
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Results: demand (vmt)

* evidence of induced
demand over the range of
dose having adjusted for
confounding

e * ATE > proportional to
treatment for doses < 2

* on average 10% increase
in lane miles — 9%
increase in vmt net of
‘natural growth’
(estimated 1.4% p.a.)

* capacity expansions in the
o range considered have not
‘ ‘ ‘ ‘ ‘ in general reduced traffic
1 2 3 4 5 density (vol. / cap.)

Average Treatment Effect (%)
2
!

Capacity Expansion (%)
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Results: network performance (delay per vmt)

* capacity expansions have
not ameliorated urban
congestion

- * average road user has not

’ ’ experienced change in
delay from capacity
expansions

* no statistically significant
effects on delay per vmt

* this is the case even for
large capacity expansions

Average Treatment Effect (%)
2
!

. * due to natural growth
~ congestion has worsened
T T — T T (approx. 3% p.a.)

Capacity Expansion (%)
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Results: productivity (average MSA wage)

* urban road network
expansions have not
induced higher
productivity

* ‘naive’ regressions of
productivity on treatment
do indicate a +ve
association

* but no significant ATEs
. having isolated a viable
sample and adjusted for
confounding

Average Treatment Effect (%)
0

N * no change in transaction
‘ ‘ ‘ ‘ I costs and apparently no
1 2 3 4 5 scale effects

Capacity Expansion (%)
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Conclusions

Causal mixed model GPS approach provides a highly flexible framework
for ex-post evaluation of transport interventions

Model indicates that urban road network expansions have induced
demand but have not ameliorated congestion or raised productivity

Results do not imply that there are no economic benefits from road
capacity expansions per se:

*

*

*

*

results specific to marginal changes on mature congested urban networks
increased mobility with aggregate volume / capacity ratios constant
network generalised costs do not improve and total urban delay rises

the scale (increased traffic) effect does not appear to influence
productivity (either +ve or -ve)

To improve urban road network performance and raise productivity a
combination of efficient pricing with investment in both roads and mass
transit may be more effective
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The problem of confounding

X =city
characteristics

A 4

Y = productivity | _ _ _ _ _ _| D = capacity
expansion

The relationship between capacity and productivity is confounded
by a set of city characteristics which

* Are important for productivity

* Influence the level of capacity expansion received
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